Image: Science and Technology

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions

Diego F. Aranha (AU), Carsten Baum (DTU / AU), Kristian Gjøsteen (NTNU), **Tjerand Silde (NTNU)**

Overview

- 1. Clients submit their votes as signed ciphertexts
- 2. Ciphertexts are re-encrypted and then shuffled
- 3. Ciphertexts are decrypted in a distributed way
- 4. Partial decryptions are combined into the votes

Overview

- 1. Ciphertexts are based on the LWE assumption
- 2. Commitments are based on LWE and SIS
- 3. Everything is of the form $\mathbf{A} \cdot \mathbf{s} = \mathbf{t}$ for short \mathbf{s}
- 4. We need four different zero-knowledge proofs

Mixing Networks

- 1. The server receives a vector of ciphertexts { c_i }
- 2. Creates a vector of encryptions of zero { \underline{c}_i }
- 3. Commits to zero-encryptions as $\underline{C}_i = Com(\underline{c}_i)$
- 4. Sums each $\overline{c}_i = c_i + \underline{c}_i$, output permuted { $\overline{c}_{\pi(i)}$ }

Mixing Networks

We need to prove the following in zero-knowledge:

- 1. $\{\underline{C}_i\}$ are commitments to encryptions of zero
 - Need to prove many equations $\mathbf{A} \cdot \mathbf{s}_i = \mathbf{t}_i$ for short \mathbf{s}_i
- 2. { $\underline{C}_i + c_i$ } commits to the permuted set { $\overline{c}_{\pi(i)}$ }
 - Need to give a proof of shuffle for a set of vectors

Distributed Decryption

- 1. The servers receive a vector of ciphertexts { c_i }
- 2. Each server holds a uniform secret key-share s_i
- 3. Samples large but bounded noise values E_i
- 4. Finally outputs partial decryptions $t_i = c_i \cdot s_i + E_i$

Distributed Decryption

We need to prove the following in zero-knowledge:

- 1. The norm of noise E_i is bounded by a bound B
 - Different from the shortness proof for a larger bound
- 2. Decryptions t_i are computed as given linear eq.
 - We have efficient proofs of committed linear relations

Performance

$c_i^{(k)}$	$\llbracket R_q^{l_c} \rrbracket$	$\pi_{ m SHUF}$	$\pi_{L_{i,j}}$	$\pi_{ m SMALL}$	$\pi_{ m BND}$	$\pi_{\mathcal{S}_i}$	$\pi_{\mathcal{D}_j}$
80 KB	$40(l_c + 1)$ KB	150τ KB	35 KB	20 au KB	2τ KB	370τ KB	157τ KB

Table 2: Size of the ciphertexts, commitments, and proofs.

Performance

Protocol	$\Pi_{\text{LIN}} + \Pi_{\text{LINV}}$	$\Pi_{\rm SHUF}^{l_c} + \Pi_{\rm SHUFV}^{l_c}$
Time	$(43.4 + 6.4)\tau$ ms	$(44.9 + 7.9)\tau$ ms
Protocol	$\Pi_{BND} + \Pi_{BNDV}$	$\Pi_{\text{Small}} + \Pi_{\text{SmallV}}$
Time	$(92.7 + 23.9)\tau$ ms	$(214.4 + 10.0)\tau$ ms

Table 4: Timings for cryptographic protocols, obtained by computing the average of 100 executions with $\tau = 1000$.

Conclusions

We present the first lattice-based voting scheme based on the shuffle-and-decrypt paradigm.

We give parameters, sizes, and timings, improving the performance compared to other building blocks.

The full paper is available at <u>https://ia.cr/2022/422</u>.

THANK YOU! QUESTIONS?

