
TWO-ROUND THRESHOLD LATTICE SIGNATURES
FROM THRESHOLD HOMOMORPHIC ENCRYPTION

Kamil Doruk Gur, Jonathan Katz, and Tjerand Silde
University of Maryland, College Park and NTNU



Contents

Threshold Signatures

t-out-of-n Challenges

CPA t-out-of-n Encryption

Passive Signature Scheme

Active Signature Scheme

Performance

2



Contents

Threshold Signatures

t-out-of-n Challenges

CPA t-out-of-n Encryption

Passive Signature Scheme

Active Signature Scheme

Performance

3



Threshold Cryptography

The goal is that secrets are shared between n parties, and that any threshold
1 ≤ t ≤ n can jointly compute a decryption or signature based on their shares.

This gives security against an adversary corrupting at most t − 1 parties which
cannot complete the computation on its own, and robustness if at least t
honest parties are available for the computation to be completed.

4



Applications

On behalf of a set of people/devices/organizations a threshold can...

▶ sign transactions and legal documents

▶ sign authentication challenges or certificates

▶ decrypt ballots in an electronic voting system

▶ run pre-processing phases for MPC protocols

5



Contents

Threshold Signatures

t-out-of-n Challenges

CPA t-out-of-n Encryption

Passive Signature Scheme

Active Signature Scheme

Performance

6



Basic Signature Scheme
The private key is a short s ∈ Rℓ+k

q , and the verification key consists of a matrix
Ā := [A | I ] ∈ Rk×(ℓ+k)

q and vector y := Ās. The protocol proceeds as follows:

1. The prover samples a short-ish vector r ∈ Rℓ+k
q and sends w := Ār.

2. The verifier responds with a short challenge c ∈ Rq .

3. The prover responds with a short vector z := c · s + r.

4. The verifier accepts iff z is short and Āz = c · y + w .

5. → Non-interactive signature scheme if c = H (pk, w, m).

7



Basic Signature Scheme
The private key is a short s ∈ Rℓ+k

q , and the verification key consists of a matrix
Ā := [A | I ] ∈ Rk×(ℓ+k)

q and vector y := Ās. The protocol proceeds as follows:

1. The prover samples a short-ish vector r ∈ Rℓ+k
q and sends w := Ār.

2. The verifier responds with a short challenge c ∈ Rq .

3. The prover responds with a short vector z := c · s + r.

4. The verifier accepts iff z is short and Āz = c · y + w .

5. → Non-interactive signature scheme if c = H (pk, w, m).

7



Basic Signature Scheme
The private key is a short s ∈ Rℓ+k

q , and the verification key consists of a matrix
Ā := [A | I ] ∈ Rk×(ℓ+k)

q and vector y := Ās. The protocol proceeds as follows:

1. The prover samples a short-ish vector r ∈ Rℓ+k
q and sends w := Ār.

2. The verifier responds with a short challenge c ∈ Rq .

3. The prover responds with a short vector z := c · s + r.

4. The verifier accepts iff z is short and Āz = c · y + w .

5. → Non-interactive signature scheme if c = H (pk, w, m).

7



Basic Signature Scheme
The private key is a short s ∈ Rℓ+k

q , and the verification key consists of a matrix
Ā := [A | I ] ∈ Rk×(ℓ+k)

q and vector y := Ās. The protocol proceeds as follows:

1. The prover samples a short-ish vector r ∈ Rℓ+k
q and sends w := Ār.

2. The verifier responds with a short challenge c ∈ Rq .

3. The prover responds with a short vector z := c · s + r.

4. The verifier accepts iff z is short and Āz = c · y + w .

5. → Non-interactive signature scheme if c = H (pk, w, m).

7



Basic Signature Scheme
The private key is a short s ∈ Rℓ+k

q , and the verification key consists of a matrix
Ā := [A | I ] ∈ Rk×(ℓ+k)

q and vector y := Ās. The protocol proceeds as follows:

1. The prover samples a short-ish vector r ∈ Rℓ+k
q and sends w := Ār.

2. The verifier responds with a short challenge c ∈ Rq .

3. The prover responds with a short vector z := c · s + r.

4. The verifier accepts iff z is short and Āz = c · y + w .

5. → Non-interactive signature scheme if c = H (pk, w, m).

7



Basic Signature Scheme
The private key is a short s ∈ Rℓ+k

q , and the verification key consists of a matrix
Ā := [A | I ] ∈ Rk×(ℓ+k)

q and vector y := Ās. The protocol proceeds as follows:

1. The prover samples a short-ish vector r ∈ Rℓ+k
q and sends w := Ār.

2. The verifier responds with a short challenge c ∈ Rq .

3. The prover responds with a short vector z := c · s + r.

4. The verifier accepts iff z is short and Āz = c · y + w .

5. → Non-interactive signature scheme if c = H (pk, w, m).

7



Basic n-out-of-n Threshold Scheme

The ith signer holds short vector si where s =
∑

i∈[n] si is the private key. Then,
the n signers can run a distributed, two-round signing protocol as follows:

1. The ith signer chooses a short-ish vector ri ∈ Rℓ+k
q and sends w i := Āri .

2. Each signer computes w :=
∑

i∈[n] w i followed by c := H (w). The ith signer
then sends zi := c · si + ri .

3. Each signer then computes z :=
∑

i∈[n] zi and outputs the signature (c, z).

8



Basic n-out-of-n Threshold Scheme

The ith signer holds short vector si where s =
∑

i∈[n] si is the private key. Then,
the n signers can run a distributed, two-round signing protocol as follows:

1. The ith signer chooses a short-ish vector ri ∈ Rℓ+k
q and sends w i := Āri .

2. Each signer computes w :=
∑

i∈[n] w i followed by c := H (w). The ith signer
then sends zi := c · si + ri .

3. Each signer then computes z :=
∑

i∈[n] zi and outputs the signature (c, z).

8



Basic n-out-of-n Threshold Scheme

The ith signer holds short vector si where s =
∑

i∈[n] si is the private key. Then,
the n signers can run a distributed, two-round signing protocol as follows:

1. The ith signer chooses a short-ish vector ri ∈ Rℓ+k
q and sends w i := Āri .

2. Each signer computes w :=
∑

i∈[n] w i followed by c := H (w). The ith signer
then sends zi := c · si + ri .

3. Each signer then computes z :=
∑

i∈[n] zi and outputs the signature (c, z).

8



Basic n-out-of-n Threshold Scheme

The ith signer holds short vector si where s =
∑

i∈[n] si is the private key. Then,
the n signers can run a distributed, two-round signing protocol as follows:

1. The ith signer chooses a short-ish vector ri ∈ Rℓ+k
q and sends w i := Āri .

2. Each signer computes w :=
∑

i∈[n] w i followed by c := H (w). The ith signer
then sends zi := c · si + ri .

3. Each signer then computes z :=
∑

i∈[n] zi and outputs the signature (c, z).

8



Issues with Secret Sharing

▶ The shared secret must be short for SIS to be hard

▶ Individual secrets must be short to allow rejection sampling

▶ The sum of short elements is also short, but...

▶ Secret shared elements are uniformly random

9



Issues with Secret Sharing

▶ The shared secret must be short for SIS to be hard

▶ Individual secrets must be short to allow rejection sampling

▶ The sum of short elements is also short, but...

▶ Secret shared elements are uniformly random

9



Issues with Secret Sharing

▶ The shared secret must be short for SIS to be hard

▶ Individual secrets must be short to allow rejection sampling

▶ The sum of short elements is also short, but...

▶ Secret shared elements are uniformly random

9



Issues with Secret Sharing

▶ The shared secret must be short for SIS to be hard

▶ Individual secrets must be short to allow rejection sampling

▶ The sum of short elements is also short, but...

▶ Secret shared elements are uniformly random

9



Issues with Secret Sharing

▶ The shared secret must be short for SIS to be hard

▶ Individual secrets must be short to allow rejection sampling

▶ The sum of short elements is also short, but...

▶ Secret shared elements are uniformly random

9



Issues with Random Oracles

Fiat-Shamir signatures require a random oracle to produce challenges, and we
cannot evaluate a random oracle using MPC, ZKP, or FHE in a black-box way.

We need a homomorphism to share and combine secrets, but we want to
evaluate the random oracle on public input (using communication).

10



Issues with Zero-Knowledge

Signatures are only (honest-verifier) zero-knowledge when no parties abort.

Then the commit message cannot be sent in the clear if anyone aborts.

But we only learn if anyone aborts after we have computed the challenge...

11



Contents

Threshold Signatures

t-out-of-n Challenges

CPA t-out-of-n Encryption

Passive Signature Scheme

Active Signature Scheme

Performance

12



BGV Encryption

The BGV encryption scheme consists of the following algorithms:

▶ KGenBGV: Sample a uniform element a ∈ Rq along with s, e ← DKGen, and
output the public key pk := (a, b) = (a, as + pe) and secret key sk := s.

▶ EncBGV: On input a public key pk = (a, b) and a message m ∈ Rp, sample
r , e′, e′′ ← DEnc and output the ciphertext (u, v) = (ar + pe′, br + pe′′ + m).

▶ DecBGV: On input a secret key sk = s and a ciphertext (u, v), output the
message m := (v − su mod q) mod p.

13



BGV Encryption

The BGV encryption scheme consists of the following algorithms:

▶ KGenBGV: Sample a uniform element a ∈ Rq along with s, e ← DKGen, and
output the public key pk := (a, b) = (a, as + pe) and secret key sk := s.

▶ EncBGV: On input a public key pk = (a, b) and a message m ∈ Rp, sample
r , e′, e′′ ← DEnc and output the ciphertext (u, v) = (ar + pe′, br + pe′′ + m).

▶ DecBGV: On input a secret key sk = s and a ciphertext (u, v), output the
message m := (v − su mod q) mod p.

13



BGV Encryption

The BGV encryption scheme consists of the following algorithms:

▶ KGenBGV: Sample a uniform element a ∈ Rq along with s, e ← DKGen, and
output the public key pk := (a, b) = (a, as + pe) and secret key sk := s.

▶ EncBGV: On input a public key pk = (a, b) and a message m ∈ Rp, sample
r , e′, e′′ ← DEnc and output the ciphertext (u, v) = (ar + pe′, br + pe′′ + m).

▶ DecBGV: On input a secret key sk = s and a ciphertext (u, v), output the
message m := (v − su mod q) mod p.

13



BGV Encryption

The BGV encryption scheme consists of the following algorithms:

▶ KGenBGV: Sample a uniform element a ∈ Rq along with s, e ← DKGen, and
output the public key pk := (a, b) = (a, as + pe) and secret key sk := s.

▶ EncBGV: On input a public key pk = (a, b) and a message m ∈ Rp, sample
r , e′, e′′ ← DEnc and output the ciphertext (u, v) = (ar + pe′, br + pe′′ + m).

▶ DecBGV: On input a secret key sk = s and a ciphertext (u, v), output the
message m := (v − su mod q) mod p.

13



BGV DistKeyGen

The distributed key generation protocol for BGV works as follows:

1. Pi samples si and ei from a distribution DKGen, computes bi := asi + pei .

2. Pi secret shares si into {si,j}j∈[n] using t-out-of-n Shamir secret sharing.
For each j , Pi sends si,j and bi to party Pj over a secure channel.

3. Pi computes b :=
∑

bj , s′
i =

∑
sj,i , and outputs pk = (a, b) and ski = s′

i .

14



BGV DistKeyGen

The distributed key generation protocol for BGV works as follows:

1. Pi samples si and ei from a distribution DKGen, computes bi := asi + pei .

2. Pi secret shares si into {si,j}j∈[n] using t-out-of-n Shamir secret sharing.
For each j , Pi sends si,j and bi to party Pj over a secure channel.

3. Pi computes b :=
∑

bj , s′
i =

∑
sj,i , and outputs pk = (a, b) and ski = s′

i .

14



BGV DistKeyGen

The distributed key generation protocol for BGV works as follows:

1. Pi samples si and ei from a distribution DKGen, computes bi := asi + pei .

2. Pi secret shares si into {si,j}j∈[n] using t-out-of-n Shamir secret sharing.
For each j , Pi sends si,j and bi to party Pj over a secure channel.

3. Pi computes b :=
∑

bj , s′
i =

∑
sj,i , and outputs pk = (a, b) and ski = s′

i .

14



BGV DistKeyGen

The distributed key generation protocol for BGV works as follows:

1. Pi samples si and ei from a distribution DKGen, computes bi := asi + pei .

2. Pi secret shares si into {si,j}j∈[n] using t-out-of-n Shamir secret sharing.
For each j , Pi sends si,j and bi to party Pj over a secure channel.

3. Pi computes b :=
∑

bj , s′
i =

∑
sj,i , and outputs pk = (a, b) and ski = s′

i .

14



BGV TDec

The threshold decryption procedure for BGV works as follows:

TDec On input a ciphertext ctx = (u, v), a decryption key share ski = si , and a set
of users U of size t, compute mi := λisu using Lagrange coefficient λi .

Sample noise Ei ← Rq s.t ∥Ei∥∞ ≤ 2secBDec, then output di := mi + pEi .

Comb On input a ciphertext ctx = (u, v) and a set of partial decryption shares
{dj}j∈U , it outputs m := (v −

∑
j∈U dj) mod p.

15



BGV TDec

The threshold decryption procedure for BGV works as follows:

TDec On input a ciphertext ctx = (u, v), a decryption key share ski = si , and a set
of users U of size t, compute mi := λisu using Lagrange coefficient λi .

Sample noise Ei ← Rq s.t ∥Ei∥∞ ≤ 2secBDec, then output di := mi + pEi .

Comb On input a ciphertext ctx = (u, v) and a set of partial decryption shares
{dj}j∈U , it outputs m := (v −

∑
j∈U dj) mod p.

15



BGV TDec

The threshold decryption procedure for BGV works as follows:

TDec On input a ciphertext ctx = (u, v), a decryption key share ski = si , and a set
of users U of size t, compute mi := λisu using Lagrange coefficient λi .

Sample noise Ei ← Rq s.t ∥Ei∥∞ ≤ 2secBDec, then output di := mi + pEi .

Comb On input a ciphertext ctx = (u, v) and a set of partial decryption shares
{dj}j∈U , it outputs m := (v −

∑
j∈U dj) mod p.

15



Contents

Threshold Signatures

t-out-of-n Challenges

CPA t-out-of-n Encryption

Passive Signature Scheme

Active Signature Scheme

Performance

16



Possible Solutions

▶ Use noise drowning techniques to avoid rejection sampling

▶ Use linearly homomorphic encryption to combine shares

▶ Use t-out-of-n threshold decryption to reconstruct signatures

17



Possible Solutions

▶ Use noise drowning techniques to avoid rejection sampling

▶ Use linearly homomorphic encryption to combine shares

▶ Use t-out-of-n threshold decryption to reconstruct signatures

17



Possible Solutions

▶ Use noise drowning techniques to avoid rejection sampling

▶ Use linearly homomorphic encryption to combine shares

▶ Use t-out-of-n threshold decryption to reconstruct signatures

17



Possible Solutions

▶ Use noise drowning techniques to avoid rejection sampling

▶ Use linearly homomorphic encryption to combine shares

▶ Use t-out-of-n threshold decryption to reconstruct signatures

17



Main Idea

Keys s and (Ā, y := Ās) are as before. Instead of sharing s, signers will hold an
encryption ctxs = Enc(s) and share the decryption key k in a t-out-of-n fashion:

1. The ith signer chooses a short-ish vector ri ∈ Rℓ+k
q and sends w i := Āri . It

also sends ctxri , an encryption of ri .

2. Each signer computes w :=
∑

i∈U w i , c = H (w), and “encrypted signature”
ctxz := c · ctxs +

∑
i∈U ctxri . It sends its threshold decryption share of ctxz .

3. Given decryption shares from all parties, each signer can decrypt ctxz to
obtain z, and output the signature (c, z).

18



Main Idea

Keys s and (Ā, y := Ās) are as before. Instead of sharing s, signers will hold an
encryption ctxs = Enc(s) and share the decryption key k in a t-out-of-n fashion:

1. The ith signer chooses a short-ish vector ri ∈ Rℓ+k
q and sends w i := Āri . It

also sends ctxri , an encryption of ri .

2. Each signer computes w :=
∑

i∈U w i , c = H (w), and “encrypted signature”
ctxz := c · ctxs +

∑
i∈U ctxri . It sends its threshold decryption share of ctxz .

3. Given decryption shares from all parties, each signer can decrypt ctxz to
obtain z, and output the signature (c, z).

18



Main Idea

Keys s and (Ā, y := Ās) are as before. Instead of sharing s, signers will hold an
encryption ctxs = Enc(s) and share the decryption key k in a t-out-of-n fashion:

1. The ith signer chooses a short-ish vector ri ∈ Rℓ+k
q and sends w i := Āri . It

also sends ctxri , an encryption of ri .

2. Each signer computes w :=
∑

i∈U w i , c = H (w), and “encrypted signature”
ctxz := c · ctxs +

∑
i∈U ctxri . It sends its threshold decryption share of ctxz .

3. Given decryption shares from all parties, each signer can decrypt ctxz to
obtain z, and output the signature (c, z).

18



Main Idea

Keys s and (Ā, y := Ās) are as before. Instead of sharing s, signers will hold an
encryption ctxs = Enc(s) and share the decryption key k in a t-out-of-n fashion:

1. The ith signer chooses a short-ish vector ri ∈ Rℓ+k
q and sends w i := Āri . It

also sends ctxri , an encryption of ri .

2. Each signer computes w :=
∑

i∈U w i , c = H (w), and “encrypted signature”
ctxz := c · ctxs +

∑
i∈U ctxri . It sends its threshold decryption share of ctxz .

3. Given decryption shares from all parties, each signer can decrypt ctxz to
obtain z, and output the signature (c, z).

18



Passive Protocol
SignT S(ski , aux,U , µ)
ri,1, ri,2 ← Dr , ri :=

[
ri,1 ri,2

]
wi := ⟨a, ri⟩, ctxri := Enc(pkE , ri) wi , ctxri

w :=
∑
j∈U

wj , c := H (w, pk, µ) {(wj , ctxrj )}j∈U\{i}

ctxz := c · ctxs +
∑
j∈U

ctxrj

dsi := TDec(ctxz , ski ,U) dsi

z := Comb(ctxz , {dsj}j∈U ) {dsj}j∈U\{i}

return σ := (c, z)

19



Contents

Threshold Signatures

t-out-of-n Challenges

CPA t-out-of-n Encryption

Passive Signature Scheme

Active Signature Scheme

Performance

20



Possible Solutions

▶ Use linearly homomorphic trapdoor commitments first

▶ Use zero-knowledge proof to ensure correct computation

▶ Use straight-line extractable ZKPs for parallel execution

21



Possible Solutions

▶ Use linearly homomorphic trapdoor commitments first

▶ Use zero-knowledge proof to ensure correct computation

▶ Use straight-line extractable ZKPs for parallel execution

21



Possible Solutions

▶ Use linearly homomorphic trapdoor commitments first

▶ Use zero-knowledge proof to ensure correct computation

▶ Use straight-line extractable ZKPs for parallel execution

21



Possible Solutions

▶ Use linearly homomorphic trapdoor commitments first

▶ Use zero-knowledge proof to ensure correct computation

▶ Use straight-line extractable ZKPs for parallel execution

21



Actively Secure Signing Protocol

22



Contents

Threshold Signatures

t-out-of-n Challenges

CPA t-out-of-n Encryption

Passive Signature Scheme

Active Signature Scheme

Performance

23



Setting

▶ Signing threshold of t = 3 out of n = 5 signers

▶ Signing at most 1 or 365 or 264 signatures total

▶ Comparing to Dilithium: n keys and t signatures

▶ Focus on signature and key size, not communication

24



Performance Estimates

Comm. σ1 y1 Π1 σβ yβ Πβ

Size 4 KB 3 KB ≈ 750 KB 9 KB 7.5 KB ≈ 750 KB
Comm. σ∞ y∞ Π∞ σtriv ytriv Πtriv
Size 20 KB 14 KB ≈ 1.5 MB 7.3 KB 6.6 KB 2.4 KB

We present sizes for 3-out-of-5 threshold signatures, where β = 365 times.

We assume a trusted setup, only allow for sequential execution, and give a
rough estimate for communication sizes. An optimistic approach reduces
communication by 50 % to the potential cost of 3 rounds of interaction.

25



Future Work

▶ Use modules instead of rings for a more flexible design (as Dilithium)

▶ Instantiate the distributed key generation protocol as well

▶ Detail the communication and optimize parameters and proofs

▶ Make sure all proofs are online extractable for parallel composition

▶ Implementing the scheme for more thresholds and signature bounds

26



Future Work

▶ Use modules instead of rings for a more flexible design (as Dilithium)

▶ Instantiate the distributed key generation protocol as well

▶ Detail the communication and optimize parameters and proofs

▶ Make sure all proofs are online extractable for parallel composition

▶ Implementing the scheme for more thresholds and signature bounds

26



Future Work

▶ Use modules instead of rings for a more flexible design (as Dilithium)

▶ Instantiate the distributed key generation protocol as well

▶ Detail the communication and optimize parameters and proofs

▶ Make sure all proofs are online extractable for parallel composition

▶ Implementing the scheme for more thresholds and signature bounds

26



Future Work

▶ Use modules instead of rings for a more flexible design (as Dilithium)

▶ Instantiate the distributed key generation protocol as well

▶ Detail the communication and optimize parameters and proofs

▶ Make sure all proofs are online extractable for parallel composition

▶ Implementing the scheme for more thresholds and signature bounds

26



Future Work

▶ Use modules instead of rings for a more flexible design (as Dilithium)

▶ Instantiate the distributed key generation protocol as well

▶ Detail the communication and optimize parameters and proofs

▶ Make sure all proofs are online extractable for parallel composition

▶ Implementing the scheme for more thresholds and signature bounds

26



Future Work

▶ Use modules instead of rings for a more flexible design (as Dilithium)

▶ Instantiate the distributed key generation protocol as well

▶ Detail the communication and optimize parameters and proofs

▶ Make sure all proofs are online extractable for parallel composition

▶ Implementing the scheme for more thresholds and signature bounds

26



Thank you! Questions?
The paper is available at: https://eprint.iacr.org/2023/1318

27

https://eprint.iacr.org/2023/1318

	Threshold Signatures
	t-out-of-n Challenges
	CPA t-out-of-n Encryption
	Passive Signature Scheme
	Active Signature Scheme
	Performance

