Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions

Diego F. Aranha (AU), Carsten Baum (DTU / AU), Kristian Gjøsteen (NTNU), Tjerand Silde (NTNU)

$\boxed{\square}$ Mixing Networks

(a) Distributed Decryption
\square Performance

Overview

1. Clients submit their votes as signed ciphertexts
2. Ciphertexts are re-encrypted and then shuffled
3. Ciphertexts are decrypted in a distributed way
4. Partial decryptions are combined into the votes

Overview

Overview

1. Ciphertexts are based on the LWE assumption
2. Commitments are based on LWE and SIS
3. Everything is of the form $\boldsymbol{A} \cdot \boldsymbol{s}=\boldsymbol{t}$ for short \boldsymbol{s}
4. We need four different zero-knowledge proofs

Mixing Networks

1. The server receives a vector of ciphertexts $\left\{\boldsymbol{c}_{\boldsymbol{i}}\right\}$
2. Creates a vector of encryptions of zero $\left\{\underline{\boldsymbol{c}}_{i}\right\}$
3. Commits to zero-encryptions as $\underline{\boldsymbol{C}}_{\boldsymbol{i}}=\operatorname{Com}\left(\underline{\boldsymbol{c}}_{\boldsymbol{i}}\right)$
4. Sums each $\overline{\boldsymbol{c}}_{\boldsymbol{i}}=\boldsymbol{c}_{\boldsymbol{i}}+\underline{\boldsymbol{c}}_{\boldsymbol{i}}$, output permuted $\left\{\overline{\boldsymbol{c}}_{\boldsymbol{\pi}(\boldsymbol{i})}\right\}$

Mixing Networks

We need to prove the following in zero-knowledge:

1. $\left\{\underline{\boldsymbol{C}}_{i}\right\}$ are commitments to encryptions of zero

- Need to prove many equations $\boldsymbol{A} \cdot \boldsymbol{s}_{\boldsymbol{i}}=\boldsymbol{t}_{\boldsymbol{i}}$ for short $\boldsymbol{s}_{\boldsymbol{i}}$

2. $\left\{\underline{\boldsymbol{C}}_{\boldsymbol{i}}+\boldsymbol{c}_{\boldsymbol{i}}\right\}$ commits to the permuted set $\left\{\overline{\boldsymbol{c}}_{\boldsymbol{\pi}(\boldsymbol{i})}\right\}$

- Need to give a proof of shuffle for a set of vectors

Distributed Decryption

1. The servers receive a vector of ciphertexts $\left\{\boldsymbol{c}_{\boldsymbol{i}}\right\}$
2. Each server holds a uniform secret key-share $\boldsymbol{s}_{\boldsymbol{i}}$
3. Samples large but bounded noise values E_{i}
4. Finally outputs partial decryptions $\boldsymbol{t}_{\boldsymbol{i}}=\boldsymbol{c}_{\boldsymbol{i}} \cdot \boldsymbol{s}_{\boldsymbol{i}}+\boldsymbol{E}_{\boldsymbol{i}}$

Distributed Decryption

We need to prove the following in zero-knowledge:

1. The norm of noise E_{i} is bounded by a bound B

- Different from the shortness proof for a larger bound

2. Decryptions $\boldsymbol{t}_{\boldsymbol{i}}$ are computed as given linear eq.

- We have efficient proofs of committed linear relations

Performance

$\boldsymbol{c}_{i}^{(k)}$	$\llbracket R_{q}^{l_{c}} \rrbracket$	$\pi_{\text {SHUF }}$	$\pi_{L_{i, j}}$	$\pi_{\text {SMALL }}$	π_{BND}	$\pi_{\mathcal{S}_{i}}$	$\pi_{\mathcal{D}_{j}}$
80 KB	$40\left(l_{\boldsymbol{c}}+1\right) \mathrm{KB}$	$150 \tau \mathrm{~KB}$	35 KB	$20 \tau \mathrm{~KB}$	$2 \tau \mathrm{~KB}$	$370 \tau \mathrm{~KB}$	$157 \tau \mathrm{~KB}$

Table 2: Size of the ciphertexts, commitments, and proofs.

Performance

Protocol	$\Pi_{\text {LiN }}+\Pi_{\text {LINV }}$	$\Pi_{\text {SHUF }}^{l_{c}}+\Pi_{\text {SHUFV }}^{l_{c}}$
Time	$(43.4+6.4) \tau \mathrm{ms}$	$(44.9+7.9) \tau \mathrm{ms}$
Protocol	$\Pi_{\mathrm{BND}}+\Pi_{\mathrm{BNDV}}$	$\Pi_{\text {SMALL }}+\Pi_{\text {SMALLV }}$
Time	$(92.7+23.9) \tau \mathrm{ms}$	$(214.4+10.0) \tau \mathrm{ms}$

Table 4: Timings for cryptographic protocols, obtained by computing the average of 100 executions with $\tau=1000$.

Conclusions

We present the first lattice-based voting scheme based on the shuffle-and-decrypt paradigm.

We give parameters, sizes, and timings, improving the performance compared to other building blocks.

The full paper is available at https://ia.cr/2022/422.

THANK YOU! QUESTIONS?

