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Abstract

A Σ-protocol is a well-established cryptographic primitive that allows a
prover to convince a verifier in a 3-move protocol that it is in possession
of some secret information (witness) that satisfies a given statement,
without revealing anything beyond the claim being valid. This the-
sis gives an introduction to fundamental Σ-protocol theory and how
to construct compressed Σ-protocols, both in the discrete logarithm
(dlog) setting and from lattice assumptions.

We begin by proving in two different ways why every Σ-protocol
is a proof of knowledge. We then present how Attema and Cramer
(CRYPTO 2020) constructed compressed Σ-protocols in the dlog set-
ting, something which allows us to reduce the communication com-
plexity of certain Σ-protocols from linear to logarithmic in the size
of the witness. By a motivating example of a Schnorr-like Σ-protocol
in the lattice setting, we emphasize different challenges and pitfalls
that arise when adapting dlog-based protocols to the lattice setting,
and how to overcome them. We then show how Attema, Cramer and
Kohl (CRYPTO 2021) made the appropriate changes to the given com-
pression mechanism to make it compatible with lattice assumptions.
Lastly, we study how it can be instantiated using the Module Short
Integer Solution (MSIS) assumption to achieve poly-logarithmic com-
munication complexity in the size of the witness.

Sammendrag

En Σ-protokoll er en veletablert kryptografisk primitiv som lar en be-
viser overtale en verifiserer i en 3-bevegelsesprotokoll at den besitter
hemmelig informasjon (vitne) som tilfredsstiller et gitt utsagn, uten å
røpe noe mer enn at p̊astanden er sann. Denne masteroppgaven gir
en introduksjon til grunnleggende Σ-protokollteori og hvordan å kon-
struere komprimerte Σ-protokoller, b̊ade ved diskret logaritme (dlog)-
antakelsen og fra gitterbaserte antakelser.

Vi begynner med å bevise p̊a to forskjellige m̊ater hvorfor enhver
Σ-protokoll er et bevis av kunnskap. Deretter presenterer vi hvor-
dan Attema og Cramer (CRYPTO 2020) konstruerte komprimerte
Σ-protokoller fra dlog-antakelsen, noe som lar oss redusere kommu-
nikasjonskompleksiteten i visse Σ-protokoller fra lineær til logaritmisk
i størrelsen p̊a vitnet. Gjennom et motiverende eksempel med en
Schnorr-lignende Σ-protokoll bygget fra gitterbaserte antakelser, vek-
tlegger vi forskjellige utfordringer og fallgruver som oppst̊ar n̊ar man
tilpasser dlog protokoller til å bli gitterbaserte, samt hvordan man
kan overvinne dem. Deretter viser vi hvordan Attema, Cramer og
Kohl (CRYPTO 2021) gjorde passende endringer til den dlog-baserte
kompresjonsmekanismen for å gjøre den forenlig med gitterbaserte an-
takelser. Til slutt ser vi p̊a hvordan den kan bli instansiert med den
s̊akalte Module Short Integer Solution (MSIS) antakelsen for å oppn̊a
polylogaritmisk kommunikasjonskompleksitet i størrelsen p̊a vitnet.
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United Nations Sustainable Development Goals

The 17 Sustainable Development Goals by the United Nations (UN)
seek to make every country of UN take actions for necessary mea-
sures towards peace and prosperity for everyone [Uni25c]. In this
thesis, one of the goals have been to make an accessible resource to
learn about fundamental Σ-protocol theory, as well as present com-
pressed Σ-protocol theory in such a way that the reader is equipped to
learn even more about the research area later on. Providing accessi-
ble and high quality cryptography resources allow equal opportunities
for learning about security measures, something which is in varying
degrees important for everyone to learn more about.

In addition to this, guaranteeing that there are post-quantum cryp-
tographically secure algorithms and systems ensures that crucial in-
frastructure will remain secure in the time to come. Therefore to some
extent, this thesis promotes the fourth and tenth Sustainable Develop-
ment Goals, namely Quality Education [Uni25a] and specifically goal
16.10 under Peace, Justice and Strong Institutions [Uni25b].
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1 Introduction

Zero-knowledge proofs (ZKPs) have ever since they were introduced [GMR85]
been of central significance in the construction of a wide variety of proto-
cols. It allows a party often referred to as the prover to convince another
party often referred to as the verifier that some publicly known statement
is true, and doing so without revealing anything beyond the validity of the
claim. There exist several types of ZKPs, where a proof of knowledge (PoK)
[BG93] is a special type of such proofs, where the prover sets out to con-
vince the verifier that it is in possession of some secret information referred
to as a witness that satisfies a given statement, without revealing anything
beyond the claim that is made is true. A Σ-protocol [Cra97] is a special
type of ZKP that is also a PoK, where the interaction between the prover
and the verifier only consists of three moves. Due to their simplicity and
desirable properties, they are being deployed in a wide range of applications
such as identification schemes [Dam10; Oka93; Sch90], anonymous creden-
tials [BL13], electronic voting [Ara+23] and especially in constructing digital
signatures [Sch91], where the Fiat-Shamir heuristic [FS87] gives us that any
Σ-protocols can be turned into one.

1.1 Context

Due to the rise quantum computers, all systems based on the hardness
of the discrete logarithm (dlog) assumption or factoring will be deemed
insufficiently secure due to the famously known Shor’s algorithm [Sho94].
As a result, all systems built on these assumptions have to be replaced
with others built on assumptions that remain hard. The new post-quantum
secure systems should ideally cover the same functionalities as the previous
ones have, or at least similar ones. In particular, many of the constructions
for the applications that have been mentioned so far will be deemed insecure,
and would have to be replaced.

NIST One of the driving forces behind the transition to post-quantum
secure cryptographic constructions are the several calls made by the National
Institute of Science and Technology (NIST), with the goal of standardizing
different kinds of post-quantum secure systems [Nat25a]. Σ-protocols play
a central role in many of the constructions that have been proposed, where
one in particular that has become a standard is the lattice-based digital
signature algorithm CRYSTALS-Dilithium [Nat24]. Other candidates that
also make use of Σ-protocols that are still under consideration [Nat25b],
such as the isogeny-based digital signature SQIsign [Aar+25]. Furthermore,
Σ-protocols can also be helpful when constructing protocols in threshold
cryptography for distributing trust, to ensure that all participating parties
in a given protocol behave honestly [Nat25c].
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Some of the proposed systems are built on lattice-based cryptography,
where two hardness assumption in particular are used to construct a wide
range of protocols. These are referred to as the Learning With Errors (LWE)
problem, proposed by Regev in 2005 [Reg05], and the Short Integer Solution
(SIS) problem, proposed by Ajtai in 1996 [Ajt96]. There are different version
of the assumptions that have emerged over the years, such as the ring LWE
[LPR10] and ring SIS problems [PR06], as well as the module LWE and
module SIS problems [LS15]. The latter has turned out to be the more
flexible and effective assumptions, and are the ones we will mostly make use
of in this thesis.

Σ-Protocol Regardless of the instantiation, there are some properties that
any Σ-protocol has to satisfy. Completeness ensures that in an honest exe-
cution between a prover with a valid witness and a verifier, the verifier will
always accept. In addition to this, there are two properties that provide
guarantees against both cheating provers and verifiers. Special soundness
ensures that a cheating prover cannot convince a verifier that a statement
is true more than once, and if it would be able to do so it would possess
a valid witness for the given statement. In addition to this, we say that a
verifier should not learn anything beyond that the prover has a witness for
the given statement, since it has a variant of zero-knowledge called special
honest-verifier zero-knowledge. However to do so, there has to be made a
choice of what it means to learn something.

Simulation Paradigm: One way to formalize what it means to learn
something is through the simulation paradigm, where we consider that if
information Y can be efficiently computed from information X, someone
receiving information Y learns nothing more than information X [Gol01,
Section 4.3]. In the context of ZKPs, this means that a verifier should not
learn anything more by having interacted with the prover, than what it
could have derived from the common statement and messages it according
to the protocol sends to the prover. We refer to the work by Lindell for a
more detailed discussion [Lin16].

1.2 Challenges

Reducing communication and round complexity of interactive protocols is
ever relevant in cryptographic research. Doing so helps to continuously im-
prove on existing ideas and systems, while it can also ensure a wider range
of future applications. Over the past years, several attempts at constructing
practical ZKPs have emerged from a variety of different underlying assump-
tions. In 1993, Stern proposed a ZKP based on syndrome-decoding for
error-correcting codes [Ste94], however the number of rounds in the scheme
depended on the desired security level. The reason for this was the high
probability of a cheating prover succeeding in convincing the verifier of the

6



validity of the statement, so the proof had to be repeated a considerable
amount of times to be deemed secure. More recent work have tried to build
on Stern’s ideas, by switching out underlying assumptions with lattice prob-
lems [KTX08] and further optimize the proof system [Lin+13].

Bulletproofs In 2018, Bünz et al. introduced Bulletproofs [Bün+18], which
are ZKPs based on the dlog assumption, with proof size logarithmic in the
size of the witness. The ideas used to achieve this were however tailor-made
to their construction. For public parameters g,h ∈ Gn, the relation they
provided an efficient proof for can be described as

Rbullet =
{(

X = (P ∈ G, u ∈ Zq), w = (a,b ∈ Zn
q )
)

: P = gahb ∧ u = ⟨a,b⟩
}
,

(1)

where X denotes the common input that both a prover P and a verifier V
has access to, while w denotes the witness, namely the secret value that P
want to convince V that it knows. The relation describes that a prover wants
to convince a verifier that they possess an opening to a given commitment,
that also satisfies a dot product constraint.

Because of the desirable proof size, extending the ideas of Bulletproofs to
a wider range of statements encouraged researcher to attempt to construct
a more general framework, specifying where the Bulletproofs compression
techniques could be applied. This led to the rise of compressed Σ-protocol
theory by Attema and Cramer [AC20], where they gave a theoretical frame-
work for Σ-protocols in the dlog setting that could reduce the proof size of
protocols that satisfy similar statements. In particular, they managed to
give a framework where a prover could prove knowledge of an opening to a
Pedersen vector commitment [Ped92], that also satisfies an extension of the
dot product constraint, namely any linear constraint.

Their framework was however not compatible with assumptions other
than the dlog problem, but studying how to construct systems for some un-
derlying assumptions that may be easier to work with, can in some cases
give an indication of how central ideas that can be extended to other un-
derlying assumptions as well. Further research led to Attema, Cramer and
Kohl to develop an even more generic framework that would be compatible
with particularly the lattice setting [ACK21].

Due to size constraints of secret vectors in the lattice setting, protocols
built from these assumptions can often be slower and more involved than
those constructed in the dlog setting. A reason for this, is that leaking
values dependent on the secret that have norm significantly higher that the
secret can leak information, and we therefore sometimes would have to abort
the protocol if this were to be the case. Furthermore, there may be a gap
between values that can be extracted from the protocols and those we can
prove knowledge of, which means we cannot achieve exact proofs without
introducing more involved techniques.

7



1.3 Outline

The main goal of this thesis is to give an introduction to fundamental
Σ-protocol theory and show how to construct compressed Σ-protocols, both
in the dlog and lattice setting. In Section 2, we establish the necessary
background material needed to cover the topics that are not specific to the
techniques in a given section. We give an introduction to polynomial rings
and the negative hypergeometric distribution, as well as central concepts in
cryptography such as how to define security, hash functions, commitment
schemes and protocols.

In Section 3, we define Σ-protocols, and study how to generically prove
OR of two statements, given that the challenge space for the Σ-protocol we
work with has a well-defined group operation. We show in two different
ways why every Σ-protocol is a proof of knowledge, where we first look at
the classical proof by Damg̊ard [Dam10], and then an alternative version
by Attema, Cramer and Kohl [AC20]. We end with an introduction of the
Fiat-Shamir transformation [FS87], that allows us to turn any Σ-protocol
into a non-interactive protocol or a digital signature.

In Section 4, we introduce the compressed Σ-protocol theory framework
in the dlog setting [AC20]. It consists of several intermediate protocols
we gradually compose to achieve the desired functionality. We introduce
the Pedersen vector commitment scheme [Ped92], and then give the basic
Σ-protocol used for composition. The last message in the Σ-protocol can be
swapped out with a PoK for a statement that it satisfies, and we describe
a protocol that it can be replaced with. We then present the compression
mechanism, that we compose the previously mentioned protocols with until
we have reduced the size of the last message the desired amount.

In Section 5, we define the challenge set necessary for adapting the
Schnorr Σ-protocol [Sch90] to the lattice setting, as well as familiarize our-
selves with the relevant underlying hardness assumptions in lattice-based
cryptography, namely the LWE and SIS problems. We also give an intuition
for how to choose the parameters involved in the assumptions to ensure that
the problems are deemed sufficiently secure. Then in Section 6, we give an
example of how the Schnorr Σ-protocol [Sch90] can be altered to be built
from the MSIS assumption [Lyu24], and also show how we can instantiate
the OR-proof when using the given protocol.

In Section 7, we present the framework created for extending compressed
Σ-protocol to the lattice setting [ACK21]. As before, we introduce interme-
diate protocols that we gradually compose to obtain the final compressed
Σ-protocol. After doing so, we look at how the framework can be instan-
tiated when using the MSIS assumption, by using a compact lattice-based
commitment scheme [Ajt96] that grants us poly-logarithmic communication
complexity [ACK21]. We conclude with a discussion on possible directions
for future work that builds on the theory we have covered.

8



2 Background

We begin by establishing some notation and basic definitions. For a set S,
let s←$ S denote sampling an element s uniformly at random from it. For
an algorithm A, let a ←$ A(k) denote that A is a probabilistic algorithm
that upon input k produces the result a. For any β ∈ Z+, we define the set

[β] := {−β, . . . ,−1, 0, 1, . . . , β},

and we let [β]n×m be the set of n×m matrices whose entries are all elements
of [β]. Let E[X] denote the expectation of a random variable X.

Definition 2.1 (Dual Space). Let V be a vector space over a field K. The
dual space of V is the vector space consisting of all K-linear maps from V
to K, which can be written as

L(V ) = {(L : V → K) : L is a K-linear map}. (2)

■

2.1 Polynomial Rings

A generalization of the polynomial ring Z[X] with indeterminate X, is the
ring Rf = Z[X]/(f(x)) where f ∈ Z[X] is a monic polynomial of degree
d. Elements in Rf can be uniquely represented by polynomials of the form

a =
∑d−1

i=0 aiX
i, where ai ∈ Z. Addition of two polynomials in Rf is done

by adding their corresponding coefficients, and multiplication is performed
by multiplying the polynomials and then reducing the result modulo f(X).

One can also define the polynomial ring

Rq,f = Zq[X]/ (f(X)) , (3)

where the coefficients are chosen from Zq instead.

Matrix Notation Let a, b ∈ Rf . Polynomial multiplication of the two
polynomials mod f can be rewritten as matrix multiplication, by observing
that

ab mod f = a

(
d−1∑
i=0

biX
i

)
mod f =

d−1∑
i=0

(
aXi mod f

)
bi. (4)

Coefficients of any polynomial a =
∑d−1

i=0 aiX
i ∈ Rf can be represented as

a vector in Zd as

Va :=


a0
a1
...

ad−1

 ∈ Zd. (5)

9



For a vector a ∈ Rn
f , we can similarly also define Va as

Va :=

Va1...
Van

 ∈ Zdn. (6)

Using the notation from Equation 5, we can express the coefficients of∑d−1
i=0 (aX

i mod f) by

Ma :=
[
Va VaX mod f . . . VaXd−1 mod f

]
∈ Zd×d

q . (7)

With this notation, we can rewrite ab mod f = c mod f asMa · Vb = Vc.

2.2 Hash Functions

Definition 2.2 (Hash Functions [Sho05, Chapter 8.7]). Let R, S and T be
finite, non-empty sets, and suppose that for each r ∈ R we have a function
ϕr : S → T . Then we say that ϕr is a hash function from S to T , and we
refer to r ∈ R as the hash key. ■

The output set T is generally much smaller than the input set S for a hash
function ϕr, and one of the use cases for hash functions is to ensure that
input to cryptographic algorithms are of the correct size. Ideally, the output
of any hash function should look as close to uniformly distributed as possible,
and we want the probability of finding hash collisions to be small.

Definition 2.3 (Universal Hash Function (UHF) [Sho05, Chapter 8.7]). Let
{ϕr}r∈R be a family of hash functions. Let H be a random variable that is
uniformly distributed over R, and for each s ∈ S let ϕH(s) be the random
variable with the value ϕr(s) when H = r.

We say that {ϕr}r∈R is a Universal Hash Function (UHF) if

Pr[ϕH(s) = ϕH(s′)] ≤ 1

T

for all s, s′ ∈ S with s ̸= s′. ■

To prove that a commitment scheme later on is statistically hiding, we will
make use of the Leftover Hash Lemma. It is a powerful tool that allows us
to make arguments for when we have a sufficient amount of randomness in
an output distribution.

Definition 2.4 (Collision probability [Sho05, Chapter 8.9]). Let X be a
random variable that takes on values in a finite set S. Then we say that the
collision probability of X equals∑

s∈S
Pr[X = s]2.

■

10



Theorem 2.5 (Leftover Hash Lemma [Sho05, Theorem 8.37]). Let {ϕr}r∈R
be a UHF from S to T, where m := |T |. Let H and X be independent random
variables, where H is uniformly distributed over R, and X takes values in
S. If β is the collision probability of X, and δ′ is the statistical distance
(Definition 2.9) of (H,ϕH(X)) from uniform on R× T , then

δ′ ≤ 1

2

√
mβ.

Random Oracle Model Since one of the desirable traits of a secure hash
function is for its output to look uniformly and independently distributed,
modeling hash functions as truly random functions can sometimes make se-
curity proofs for protocols simpler. In the Random Oracle Model (ROM),
hash functions are replaced with random oracles that are publicly known,
and algorithms that have been granted oracle access to them can send it
values and only learns the evaluated result. The output of a random ora-
cle is uniformly and independently distributed, where if the same value is
requested multiple times, the oracle keeps tack of previous values and send
the same one corresponding to the given input [BR93]. In practice, proto-
cols that have been proven secure in the ROM are instantiated with hash
functions that are considered to have a high enough security guarantee to
parallel that of a truly random function.

2.3 Defining Security

Definition 2.6 (Negligible). A function f : N→ R is said to be negligible if
for all c ∈ N, there exists a λ0 ∈ N such that f(λ) ≤ 1/λc for all λ ≥ λ0. ■

Definition 2.7 (Probabilistic Polynomial Time (PPT)). We say that an
algorithm A runs in PPT, if it runs in polynomial time while potentially
using some internal randomness. ■

Definition 2.8 (Security Parameter). The security parameter determines
how much computational power it takes for an underlying assumption to
be deemed insecure, and can for example be chosen to be dependent of the
length of some secret input we want to run the protocol on. ■

Definition 2.9 (Statistical Distance [Sho05, Chapter 8.8]). Let X and Y be
random variables that both take on values from a finite set S. The statistical
distance between X and Y is defined as

SD(X,Y ) =
1

2

∑
s∈S
|Pr[X = s]− Pr[Y = s]|.

We also denote the statistical distance by δ′ when X and Y are clear from
the context. ■

11



Definition 2.10 (Indistinguishability [DN07, Chapter 2.2]). Let X and
Y be two probabilistic algorithms and let Xs and Ys denote the output
distributions over T generated for each input s ∈ S, when running the
algorithm on input s.

• We say that X and Y are perfectly indistinguishable, written X ∼p Y ,
if Xs = Ys for all s ∈ S.

• We say that X and Y are statistically indistinguishable, written
X ∼s Y , if the statistical distance SD(Xs, Ys) ≤ 2−λ is negligible in
the security parameter.

• We say that X and Y are computationally indistinguishable, written
X ∼c Y , if no PPT adversary A can distinguish the following with
non-negligible advantage:

0. Algorithm X run on input s and outputs t,

1. Algorithm Y run on input s and outputs t.

The advantage of adversary A that outputs a bit guess b ∈ {0, 1} is
defined as

Adv(A) = |Pr[b = 1| t←$ X(s), b←$A(s, t)]
− Pr[b = 1| t←$ Y (s), b←$A(s, t)]|.

■

2.4 Commitment Schemes

Commitment schemes in our case are used between a sender and a recipient.
The sender has some values it wants to commit to and that it wants to reveal
at a later point to the recipient, while the recipient does not learn anything
about the commited value until the sender chooses to reveal it.

Commitment schemes have two essential properties called hiding and
binding. Hiding ensures that the recipient cannot tell what message the
sender has commited to, while binding ensures that the sender cannot at a
later point claim it has committed to a different value than it initially did.

Definition 2.11 (Commitment Scheme [DN07, Chapter 2.3]). A commit-
ment scheme is defined by the following PPT algorithms.

• Gen(1λ) : return public parameters pp

• Compp(x, γ) :M×R→ N (x, γ) 7→ c

To open a commitment c, the sender forwards the message x together with
the randomness γ used, such that the recipient can verify that it corresponds
to the given commitment.

■
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Before the public parameters are established by the sender and recipient of
a given instance of a commitment scheme, its validity has to be checked by
each participating party to ensure that the scheme works as intended. In
some cases, it is assumed that all parties have already established a common
and valid public parameter pp in advance for simplicity. However if it is
the case that either the sender or recipient has to generate them, the one
with the strongest computational power is the one to do it. That is, if the
sender has unconditional computing power, it runs Gen and sends the public
parameters pp to the recipient who checks its validity, and if the recipient is
the one to have unconditional computing power, they have opposite roles.

Definition 2.12 (Hiding). Let (Gen,Com) define a commitment scheme as
in Definition 2.11. We define the hiding game in Figure 1, where ACom(·,·)

denotes that adversary A can ask an oracle for a commitment of either
message m0 or m1.

Hiding Game:

pp←$ Gen(1λ)

b′ ←$ACom(·,·)(pp)

return b′

Oracle Com(m0,m1): // one query

γ ←$R
b←$ {0, 1}
c←$ Compp(mb, γ)

return c

Figure 1: Hiding Game

The advantage of adversary A is defined as

Advhiding(A) = |Pr[b′ = 1| c←$ Compp(m0, γ), b
′ ←$ACom(·,·)(pp)]

− Pr[b′ = 1| c←$ Compp(m1, γ), b
′ ←$ACom(·,·)(pp)]|.

(8)

■

Definition 2.13 (Binding). Let (Gen,Com) define a commitment scheme
as in Definition 2.11. The advantage of adversary A breaking binding is
defined as

Advbinding(A) = Pr[(m, γ,m′, γ′, c)←$A(pp) | m ̸= m′

∧ Compp(m, γ) = Compp(m
′, γ′) = c].

(9)

■

The computational capabilities of the recipient and sender determine the
flavor of hiding and binding a commitment scheme should have to grant
the desired functionality in a given use case. For hiding, we can either
have perfect, statistical or computational security guarantees, as defined
in Definition 2.10. This depends on the power of the adversary A, where
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if it has unconditional computing power, we can have perfect hiding if its
advantage is 0, and statistical hiding if its advantage is negligible. If the
distinguisher is computationally bounded and its advantage is negligible, we
have computational hiding. For binding, we separate between guarantees
against adversaries with unconditional computing power and those who are
computationally bounded, as the security relies on them not being able to
come up with a message and randomness that gives the same commitment
as the one they are given.

2.5 Protocols and Composition

Let (P,V) denote an interactive protocol between a prover and a verifier.
Running a protocol Π on common inputX and witness w will also sometimes
be denoted either by Π(X;w) or Input(X;w). For two protocols Π0 and Π1,
we say that the protocol obtained by replacing the last interaction in Π0 with
Π1 is the protocol composition of Π0 and Π1, and is denoted by Π1 ⋄Π0.

Definition 2.14 (Public Coin Protocol). We say that an interactive proto-
col (P,V) is public coin if the verifier V chooses all its messages uniformly
at random, and that they are independent from the prover’s messages. ■

2.6 Negative Hypergeometric Distribution

The following is based on “A Compressed Σ-Protocol Theory for Lattices”
by Attema, Cramer and Kohl, and establishes the necessary background
for the alternative proof of knowledge soundness for Σ-protocols [ACK21,
Sections 1.2 and 2.2]. The proof makes use of the negative hypergeometric
distribution when constructing a knowledge extractor.

The negative hypergeometric distribution can be described as follows:
Given a bin of N balls where M are these are marked in a particular way,
we look at the distribution of the number of attempt when we want to
retrieve k ≤ M of the marked balls, when drawing without replacement.
The expected number of draws before retrieving k of the M marked balls
among the N balls in total equals

k(N + 1)

M + 1
.
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3 Foundations of Σ-Protocols

The following section is based on Damg̊ard’s notes on Σ-protocols [Dam10],
as well as “Efficient Secure Two-Party Protocols” by Hazay and Lindell
[HL10, Chapter 6].1 Let R be a binary relation where R ⊆ {0, 1}∗×{0, 1}∗
under the restriction that if (x,w) ∈ R, the length of w is bounded by some
polynomial p(|x|).

3.1 Defining Σ-Protocols

Definition 3.1 (Σ-Protocol). We say that a protocol Π is a Σ-protocol for
relation R if it is a three-round protocol of the form presented in Figure 2
and that it satisfies the following requirements.

• Completeness: If both a prover P and a verifier V follow the proto-
col specifications on common input x and P’s private input w where
(x,w) ∈ R, then V always accepts any non-aborting transcripts. The
prover’s private input w is often referred to as a witness. The proba-
bility of an honest protocol executions being aborted is referred to as
the completeness error, and is often denoted by δ.

• Special Soundness: There exists a PPT algorithm E that given
the common input x and any two accepting transcripts (a, e, z) and
(a, e′, z′) for x where e ̸= e′, the extractor E outputs a witness w such
that (x,w) ∈ R.

• Special Honest Verifier Zero-Knowledge (Special HVZK): There
exists a simulator S that upon input x and e outputs a transcript of the
form (a, e, z) with the same probability distribution as a transcripts
honestly generated between P and V on common input x. More for-
mally, for every x and w such that (x,w) ∈ R and every e ∈ {0, 1}λ,
it holds that

{S(x, e)} ∼ {⟨P(x,w),V(x, e)⟩}.

S(x, e) denotes the output of simulator S on input (x, e), and
⟨P(x,w),V(x, e)⟩ denotes the output transcript of an execution be-
tween P on input (x,w) and V on input x with V’s random tape equal
to λ. The value λ determining the length of e is called the challenge
length.

The three values sent during the interaction can be referred to as the com-
mitment a, the challenge e and the response z. The triple π = (a, e, z)
consisting of all the values sent during the interaction is called a transcript.

1The definition as well as the OR-proof is a rewritten version of a technical essay written
as a part of the course “cryptographic computing” (520172U008) at Aarhus university. The
essay is available on request.
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The reason we say that the last requirement above is special HVZK, is that
the challenge e is assumed to be chosen uniformly at random from the chal-
lenge set.

Interaction in Σ-Protocol Π for Relation R:
Prover P Verifier V
input (x,w) input x

such that (x,w) ∈ R

a

e←$ {0, 1}λ

e

z

V either accepts

or rejects based on (a, e, z)

Figure 2: Σ-Protocol

■

Remark 3.2. Depending on the adversarial power taken into consideration,
we can either have computational or unconditional special soundness, and
computational, statistical or perfect special HVZK.

One can think of the requirements for a Σ-protocol as follows. Completeness
ensures that when the protocol is run on valid input, it should always work
as we expect it to. That is, the verifier should accept, because the prover
indeed has a witness it tries to convince the verifier of.

Special soundness is a requirement protecting against cheating provers.
That is, it guarantees that a malicious prover P∗ can only answer at most one
challenge correctly for a given commitment a, without actually being able to
compute or be in possession of a witness. It captures the idea that V should
only accept a false statement with a small probability. The property is also
referred to as 2-special soundness, since if we have two valid transcripts
for the same commitment, we can extract a witness. A generalization of
this requirement, which is referred to as k-special soundness, then extends
to having k accepting transcript on the same commitment to be able to
extract a witness. The prover can then only answer at most k−1 challenges
correctly without a witness.

For some protocols, there is a trade-off between what you want to prove
in a Σ-protocol, and what you in practice can prove. An example of such a
protocol will be given in Section 6, where we as a result of using lattice-based
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hardness assumption have a norm bound on the size of the witness. Using
a smaller witness in an honest execution of the protocol, but allowing for
larger witnesses in order to obtain special soundness can be referred to as
the protocol having a soundness gap. For Σ-protocols where we only have
one repetition, this will not directly lead to any issues, however it may be
undesirable for applications where protocol repetitions are necessary.

Special HVZK ensures that a verifier does not learn anything by following
the protocol honestly. Everything the verifier receives, could also have been
computed without a witness. This is however a weaker guarantee than zero-
knowledge, as we are not considering cheating verifiers that may deviate from
the protocol specifications. We note that for the Special HVZK requirement,
it is the entire simulated transcripts that has to have the same probability
distribution as the real transcripts obtained from an interaction between
a prover and a verifier. Therefore, the order in which the elements of a
simulated transcript are generated need not be chronological. this allows
flexibility to generate simulated transcripts in “the wrong order”, where one
can adapt the commitment a to the challenge e, as it must not be decided
before seeing what the challenge is.

3.2 Proving OR of Two Statements

We will now see one way that on common input (x0, x1), a prover P can
convince a verifier V that it knows a witness w such that either (x0, w) ∈ R
or (x1, w) ∈ R, without revealing to V which of the values x0 and x1 it
knows a witness of. A relation for these requirements can be described as

ROR = {(X = (x0, x1), w)| (x0, w) ∈ R ∨ (x1, w) ∈ R}. (10)

The relation ROR can be extended to cover the case where we have several
common inputs (x0, . . . , xn) for the relations R0, . . . ,Rn, and the prover P
only knows witnesses for k of the common inputs.

If Π is a Σ-protocol for relation R, the idea behind the OR-construction
with relation ROR is that prover P wants to make one instance of Π on
common input x0 and one on common input x1. If (xb, w) ∈ R for b ∈ {0, 1},
we can obtain an accepting transcript for any challenge directly, since we
have the corresponding witness. However we cannot do this for x1−b, as
we only have a witness for one of the values x0 and x1. But since Π is
a Σ-protocol, we know there exists a simulator S that outputs transcripts
for Π that are indistinguishable from real ones, and we want to use this
to complete an instance for x1−b. Still, to use the simulator S directly to
complete the instance, we would need to know the challenge e1−b from V
before sending the commitment a1−b. We remedy this issue by running the
simulator S on a random value e1−b before receiving the challenge s from
V. Then, we use a combination of our random value e1−b and the verifiers
challenge s to create a second value eb, which we then use as the challenge

17



for ab. Assuming we have a witness w for xb, we can always generate a valid
response zb for (ab, eb). The resulting protocol ΠOR is given in Figure 3.

Interaction in ΠOR for Relation ROR:

Prover P Verifier V
input ((x0, x1), w) ∈ ROR input (x0, x1)

Sample e1−b ←$ {0, 1}λ

Run (a1−b, z1−b)←$ S(x1−b, e1−b)

Compute ab ← Π(xb, w)

ab, a1−b

s←$ {0, 1}λ

s

Define eb = s⊕ e1−b

Compute zb ← Π(ab, eb)

z0, z1, e0, e1

V accepts if

Π(a0, e0, z0) = 1

∧ Π(a1, e1, z1) = 1

∧ e0 ⊕ e1 = s

Figure 3: OR-Protocol

Theorem 3.3 (OR-proof). Let ROR be defined as in Equation 10, and let
Π be a Σ-protocol for relation R. Then the protocol ΠOR given in Figure 3
is a Σ-protocol for relation ROR. Moreover, for any verifier V∗, the proba-
bility distribution over transcripts between P and V∗, where w is such that
(xb, w) ∈ R, is independent of b.

Proof. Let b ∈ {0, 1} be such that (xb, w) ∈ R.

Completeness Suppose that both P and V follow the protocol specifi-
cations of ΠOR. Then eb = s ⊕ e1−b, so eb ⊕ e1−b = s ⊕ e1−b ⊕ e1−b = s.
We also have that (a1−b, e1−b, z1−b) is the output of the simulator S for Π,
and therefore has the same probability distribution as a real conversation
between P and V behaving honestly. It is therefore an accepting transcript
in Π on common input x1−b. Since ab and zb are computed in Π using (xb, w)
and (xb, ab, e, w) as input respectively, (ab, eb, zb) is an accepting transcript
in Π on input xb. Therefore V always accepts at the end of the protocol
ΠOR, which shows protocol ΠOR has completeness.
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Special Soundness Suppose that

π = ((a0, a1), s, (e0, e1, z0, z1)) and π′ = ((a0, a1), s
′, (e′0, e

′
1, z

′
0, z

′
1))

are two accepting transcripts on common input (x0, x1) with s ̸= s′. Since
s = e0 ⊕ e1 and s′ = e′0 ⊕ e′1, for some c ∈ {0, 1} we have ec ̸= e′c. By con-
struction of ΠOR, (ac, ec, zc) and (a′c, e

′
c, z

′
c) are two accepting transcripts for

protocol Π with common input xc. Since we assume that Π is a Σ-protocol,
special soundness gives us that we can efficiently compute a witness w such
that (xc, w) ∈ R from (ac, ec, zc) and (a′c, e

′
c, z

′
c), since ec ̸= e′c. For the same

witness, we also have ((x0, x1), w) ∈ ROR by definition. This shows special
soundness for ΠOR.

Special HVZK We define a simulator S ′ as follows. On common input
(x0, x1) and challenge s, define e0 ←$ {0, 1}λ and e1 = s ⊕ e0. Since Π is
a Σ-protocol, it is Special HVZK and we have the simulator S. Therefore
we run S on input (x0, e0) and (x1, e1) to output the accepting transcripts
(a0, e0, z0) and (a1, e1, z1) respectively. From this, (a0, a1, s, e0, e1, z0, z1) is
an accepting transcripts for ΠOR. This shows ΠOR is Special HVZK and we
can conclude that ΠOR is a Σ-protocol.

We will now show that the probability distribution of transcripts is inde-
pendent of b. Suppose that V∗ is an arbitrary verifier. Then any transcript
between P and V∗ is of the form ((a0, a1), s, (e0, e1, z0, z1)). The commit-
ments a0 and a1 are distributed as an honest prover in Π would choose
them. This holds directly for ab, and from the Special HVZK property of Π,
a1−b has the correct distribution as well. s is given by V∗ and therefore has
whatever distribution V∗ outputs given the common input (x0, x1) and the
values a0, a1. The values e0 and e1 are both random under the constraint
that e0⊕ e1 = s, since e1−b ←$ {0, 1}λ. Also, z0 and z1 are distributed as an
honest prover in Π would choose them, given common input x0 and the first
values a0, e0 and common input x1 and the first values a1, e1 respectively.
Similarly as the argument for a0, a1, since Π is Special HVZK, they are both
distributed as an honest prover would choose them. Since the distribution
of none of the values in the transcript are dependent of b, we conclude that
the distribution over transcripts is independent of b.

The last part of the proof shows that even for a malicious verifier V∗ that
deviates from the protocol, there is no way it can tell which of the possible
witnesses that P knows, as there are several possible witnesses P can use to
complete the protocol successfully.
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3.3 Every Σ-Protocol is Knowledge Sound, Version I

In a proof of knowledge (PoK), a prover wants to convince a verifier that it
is in possession of a valid witness for a given statement, something which is
stronger than only being able to convince the verifier that it knows that such
a value exists. The property that captures the notion of a prover “knowing”
something is referred to as knowledge soundness. It requires that for a prover
to be in possession of such a witness, there must exist an algorithm, referred
to as the knowledge extractor, that can retrieve such a witness from the
prover efficiently. A protocol is said to be a PoK if it has completeness and
is knowledge sound.

A well-known result is that Σ-protocols are knowledge sound, which then
again implies that they are PoKs. Slightly different definitions of knowledge
soundness have been proposed over the years, leading to different knowledge
extractors that serve the same purpose. We will look at two different ways
we can show that Σ-protocols are knowledge sound, where we begin with the
classical proof by Damg̊ard [Dam10]. Then we cover another proof given by
Attema, Cramer and Kohl a few years ago [ACK21], which in particular can
be generalized to show that (k1, . . . , kµ)-special soundness tightly implies
knowledge soundness.

For notation, let LR be the set of common input x for which there exists
at least one witness w such that (x,w) ∈ R.

Definition 3.4 (Knowledge Soundness, Version I [Dam10; HL10]). Let
κ : {0, 1}∗ → [0, 1] be a function, and let (P,V) be an interactive proto-
col for the relation R. Then we say that (P,V) is knowledge sound with
knowledge error κ if it satisfies the following property.

• Knowledge Soundness: There exists a probabilistic (oracle) ma-
chine K called the knowledge extractor, as well as a constant c > 0
such that for every prover P∗ and every x ∈ LR, the knowledge ex-
tractor K satisfies the following condition.

Let ε(x) be the probability that V accepts on input x after interaction
with P∗. If ε(x) > κ(x), then on input x and oracle access to P∗, the
knowledge extractor K outputs a string w such that (x,w) ∈ R within
an expected number of steps bounded by

|x|c

ε(x)− κ(x)
.

■

The knowledge error κ can be thought of as the probability that a prover
that does not possess a witness w is able to convince the verifier to accept.
Therefore if ε(x) > κ(x) for a given prover P∗, it means it has a higher
probability of convincing the verifier than if it would not have a witness.
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Furthermore, the efficiency of the knowledge extractor depends on how much
better the given prover P∗ is at convincing the verifier to accept, than a
prover which does not have a witness. That is, the larger ε(x) is compared
to κ(x), the less amount of steps are necessary for K to extract a witness.

Notice that the special soundness property of a Σ-protocol is connected
to this witness extraction, in the following sense. If we have two accepting
transcripts for the same commit message (first message) sent by the prover,
the witness is efficiently computable. Therefore, if it is possible to construct
an algorithm for arbitrary Σ-protocols that can find two such transcript in
PPT, we would show the existence of a knowledge extractor and thus prove
that every Σ-protocol has knowledge soundness.

Theorem 3.5 (Every Σ-Protocol is a Proof of Knowledge). Let Π be a
Σ-protocol for a relation R with challenge length λ. Then Π is a proof of
knowledge with knowledge error 2−λ.

Proof Idea. Before we begin our proof, we will sketch the proof idea for
knowledge soundness, highlighting the different cases we will consider to
ensure that the constructed knowledge extractor always runs in a number of
steps bounded as necessary. We first note that the knowledge error equals
κ(x) = 2−λ, since this is the probability that an arbitrary prover can guess
the challenge sent by the verifier correctly before it receives it.

We want to find two accepting transcript for the same random choices
ρ made by P∗, i.e. the same first commit message sent by the prover.
We assume that ε(x) > 2−λ, and look into two cases. In both cases, if
the extractor we construct finds an accepting transcript for some random
choices ρ made by P∗, it will try to find another for the same ρ. We first
assume that ε > 2−λ+2. As we will see, this ensures that for at least half of
all accepting transcripts, there is at least one other accepting transcript for
the same random choices made by P∗.

We will first analyze the expected number of tries needed to find another
accepting transcript for the same ρ, when assuming there does exist more
than one accepting transcript for it. We will then look at how we can ensure
the extractor still runs in PPT if it finds an accepting transcript for random
choices ρ where there is not necessarily multiple accepting transcripts, or
the algorithm is unlucky in its search. Using rejection sampling, we make
sure the amount of steps used when checking a given ρ is not too high, while
keeping the probability of finding a second accepting transcript in the case
where it does exist not too low. The reason we do this, is that an extractor
cannot check every possible challenge for ρ, as the challenge space has 2λ

elements, which is exponentially large.
Finally, we make a case distinction for when 2−λ < ε < 2−λ+2. In

this case, we can check every challenge for the random choices ρ before we
proceed to the next one. Thus we only have to argue that the number of
steps the algorithms must take in this case is still as required.
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Proof. Let P∗ be a prover that upon input x convinces a verifier V after
interaction to accept with probability ε := ε(x), and assume that ε(x) >
κ(x). We have that the knowledge error is κ(x) = 2−λ, since this is the
probability that an arbitrary prover can guess the challenge sent by the
verifier correctly before it receives it.

Let H be a 0/1-matrix with dimensions such that we have a row for each
of the possible random choices ρ made by the prover P∗, and one column
for each of the values that are in the challenge space. H is defined such that
an entry is equal to 1 only if the verifier V accepts a transcript generated
by the random choices and the challenge corresponding to the current row
and column, respectively. The entry is defined as 0 otherwise.

We can probe random entries in H, by using P∗ as a black-box while
we are choosing its random coins at random as well as choosing random
challenges for it. Rewinding P∗ while reusing the same random choices ρ
as before on different challenges allows us to probe new random entries in
the same row. The goal for the knowledge extractor is therefore to find two
1’s that are in the same row, such that we can use the special soundness
property of the Σ-protocol to efficiently compute a witness for x.

By defining H as we have done, ε equals the fraction of 1-entries in H.
Since we want to construct a knowledge extractor that can find two 1’s in
the same row, we want to understand how they are distributed in H. To
do so, we define a row to be heavy if it contains a fraction of at least ε/2
1-entries. That is, a heavy row contains at least ε · 2λ−1 ones. We claim
that over half of the 1’s in H are located in heavy rows. To see this, let H ′

be the sub-matrix of H consisting of all rows that are not heavy. Now let h
be the number of entries in H and similarly let h′ be the number of entries
in H ′. We then have that the number of 1’s in H is h · ε. Since every row
in H ′ is not heavy, each row must contain less than ε · 2λ−1 ones. Therefore
if we let r′ be the number of rows in H ′, we have that the number of 1’s in
H ′ is smaller than r′ · (ε · 2λ−1) = (r′ · 2λ) · ε/2 = h′ · ε/2. It follows that the
number of 1’s that lie in heavy rows in H is greater than

hε− h′ · ε/2 ≥ hε− h · ε/2 = h · ε/2,

which shows that over half of the rows in H are heavy.
We will now proceed with describing the behavior of the knowledge ex-

tractor when ε ≥ 2−λ+2. This is to ensure that every heavy row contains
at least two 1’s, since from above we know that each heavy row contains
at least ε · 2λ−1 ≥ 2−λ+2 · 2λ−1 = 2 ones. We will show that under this
assumption, two 1’s can be found in the same row in an expected number
of steps bounded by O(1/ε).

The algorithm begins by first repeatedly probing H at random, until it
finds a 1 entry as its “first hit”. Since the fraction of 1’s in H is ε, this
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happens after an expected number of 1/ε tries. By the argument above, the
first hit lies in a heavy row with a probability grater than 1/2. We will now
analyze the probability of finding a second hit in the same row, both when
the first hit is in a heavy row and when it is not. Note that the algorithm
cannot know if the first hit is in such a row or not. Assuming that the first
hit does lie in a heavy row, if we probe the row at random the probability
of finding a second 1 in one attempt is equal to

ε · 2λ−1 − 1

2λ
.

This is because there are at least ε · 2λ−1 ones in heavy rows and we need to
find a different 1 than our first hit. This implies that the expected number
of tries T to find a second hit satisfies

T =
2λ

ε · 2λ−1 − 1
=

2λ

ε/2 · (2λ − 2/ε)
=

2

ε
· 2λ

2λ − 2/ε
≤ 2

ε
· 2λ

2λ − 2λ−1
=

4

ε
,

where the inequality follows from our assumption that ε ≥ 2−λ+2. We can
therefore conclude that when assuming the first hit was in a heavy row, the
knowledge extractor succeeds within an expected number of O(1/ε) tries.

We will now look at how we can handle the case where the extractor’s
first hit was not in a heavy row, or it is unlucky when searching for the
second hit. In this case, the extractor may spend too much time looking for
the second hit. We remedy this by using rejection sampling to ensure that
the extractor starts probing another row if it spends too much time looking
for a second hit. We therefore end up with the following algorithm, which
the knowledge extractor will repeat until it succeeds:

1. Probe random entries in H until the first hit is found. Name the row
it is found in the current row.

2. Start the two following processes in parallel, the algorithm stops when
either of these stop.

• Process Pr1 : Probe random entries in the current row until the
second hit is found.

• Process Pr2 : Probe a random entry inH for a second hit and at
the same time choose a random number out of [d]. This is equiva-
lent to flipping a coin that comes out with heads with probability
ε/d for some constant d repeatedly until you get heads. Out-
put heads if both the entry in H is 1 and the number chosen at
random from [d] is 1.

We analyze the expected running time, as well as its probability of success.
The expected run time of Pr2 is d/ε, since the probability of the coin de-
scribed being heads is ε/d. Therefore since d is a constant, the expected
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running time is O(1/ε) as required. Note that the algorithm only has what
it needs to extract a witness if Pr1 finishes first. Therefore, we must choose
d such that process 1 has enough time to finish (in reasonable time) if the
row it is probing is heavy. We will now look at how to ensure that the
described algorithm finds a second hit with probability 1/8.

The probability that Pr2 finishes after exactly k attempts equals

ε/d · (1− ε/d)k−1,

since each coin toss in Pr2 are independent. Using the estimate that
(1− ε/d)k−1 ≤ 1 for any k, the probability of Pr2 finishing within k at-
tempts is less than or equal to

∑k
i=1 ε/d = k · ε/d. So if we let kε/d = 1/2

and d = 16, this ensures that the probability that process Pr2 finishes within
k steps is less than or equal to 1/2. By letting d = 16, we have that Pr2
does not finish after

k =
d

2ε
=

8

ε

tries with a probability greater than 1/2.
We will now show that process Pr1 finishes before process Pr2 with

probability at least 1/8. Recall that the expected number of steps for Pr1 to
finish is T = 4/ε. We claim that the probability that process Pr1 concludes
in less than 8/ε steps given that the first hit is in a heavy row, is at least
1/2. This follows from Markov’s inequality, for if we let X be the number
of steps process Pr1 takes, we have that

Pr[X ≥ 2T ] ≤ E(X)

2T
=

T

2T
=

1

2
.

Therefore Pr1 concludes in less than 8/ε steps with a probability of 1− 1/2 =
1/2 as well. Also, note that 2T = 8/ε = k, where the right side is the
expected number of steps process Pr2 takes to finish with probability less
than or equal to 1/2. That is, it does not finish with a probability greater
than 1/2. Since process Pr1 and Pr2 are independent, we have that Pr1
finishes before Pr2 with a probability greater than 1/2 ·1/2 = 1/4. We have
established that the probability of the first hit being heavy is greater than
1/2, and we can therefore conclude that the algorithm succeeds, meaning it
finds a heavy row and process Pr1 finishes first, with probability at least
1/2 · 1/4 = 1/8 as we wanted.

We can now analyze the knowledge extractor for the case ε ≥ 2−λ+2 as
follows. As mentioned, it repeats the above algorithm until it succeeds, and
we have seen, the expected number of repetitions in order for process Pr1
to finish first is 8, so the number of repetitions is constant. As desired, the
knowledge extractor therefore succeeds in finding a witness in an expected
number of steps bounded by O(1/ε).

What now remains is to consider when 2−λ < ε < 2−λ+2. In this case,
ε is small enough for us to have time to probe an entire row. Therefore we
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will construct another algorithm that the knowledge extractor K will run in
parallel with the one we described above.

Define δ by ε = (1 + δ)2−λ, which means that 0 < δ < 3 and let R be
the number of rows in H. Then we have that the number of 1’s in H can
be rewritten as (1 + δ)R since ε is the fraction of 1’s in H. We are again
interested in how the 1’s in H are distributed. Since there are R rows, we
first note that at most R− 1 of the (1+ δ)R ones can be alone in a row, and
then all the other ones must be in the remaining row. Subtracting R − 1
from the number of 1’s in H, we see that at least 1+ δR of the 1’s in H are
in rows that contain at least two 1’s. This again implies that at least δR of
the 1’s are located in rows with at least two 1’s. We call rows that contain
at least two 1’s semi-heavy. The algorithm can be described as follows.

1. Probe random entries in H until a 1 is found: call this the current
row.

2. Search the entire current row for another 1 entry. If no such entry is
found, go back to step 1.

It is clear that the described algorithm will successfully find two 1’s in the
same row. We argue that it does so in a number of steps bounded by
O(1/(ε− 2−λ)). To analyze this, note that the fraction of 1’s in semi-heavy
rows among the 1’s is at least δR/((1 + δ)R) = δ/(1 + δ), and the fraction
of 1’s in semi-heavy rows among all entries is at least δR/(2λR) = δ/2λ.
Now, the expected number of probes to find a 1 in step 1 of the algorithm is
1/ε = 2λ/(1+ δ), and the number of steps in step 2 is upper bounded by 2λ.
Furthermore, the expected number of 1’s we must try in order to find one
in a semi-heavy row is at least δ/(1+ δ). Therefore the expected number of
times the algorithm runs both step 1 and step 2 is δ/(1 + δ). Putting this
together, we obtain that the expected number of steps is upper-bounded by

1 + δ

δ
· ( 2λ

1 + δ
+ 2λ) = 2λ · (1

δ
+

1 + δ

δ
) = 2λ · 2 + δ

δ
< 5 · 2

λ

δ
,

where we obtain the last inequality from 0 < δ < 3. We can rewrite

1

ε− 2λ
=

1

(1 + δ)2−λ − 2−λ
=

2λ

δ
,

and therefore conclude that the expected number of steps the algorithm
takes is upper bounded by O(1/(ε− 2−λ)) as required. This completes the
proof, showing that every Σ-protocol with challenge length λ is a proof of
knowledge with knowledge error 2−λ.
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3.4 Every Σ-Protocol is Knowledge Sound, Version II

Definition 3.6 (Knowledge Soundness, Version II [ACK21]). Let Π = (P,V)
be an interactive protocol for relation R. Let κ : N → [0, 1) be a function.
Then Π is said to be knowledge sound with knowledge error κ, if there exists
a polynomial q : N→ N and an algorithm K, called a knowledge extractor,
with the following properties:

• The extractor K, given input x and rewindable oracle access to a (po-
tentially dishonest) prover P∗, runs in an expected polynomial number
of steps.

• Whenever (P∗,V)(x) outputs accept with probability ε(x) ≥ κ(|x|),
the extractor K successfully outputs a witness w such that (x,w) ∈ R
with probability at least

(ε(x)− κ(|x|))
q(|x|)

.

■

Theorem 3.7 (Special Soundness Implies Knowledge Soundness, Version II
[ACK21]). Let (P,V) be a 2-special sound Σ-protocol for relation R, where
V samples each challenge uniformly at random from a challenge set of size
N = 2λ ≥ 2. Then (P,V) is knowledge sound with soundness error κ = 1/N .

Proof. Let H ∈ {0, 1}R×N and prover P∗ be defined as in the proof of
Theorem 3.5. Assume that ε(x) ≥ κ(x), and note that the knowledge error
equals κ(x) = 1/N , since this is the probability that an arbitrary prover can
correctly guess the challenge sent by a verifier before it receives it.

The following algorithm describes a collision-game, that the knowledge
extractor K performs in an attempt to retrieve two 1-entries from the same
row of H. As before, the goal is to find two 1’s that are in the same row,
such that we can use the special soundness property of the Σ-protocol to
efficiently compute a witness for the common input x.

Collision-Game

1. Sample an entry of H uniformly at random.

2. If the entry is 0, the algorithm aborts.

3. If the entry is a 1, continue to sample elements from the row it was
found, without replacement. This in done until a second 1 is found,
or the whole row has been checked.

In order to show that a knowledge extractor that runs the described algo-
rithm satisfies Definition 3.6, we analyze the expected number of queries the
algorithm will make, as well as the success probability when performing one
execution of the collision-game.
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Expected Number of Queries We want to upper bound the expected
number of queries the collision-game will make before it aborts, to ensure
the collision-game runs in expected polynomial time.

Let the random variable X denote the number of queries made by the
collision-game. Let εi be the fraction of 1-entries in row i, which means that
εiN is the number of 1-entries in row i. We let the Qi denote the event that
the first query in the collision-game lies in row i. We also let A denote the
event that the first query in the collision-game is a 0-entry, and let B denote
the event that the first query in the collision-game is a 1-entry.

Using conditioned expectation, the expected number of queries made by
the collision-game can be rewritten as

E[X] =

R∑
i=1

Pr[Qi] · E[X| Qi]

=
1

R

R∑
i=1

E[X| Qi],

where we have that Pr[Qi] = 1/R for all i = 1, . . . , R since the collision-
game always draws the first query uniformly at random from the entries in
H. Our goal is to show that E[X| Qi] ≤ 2 for all i = 1, . . . , R, the expression
above will then be at most 2 as well.

The expected number of queries made by the collision-game, given that
that first query lies in row i can be computed as

E[X| Qi] = Pr[A| Qi] · E[X| A ∧Qi] + Pr[B| Qi] · E[X| B ∧Qi]

= (1− εi) · 1 + εi · E[X| B ∧Qi].

Here, we have made the following observations. The probability that the
first query made by the collision-game is 0-entry, given that the first query
lies in row i (that is, Pr[A| Qi]) is 1 − εi, since εi is the probability of
choosing a 1-entry from row i uniformly at random. Similarly, we obtain
that the probability that the first query made by the collision-game is a 1-
entry, given that the first query lies in row i (that is, Pr[B| Qi]) is εi. We also
know that the expected number of queries the collision-game makes, given
that the first query is a 0-entry and lies in row i (that is, E[X| A ∧Qi])
equals 1, since the algorithm is instructed to abort if the first query equals
a 0-entry.

It remains to calculate E[X| B ∧Qi], namely the expected number of
queries made by the collision-game, given that the first query is a 1-entry
and it lies in row i. After obtaining the first query, which we know is a
1-entry, the algorithm will continue by sampling entries from H along row
i without replacement, and it does so until it finds a second 1 or the whole
row has been exhausted. This can be modeled by a negative hypergeometric
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distribution with N − 1 values to choose from, where εiN − 1 of these are
favorable. We let the random variable Y denote the number of draws made
according to this distribution, and can therefore rewrite the expression as

E[X| B ∧Qi] = 1 + E[Y ]. (11)

As mentioned, the 1 in the expression represent that the algorithm first ob-
tains the 1-entry. By properties of the negative hypergeometric distribution
distribution, this can be computed as

E[Y ] =
1 · ((N − 1) + 1)

(εiN − 1) + 1
=

1

εi
,

as long as εi > 1/N . In the case that row i contains only one 1-entry, namely
the one we obtain on the first query, the number of draws is N − 1, since
this is the amount of entries left in row i. However in this case, we still have
that N − 1 < 1/εi = N . Therefore, E[Y ] can be upper-bounded by 1/εi,
and we obtain that Equation 11 is upper-bounded by 1 + 1/εi.

Putting all of this together, we obtain that

E[X] =
1

R

R∑
i=1

E[X| Qi]

≤ 1

R

R∑
i=1

(
(1− εi) · 1 + εi(1 +

1

εi
)

)
= 2.

This shows that the expected number of queries the collision-game makes is
2, which is certainly an expected polynomial number of steps.

Success Probability We say that the collision-game is successful if the
first entry is a 1 that lies in a row with at least two 1-entries in it, since it is
in this case we are able to obtain two 1-entries from the same row and thus
extract a valid witness.

We let δk be the fraction of rows with exactly k 1s in it, and using this
notation we have that

Pr[success] =

N∑
k=2

k

N
δk =

(
N∑
k=0

k

N
δk

)
− δ1

N
= ε− δ1

N
≥ ε− 1

N
.

Since κ(x) = 1/N , this shows that the success probability is of the desired
form. Putting this together, we have shown that a knowledge extractor K
that runs the described collision-game is expected to make at most 2 queries,
and the success probability of the algorithm is of the correct form.
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Remark 3.8. The following are differences and similarities between the knowl-
edge extractor in Theorem 3.7 and the knowledge extractor in Theorem 3.5.
In Definition 3.4, the knowledge extractor does not necessarily run in ex-
pected polynomial time. We do however require a bound on the expected
number of steps the algorithm takes, but the denominator ε(x)−κ(x) may be
negligible. The knowledge extractor that satisfies this definition is however
guaranteed to always output a valid witness for the given common input. It
repeats a sub-algorithm that succeeds with probability 1/8 until it succeeds.

In Definition 3.6, we have a polynomial bound on the expected running
time of the constructed knowledge extractor, however the algorithm outputs
a witness with notably lower success probability, namely ε − 1/N . This
trade-off in running time and success probability does however allow us
to construct a simpler knowledge extractor that can abort when it gets
unlucky. The expected running time only increases by a factor relative to
the additional number of accepting transcripts needed to extract a witness
if we extend the proof to k-special soundness.

3.5 The Fiat-Shamir Transformation

As we have seen, Σ-protocols are public-coin interactive protocols, since the
verifier’s challenge is chosen uniformly at random from a given challenge
space. As interactive protocols can be expensive to use due to the commu-
nication that has to take place between a prover and a verifier, being able
to turn any Σ-protocol into a non-interactive protocol is highly favorable.
This can be achieved by hashing the first message by the prover together
with the common input into the appropriate challenge space, and use the
output as a replacement for the message that initially had to be sent by the
verifier. If we in addition to the first message by the prover append an ar-
bitrary message to it before hashing, transcripts of this form gives a digital
signature scheme. This technique of making protocols non-interactive and
constructing signature schemes is referred the Fiat-Shamir transformation
[FS87], and is a reason for why Σ-protocols are of central significance when
it comes to constructing digital signature schemes.

Assuming that we are in the ROM, we consider the output a hash func-
tion as uniformly distributed, so choosing the challenge to depend on the
first message in this way still allows us to create accepting transcripts as
one normally would do in the interactive setting [BR93]. Now the prover
can generate the whole transcript without interaction with the verifier V,
and forward it to V who runs the verification check on it. Also, since the
challenge now is a hash of the first message, the prover only needs to forward
the challenge and response of the transcript for it to be possible to verify.
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4 Compressed Σ-Protocols

In the following section, we look at a technique that allows us to lower the
communication complexity of Σ-protocols when proving knowledge of a com-
mited witness satisfying some linear constraint in the discrete log setting.
It is referred to as a compression mechanism, and applying it recursively to
appropriate Σ-protocols allow us to go from constant to logarithmic commu-
nication costs in the size of the witness. The technique was first used in Bul-
letproofs [Bün+18], but was adapted by Attema and Cramer to Σ-protocols
in such a way that it can be applied to a wider selection of protocols [AC20].
In Section 7, we look at how Attema, Cramer and Kohl further extend these
ideas to the lattice setting [ACK21].

For a publicly known commitment P and public parameters pp, a partial
opening y and a linear form L ∈ L(V ) for a vector space V over the field
K, a prover P wants to convince a verifier V that they are in possession of
a secret value x and randomness γ, such that P is a commitment of x using
randomness γ, and that the partial opening y equals L evaluated in x. A
relation for these requirements can be described as

Rcom :=
{
(X = (P ∈ G, L ∈ L(V ), y ∈ K), w = (x ∈ V, γ ∈ V ′))

: P = Compp(x, γ), y = L(x)
}
.

(12)

The way we construct the compressed Σ-protocol in the dlog setting is by
gradually composing protocols. We start with a basic Schnorr-like Σ-protocol,
where one can see that the response message is significantly larger than the
two previously sent. To lower communication costs, we observe that the last
message is a PoK of a given relation, and that we can change it to another
PoK of smaller size. Doing so recursively until the last message being sent
only consists of two group elements, grants us a resulting protocol compo-
sition that has logarithmic communication costs in the size of the witness.
This is however at the cost of increasing the number of messages being sent
back and forth from constant to logarithmic.

4.1 Pedersen Vector Commitment Scheme

One of the building blocks for constructing compressed Σ-protocols in the
discrete log setting, is a compact homomorphic vector commitment scheme.
It allows a prover to commit to vectors of variable length in such a way that
the commitments are all of the same size. The homomorphic property allows
the prover and verifier to perform certain operations on the commited values
locally to produce new commited values, while the values they perform the
operations on remain hidden. An example of such a scheme is the Pedersen
vector commitment scheme [Ped92], where a commitment will always consist
of only one group element.
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Definition 4.1 (Pedersen Vector Commitment [Ped92]). LetG be an abelian
group of prime order q. The Pedersen vector commitment scheme is a com-
pact homomorphic commitment scheme that is defined by the following PPT
algorithms.

• Gen(1λ) : g = (g1, . . . , gn)←$ Gn, h←$ G, return pp := (g, h).

• Compp(x, γ) : Zn
q × Zq → G (x, γ) 7→ hγgx := hγ

∏n
i=1 g

xi
i .

■

Notation wise, for g ∈ Gn, x ∈ Zn
q and c ∈ Zq we let

gx :=
n∏

i=1

gxi
i as well as gc := (gc1, . . . , g

c
n).

For g,h ∈ Gn, we write the component-wise product as

g ∗ h2 := (g1h1, . . . , g2, h2).

Lemma 4.2. The Pedersen Vector Commitment scheme is perfectly hid-
ing and and computationally binding under the assumption that the prover
does not know any non-trivial dlog solutions between any of the generators
g1, . . . , gn, h in a given public parameter pp.

Proof. We begin by proving that the commitment scheme is perfectly hid-
ing. Given any commitment c ∈ G, there is exactly one γ ∈ Zq such that
Compp(x, γ) = c for any x ∈ Zn

q , as a consequence of h being a generator
in group G. Furthermore, every γ is chosen uniformly at random, and is
independent of the message. Therefore the distribution of commitments is
independent of the message choice, and each commitment have the same
probability of occurring, and as a result the scheme is perfectly hiding.

To prove that the commitment scheme is computationally binding, we
use a hybrid argument where we have the following sequence of games.

Game G0: The first hybrid corresponds to the real version of the binding
game for an adversary A. An algorithm B samples pp = (g1, . . . , gn, h) as
the Gen algorithm in the commitment scheme would do, and forwards pp to
A. The adversary responds with the values (c,x, γ,x′, γ′), and if it succeeds
in breaking the binding property, the values satisfy c = Compp(x, γ) =
Compp(x

′, γ′) with x ̸= x′. We let Advbinding(A) denote the probability that
A successfully returns such values as in Definition 2.13, and we have that
Pr[G0] = Advbinding(A).
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Game G1: In the next game, B changes the public parameters pp in the
following way. It begins by sampling two elements g1, h ←$ G uniformly at
random. Then for k = 2, . . . , n, it samples exponents ak ←$ Z∗

q uniformly
at random, and let gk := gak1 . For notation, we also define a1 = 1. It
then defines pp = (g1, g2, . . . , gn, h) and forwards it to adversary A. Since
each gak is a generator in G and the exponents are chosen at random, the
success probability inG0 equals the success probability inG1, as both public
parameters are distributed correctly, and we have Pr[G0] = Pr[G1].

Now, if algorithm A successfully breaks binding, algorithm B can use
this as a subroutine to construct a solution to the dlog problem between
two of the generators in a public parameters in G1 in the following way.
Suppose that (c,x, γ,x′, γ′) breaks binding, and say that h = gz1 implicitly.
Then we have that

Compp(x, γ) = Compp(x
′, γ′)⇔ hγ

n∏
i=1

gxi
i = hγ

′
n∏

i=1

g
x′
i

i

for x ̸= x′ with non-negligible probability. Using g1 as a base, we have in
the exponents that

z · γ +
n∑

i=1

xiai = z · γ′ +
n∑

i=1

x′iai,

and we can compute z = (γ−γ′)−1
∑n

i=1(x
′
i−xi)ai since all the other values

are known to us. This is a non-trivial dlog solution between generators g
and h such that gz1 = h, which contradicts our assumption that such pairs
should be infeasible to compute for a given public parameter pp.

It follows that

Advbinding(A) = Pr[G0] = Pr[G1] = Advdlog(B),

which proves that the Pedersen vector commitment scheme is computation-
ally binding.

Remark 4.3. Since the Pedersen vector commitment scheme is homomor-
phic, it follows that Compp(a, b) · Compp(c, d)

e = Compp(a + ce, b + de)
for any public parameter pp. Also, if ĝ = (g, h) = (g1, . . . , gn, h) and
ẑ = (z, ϕ) = (z1, . . . , zn, ϕ), then Com(g,h)(z, ϕ) · ka = Com(ĝ,k)(ẑ, a). Note
that we let the length of the input to the commitment scheme be decided
by the number of generators given in the public parameter pp.

4.2 Basic Σ-Protocol for Composition

We are now ready to introduce the basic Σ-protocol Π0 for relationRcom that
we build the compressed protocol from, where we instantiate the relation as

Rcom :=
{
(X = (P ∈ G, L ∈ L(Zn

q ), y ∈ Zq), w = (x ∈ Zn
q , γ ∈ Zq))

: P = Com(g,h)(x, γ) = gxhγ , y = L(x)
}
.

(13)
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The Σ-protocol Π0 for relation Rcom is given in Figure 4.

Input(P = gxhγ ∈ G, L ∈ L(Zn
q ), y = L(x); x ∈ Zn

q , γ ∈ Zq)
Public Parameters: g ∈ Gn, h ∈ G

Σ-Protocol Π0 for Relation Rcom:

P = Com(g,h)(x, γ) = gxhγ

y = L(x)

Prover P Verifier V
r←$ Zn

q , ρ←$ Zq

t = L(r)

A = Com(g,h)(r, ρ)

t, A

c←$ Zq

c

z = cx+ r

ϕ = cγ + ρ

z, ϕ

V accepts iff

Com(g,h)(z, ϕ) = AP c

∧ L(z) = cy + t

Figure 4: Σ-Protocol Π0 for Relation Rcom

Lemma 4.4 (Basic Pivot [AC20]). The protocol Π0 presented in Figure 4 is
a Σ-protocol for relation Rcom. In particular, it has perfect completeness and
unconditional special soundness. The communication costs are as follows:

• P → V: 1 elements of G and n+ 2 elements of Zq.

• V → P: 1 element of Zq.

Proof. The following proof shares similarities with the proof of the Schnorr
protocol [Sch90].

Completeness Suppose that a prover P and a verifier V follow the pro-
tocol specifications of Π0(P,L, y;x, γ) such that ((P,L, y), (x, γ)) ∈ Rcom,
and let ((t, A), c, (z, ϕ)) be a non-aborting transcript. Then we have that

Com(g,h)(z, ϕ) = Com(g,h)(cx+r, cγ+ρ) = Com(g,h)(x, γ)
c·Com(g,h)(r, ρ) = AP c

as required. Also, it holds that

L(z) = L(cx+ r) = cL(x) + L(r) = cy + t,

which shows that protocol Π0 has perfect completeness.
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2-Special Soundness Let E be an extractor that is given common input
X = (P,L, y) and two accepting transcripts ((t, A), c, (z, ϕ)) and
((t′, A′), c′, (z′, ϕ′)) with c ̸= c′ for protocol Π0. We want to construct a
witness (x̃, γ̃) such that (X, (x̃, γ̃)) ∈ Rcom. Since both transcripts are
accepting, we have that L(z) = cy+ t as well as L(z′) = c′y+ t. Subtracting
the second equation from the first one, we obtain that L(z− z′) = (c− c′)y,
and solving for y we get y = L((c − c′)−1(z − z′)). Therefore we define
x̃ := (c− c′)−1(z− z′) as our candidate for the first part of the witness.

Furthermore, Com(g,h)(z, ϕ) = AP c and Com(g,h)(z
′, ϕ′) = AP c′ . If we

now divide the first equation by the second one and then solve for P , we
can rewrite P as

P = Com(g,h)((c− c′)−1(z− z′), (c− c′)−1(ϕ− ϕ′)).

Therefore we let γ̃ := (c−c′)−1(ϕ−ϕ′). By how we defined x̃ and γ̃, the pair
(x̃, γ̃) is a valid witness for (P,L, y). Therefore the extractor E is successful
in extracting a valid witness from the given transcripts.

Special HVZK In Figure 5, we construct a simulator S for Π0.

Simulator S (X = (P,L, y), c ∈ Zq):

1 : Sample z←$ Zn
q and ϕ←$ Zq.

2 : Define t := L(z)− cy and A := Com(g,h)(z, ϕ) · P−c.

3 : return T = ((t, A), c, (z, ϕ))

Figure 5: Simulator for Special HVZK of Protocol Π0

Since z is chosen uniformly at random, t will be uniformly distributed as
well. By the way we defined A, it can be written as Com(g,h)(r, ρ) for r
and ρ implicitly defined as r = z − cx and ρ = ϕ − cγ by the expression
above. Since z and ϕ are chosen uniformly at random, both r and ρ will be
uniformly distributed as well, and we can argue that how we compute A in
the simulated transcripts guarantees that it has the same distribution as a
real one would. Therefore simulated transcripts and real ones have the same
probability distributions, and we conclude that Π0 is special HVZK.

4.3 The Response Message as a PoK

The last message sent in protocol Π0 consists of n+ 1 elements of Zq. This
accounts for almost all elements being sent by the prover, as it otherwise
only sends one element from G and one from Zq. Therefore to lower com-
munication complexity, we want to find a way to shorten it. We observe
that the last message ẑ = (z, ϕ) = (z1, . . . , zn, ϕ) is a PoK for (P,L, y; ẑ),
where the relation it satisfies can be written as
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Rcom1 =
{
(X = (P̂ ∈ G, L̂ ∈ L(V ), ŷ ∈ K), w = ẑ ∈ Zn+1

q )

: ĝẑ = P̂ ∧ ŷ = L̂(ẑ)
}
.

(14)

By use of protocol composition, we can compose protocol Π0 with any pro-
tocol Π1 for relation Rcom1 . Then if messages sent in Π1 are smaller in
total than the last message sent in Π0, we have effectively reduced commu-
nication costs to some extend, while we on the other hand have potentially
increased the number of moves in the resulting protocol Π1 ⋄Π0. A protocol
for relation Rcom1 is given in Figure 6.

In order to compose Π0 with protocols that use the techniques from
Bulletproofs [Bün+18], protocol Π1 for relation Rcom1 is defined such that
the last message is a PoK for an appropriate relation Rcom2 . We define this
relation by

Rcom2 =
{
(X = (Q ∈ G, L̃ ∈ L(Zn+1

q ), w = ẑ ∈ Zn+1
q )

: Q = Com(ĝ,k)(ẑ, L̃(ẑ))
}
,

(15)

and note that difference between Rcom2 and the previous relation Rcom1 is
that we have rewritten the constraints in such a way that there is only one
condition that has to be satisfied.

Input(P̂ = ĝẑ ∈ G, L̂ ∈ L(Zn+1
q ), ŷ = L̂(ẑ); ẑ ∈ Zn+1

q )
Public Parameters: ĝ ∈ Gn+1, k ∈ G

Argument of Knowledge Π1 for Relation Rcom1 :

P̂ = gẑ ∈ G

ŷ = L̂(ẑ) ∈ Zq

Prover P Verifier V
c←$ Zq

c

ẑ

V accepts iff

ĝẑkcL̃(ẑ) = P̂ kcŷ

Figure 6: Argument of Knowledge Π1 for Rcom1
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Definition 4.5 (Discrete Logarithm Relation [Bün+18]). For all PPT ad-
versaries A and n ≥ 2, the discrete logarithm relation problem states that
the probability that adversary A outputs values (a1, . . . , an) that satisfies
the given condition is negligible:

Pr

[
g1, . . . , gn ←$ G;

(a1, . . . , an)←$A(G, g1, . . . , gn)
: ∃ai ̸= 0 ∧

n∏
i=1

gaii = 1

]
≤ 2−λ.

■

Lemma 4.6 (Protocol Π1 [AC20]). Protocol Π1 in Figure 6 is a perfectly
complete and computationally 2-special sound 2-move protocol under the dis-
crete logarithm relation (Definition 4.5) assumption. The communication
costs are as follows:

• P → V: and n+ 1 elements of Zq.

• V → P: 1 element of Zq.

Proof. As completeness is apparent, we focus on the special soundness proof.

2-Special Soundness Let E be an extractor that is given common input
X = (P̂ , L̂, ŷ) and two accepting transcripts (c0, ẑ0) and (c1, ẑ1), where
c0 ̸= c1 for protocol Π1. Our goal is to construct a witness z̃ such that
(X, z̃) ∈ Rcom1 . Since both transcripts are accepting, we have that

ĝẑ0kc0L̃(ẑ0) = P̂ kc0ŷ and ĝẑ1kc1L̃(ẑ1) = P̂ kc1ŷ.

We divide the first expression by the second one, and obtain that

ĝẑ0−ẑ1kc0L̃(ẑ0)−c1L̃(ẑ1) = k(c0−c1)ŷ.

Here, we either have that ẑ0 = ẑ1 or not. If it is not the case, this would
contradict the discrete log relation assumption, as

ĝẑ0−ẑ1kc0(L̃(ẑ0)−ŷ)−c1(L̃(ẑ1)−ŷ) = 1

would be a non-trivial solution. Therefore it must be the case that ẑ0 = ẑ1,
from which it follows that

c0L̃(ẑ0)− c1L̃(ẑ1) = (c0 − c1)ŷ.

Therefore we obtain that L̃(ẑ0) = L̃(ẑ1) = ŷ, and E can return ẑ0 as a valid
witness such that (X, ẑ0) ∈ Rcom1 .
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4.4 The Compression Mechanism

Suppose that n is a power of 2. For g ∈ Gn and a ∈ Z(n+1)/2
q , define

gaL := g(a 0)⊤ ∈ G(n+1)/2 and gaR := g(0 a)⊤ ∈ G(n+1)/2, (16)

where (a 0)⊤ ∈ Zn
q is the vector a appended with (n − 1)/2 zeros in the

end, such that it is a vector of dimension n. Similarly, (0 a)⊤ ∈ Zn
q is the

vector a appended with (n− 1)/2 zeros in the front, such that it is a vector
of dimension n. For g ∈ Gn, we define

gL = (g1, . . . , gn/2) and gR = (gn/2+1, . . . , gn), (17)

and for a linear form L : Zm
q → Zq, define

LL : Z(m−1)/2
q → Zq, x 7→ L(

(
x
0

)
) and LR : Z(m−1)/2

q → Zq, x 7→ L(

(
0
x

)
).

The compression mechanism Π2 for relation Rcom2 (Equation 15) is given in
Figure 7. The last step of the protocol halves the length of the last message
being sent for each recursive call, and the number of times we repeat it
depends on the length of the witness. Note that the verification constraint
is stated in two different ways, where we have

Com(g′,k)(z
′, L′(z′)) = Com(ĝ,k)

((
cz′

z′

)
, L̃(

(
cz′

z′

)
)

)
.

This equality can be obtained by combining that

L′(z) = (cL̃L + L̃R)(z
′) = cL(

(
z′

0

)
) + L̃R(

(
0
z′

)
) = L̃(

(
cz′

z′

)
)

and

n+1∏
i=1

ĝ(cz
′ z′)⊤ =

(n+1)/2∏
i=1

(ĝcL ∗ ĝR)z
′
,

such that we get

Com(ĝ,k)

((
cz′

z′

)
, L̃(

(
cz′

z′

)
)

)
= Com(ĝ,k)

((
cz′

z′

)
, L′(z′)

)
=

n+1∏
i=1

ĝ(cz
′ z′)⊤ · kL′(z′)

=

(n+1)/2∏
i=1

(ĝcL ∗ ĝR)z
′ · kL′(z′)

= Com(g′,k)(z
′, L′(z′)).
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Input(Q = ĝẑkL̃(ẑ) ∈ G, L̃ ∈ L(Zn+1
q ); ẑ ∈ Zn+1

q )
Public Parameters: ĝ, k

Compressed PoK Π2 for Relation Rcom2 :

Q = Com(ĝ,k)(ẑ, L̃(ẑ))

ĝ ∈ Gn+1, k ∈ G
Prover P Verifier V

A = Com(ĝ,k)

((
0
ẑL

)
, L̃(

(
0
ẑL

)
)

)
B = Com(ĝ,k)

((
ẑR
0

)
, L̃(

(
ẑR
0

)
)

)
A,B

c←$ Zq

c

g′ := ĝc
L ∗ ĝR ∈ G(n+1)/2

Q′ := AQcBc2

L′ := cL̃L + L̃R

z′ = ẑL + cẑR

if z′ ∈ Z2
q :

z′

V accepts iff

Com(g′,k)(z
′, L′(z′)) = Q′ ⇔

Com(ĝ,k)

((
cz′

z′

)
, L̃(

(
cz′

z′

)
)

)
= Q′

else :

Run Π2(Q
′, L′; z′) with

Public Parameters: g′, k

Figure 7: Compressed Proof of Knowledge Π2 for Relation Rcom2
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Theorem 4.7 (Compression Mechanism [AC20]). Assume that n + 1 is a
power of 2. The protocol Π2 is a (2µ+ 1)-move protocol for relation Rcom2,
where µ = ⌈log2(n + 1)⌉ − 1. It is perfectly complete and unconditionally
(k1 . . . , kµ)-special sound, where ki = 3 for all i = 1, . . . , µ. Moreover, the
communication costs are

• P → V: 2 · ⌈log2(n+ 1)⌉ − 2 elements of G and 2 elements of Zq.

• V → P: ⌈log2(n+ 1)⌉ − 1 elements of Zq.

Proof. We let µ denote the number of recursive calls of Π2, where we count
the initial call of Π2 as well. The witness ẑ is an element of Zn+1

q , and since
n+ 1 = 2m for some m, the length of the witness equals log2(n+ 1).

The intermediate witness z′ that we rerun Π2 on in each recursive call
is halved for each iteration, and Π2 returns when z′ has length 2, namely
z′ ∈ Z2

q . Therefore we have that µ = log2(n + 1) − 1, since we stop before
the resulting witness is of length 1. For each recursive call, two moves take
place in the protocol, and the protocol finishes by the prover forwarding z′

to the verifier. Therefore Π2 is a (2µ+ 1)-move protocol.
The number ofG elements sent by the prover equals 2µ = 2 log2(n+1)−2,

since the prover sends two elements of G for each time Π2 calls itself. It also
finishes the protocol by forwarding z′, which as we argued above consists of
two elements of Zq.

Furthermore, the number of messages sent by the verifier equals µ, as it
forwards one element of Zq for each time we call Π2. Therefore the commu-
nication costs for the prover to the verifier is 2 log2(n+1)− 2 elements of G
and 2 elements of Zq, and from the verifier to the prover is log2(n+ 1)− 1
elements of Zq.

Completeness Suppose that a prover P and a verifier V follow the pro-
tocol specifications of Π2(Q, L̃; ẑ) such that ((Q, L̃), ẑ) ∈ Rcom2 , and let
((A1, B1), c1, (A2, B2), c2, . . . , (Aµ, Bµ), cµ, z

′) be a non-aborting transcript.
To keep track of notation, we also denote variables gi, Li, zi, Qi with indices
to show which recursion call it was defined in, where the values from the
common input and public parameters ĝ, L̃, Q and ẑ in the beginning of the
protocol are indexed with 0 as g0, L0, z0 and Q0.

Note that at any recursion step i of the protocol, the verification check
holds for the implicitly defined zi. Therefore we can prove completeness of
the protocol with an induction argument.

We begin by proving the base case k = 1. That is, we want to prove that

Com(g0,k)

((
c1z1
z1

)
, L1(

(
c1z1
z1

)
)

)
= Q1 = A1Q

c1
0 B

c21
1 .
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Using the definitions and properties of the homomorphic commitment scheme,
we have that

Com(g0,k)

((
c1z1
z1

)
, L1(

(
c1z1
z1

)
)

)
= Com(g0,k)

((
c1z0L + c21z0R
z0L + c1z0R

)
, L1(

(
c1z0L + c21z0R
z0L + c1z0R

)
)

)
= A1 ·Qc1

0 ·B
c21
1 = Q1,

where

A1 = Com(g0,k)

((
0
z0L

)
, L0(

(
0
z0L

)
)

)
,

Q0 = Com(g0,k)
(z0, L0(z0)) ,

B1 = Com(g0,k)

((
z0L
0

)
, L0(

(
z0L
0

)
)

)
.

This proves the base case.
Now assume that the verification check

Com(gµ−1,k)
(zµ−1, Lµ−1(zµ−1)) = Qµ−1

holds for k = µ− 1. Then for k + 1 = µ, we then have that

Com(gµ,k)
(zµ, Lµ(zµ)) = Com(gµ−1,k)

((
cµzµ
zµ

)
, Lµ(

(
cµzµ
zµ

)
)

)
. (18)

Since zµ = zµ−1L + cµzµ−1R and we have

Aµ = Com(gµ−1,k)

((
0

zµ−1L

)
, Lµ−1(

(
0

zµ−1L

)
)

)
as well as

Bµ = Com(gµ−1,k)

((
zµ−1R

0

)
, Lµ−1(

(
zµ−1R

0

)
)

)
,

we can rewrite Equation 18 as

Com(gµ,k)
(zµ, Lµ(zµ)) = Aµ · Com(gµ−1,k)

(zµ−1, Lµ−1(zµ−1))
cµ ·Bc2µ

µ .

By the assumption that the verification check holds for k = µ− 1, we have
that

Com(gµ−1,k)
(zµ−1, Lµ−1(zµ−1)) = Qµ−1,

which shows that the verification check

Com(gµ,k)
(zµ, Lµ(zµ)) = Aµ ·Q

cµ
µ−1 ·B

c2µ
µ

holds for k+1 = µ as well. Therefore we can conclude that protocol Π2 has
perfect completeness.
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3-Special Soundness In the special soundness proof, we assume that
protocol Π2 only runs the recursive step once. Let E be an extractor that is
given common input (Q, L̃), generators ĝ, k and three accepting transcripts
(A,B, c1, z

′
1), (A,B, 22, z

′
2) and (A,B, c3, z

′
3), with ci ̸= cj for all i, j.

For the sake of clarity in this proof, we define

Com (a) := Com(ĝ,k)

(
a, L̃(a)

)
= ĝakL̃(a).

Using the values given to E , we want to return a value z̄ such that ((Q, L̃), z̄) ∈
Rcom2 . That is, we want to construct a z̄ such that

Q = Com(ẑ) = Com(z̄).

Since the verification checks hold, we know that

Com(g′,k)

(
z′i, L̃(z

′
i)
)
= Com(

(
ci · z′i
z′i

)
) = Q′ = AQciBc2i

= Com(

(
0
ẑL

)
) · Com(ẑ)ci · Com(

(
ẑR
0

)
)c

2
i

= Com(

(
0
ẑL

)
+ ci · ẑ+ c2i ·

(
ẑR
0

)
)

for i = 1, 2, 3.
Written differently, the equations can be combined such that the com-

mitments of each row of

1 c1 c21
1 c2 c22
1 c3 c23



(

0
ẑL

)
ẑ(
ẑR
0

)
 (19)

equals the commitments of each row of

(
c1 · z′1
z′1

)
(
c2 · z′2
z′2

)
(
c3 · z′3
z′3

)

 ∈ G3. (20)

we define

V :=

1 c1 c21
1 c2 c22
1 c3 c23

 ,
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and note that this is a Vandermonde matrix. Therefore its determinant

det(V ) = (c3 − c1)(c3 − c2)(c2 − c1) ̸= 0

is non-zero by the assumption that ci ̸= cj for all combinations of i, j, and
V is invertible over Zq. Our goal is to compute z̄ from values that we know
such that Com(ẑ) = Com(z̄). If we let

(a1 a2 a3) := (0 1 0) · V −1,

we can multiply both Equation 19 and Equation 20 by it to obtain that

Com(ẑ) = Com

(∑3
i=1 aiciz

′
i∑3

i=1 aiz
′
i

)
.

All of the values inside the right side are known to us, and we therefore let

z̄ :=

(∑3
i=1 aiciz

′
i∑3

i=1 aiz
′
i

)
.

This is a valid witness for (Q, L̃), and the extractor has successfully com-
puted valid witness for the relation Rcom2 .

4.5 Compressed Σ-Protocol from Dlog

Composing the protocols Π0, Π1 and Π2 gives us the final interactive proto-
col Πc = Π2 ⋄ Π1 ⋄ Π0 for relation Rcom presented in Figure 8, which is the
finalized compressed Σ-protocol.

Theorem 4.8 (Compressed Σ-protocol [AC20]). Suppose that n + 1 is a
power of 2. The protocol Πc given in Figure 8 is a (2µ+3)-move interactive
protocol for relation Rcom, where µ = ⌈log2(n + 1)⌉ − 1. It is perfectly
complete, has computational (2, 2, k1, . . . , kµ)-special soundness with ki = 3
for i = 1, . . . , µ under the discrete log relation assumption, and is special
HVZK. The communication costs are as follows:

• P → V: 2 · ⌈log2(n+ 1)⌉ − 1 elements of G and 3 elements of Zq.

• V → P: ⌈log2(n+ 1)⌉+ 1 elements of Zq.

Proof. As we have previously seen, all the protocols Π0, Π1 and Π2 have
completeness, and therefore the composed protocol Πc will also have the
property. We have also shown that Π0 and Π1 have 2-special soundness
(Lemma 4.2, Lemma 4.6), while Π2 is (k1, . . . , kµ)-special sound with ki = 3
where i = 1, . . . , µ (Theorem 4.7). Combining the extractors then gives
us one for the composed protocol as well. Lastly, we have Special HVZK
since protocol Π0 has the property (Lemma 4.2), so running the simulator
to construct a valid transcript for Π0 and then using the values from it to
continue honest executions of Π1 and Π2 as a part of the composed protocol
allows us to simulate transcripts for Πc as well.
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Input(P = Com(g,h)(x, γ) = gxhγ ∈ G, L ∈ L(Zn
q ), y = L(x); x ∈ Zn

q , γ ∈ Zq)
Public Parameters: g, h, k

Compressed Σ-Protocol Πc := Π2 ⋄Π1 ⋄Π0 for Relation Rcom:

P = Com(g,h)(x, γ) = gxhγ ∈ G
y = L(x) ∈ Zq

Prover P Verifier V
r←$ Zn

q , ρ←$ Zq

t = L(r), Â = Com(g,h)(r, ρ)

t, Â

c0, c1 ←$ Zq

c0, c1

z = c0x+ r, ϕ = c0γ + ρ

ẑ := (z, ϕ) ĝ := (g, h)

L̃(z, ϕ) := c1 · L(z)
Q := ÂP c0kc1(coy+t)

= Com(ĝ,k)(ẑ, L̃(ẑ))

A = Com(ĝ,k)

((
0
ẑL

)
, L̃(
(
0
ẑL

)
)
)

B = Com(ĝ,k)

((
ẑR
0

)
, L̃(
(
ẑR
0

)
)
)

A,B

c←$ Zq

c

g′ := ĝc
L ∗ ĝR ∈ G(n+1)/2

Q′ := AQcBc2

z′ = ẑL + cẑR L′ := cL̃L + L̃R

if z′ ∈ Z2
q :

z′

V accepts iff

Com(g′,k)(z
′, L′(z′)) = Q′ ⇔

Com(ĝ,k)

((
cz′

z′

)
, L̃(

(
cz′

z′

)
)

)
= Q′

else : Run Π2(Q
′, L′; z′) with

Public Parameters: g′, k

Figure 8: Compressed Σ-Protocol from Dlog Assumptions
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5 Lattice Cryptography

In the following sections, our goal is to look at how to construct a Schnorr-
like [Sch90] Σ-protocol from lattice assumptions, as presented by Lyuba-
shevsky [Lyu24, Section 5.2]. Doing so reveals some of the challenges we
meet when constructing lattice-based Σ-protocols and techniques we can
use to overcome them. Afterwards, we look into how we can apply the OR-
protocol from Figure 3 to the construction. To do so, it is necessary to be
able to perform operations on elements of the challenge set, or bit strings
that have a one-to-one correspondence to them. We will see how the func-
tion SampleInBall from the NIST Standard [Nat24, Algorithm 29] can be
used to do obtain this desired property.

The Challenge Set When defining the challenge set we use in the
Σ-protocol, we keep in mind that we want the values in it to have small
norm, as we want to prove a statement that has a requirement on the size
of the witness, and also that it is favorable to choose a set with low sam-
ple complexity. For Rq,f as defined in Section 2.1, we therefore define the
challenge set C ⊆ Rq,f as

C = {c ∈ [1], ∥c∥1 = η}. (21)

We define η to be the smallest integer such that 2η ·
(
d
η

)
> 2256, and make

sure that deg(f) = d is sufficiently large enough for this to be possible. The
challenge set therefore consists of polynomials in Rq,f that have exactly η
non-zero coefficients that are either −1 or 1.

It is worth noting that the challenge set C is not a group, and by adding
two polynomials c, c′ ∈ C together, we may end up with a new polynomial
that is not contained in C. This is the reason we have to make an adjustment
to the initial protocol we present in Figure 9, so that we can apply the
OR-proof to it. So even though we refer to C as the challenge set for the
Σ-protocol, the verifier will send a challenge sampled from a set of bit strings
{0, 1}256, that the prover and verifier then each maps into C using a publicly
known hash function H.

The difference between polynomials in C are however still of interest,
since we must allow such polynomials to satisfy the altered Equation 28 we
want to construct our Σ-protocol from. As we will see, doing so is necessary
to obtain special soundness. We therefore define

C̄ := {c̄ = c− c′ with c ̸= c′ ∈ C}. (22)

5.1 The Learning With Errors Problem

The Learning With Errors (LWE) problem was first proposed by Regev
[Reg05], and is one of the fundamental hardness assumptions in lattice-
based cryptography. It is a decisional problem that relies on distinguishers
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not being able to tell apart two different instances: one where a small error
term has been added to a matrix multiplied with a vector, and another where
a vector has been directly chosen at random from vectors of corresponding
dimensions. The error term added in the first LWE instance makes Gaussian
elimination an infeasible strategy for distinguishers trying to decide which
instance of the problem it has been given.

Definition 5.1 (The Learning With Errors problem (The LWE problem)
[Lyu24]). For positive integers n,m, q, β ∈ Z+, where β < q, the LWEn,m,q,β

problem asks an adversary A to distinguish between the two following dis-
tributions:

0. (A,As+ e), where A←$ Zn×m
q , s←$ [β]m, e←$ [β]n

1. (A,u), where A←$ Zn×m
q and u←$ Zn

q .

The advantage of adversary A solving the LWEn,m,q,β problem is defined as

AdvLWEn,m,q,β
(A) = |Pr[b = 1| A←$ Zn×m

q ,u←$ Zn
q , b←$A(A,u)]

− Pr[b = 1| A←$ Zn×m
q , s←$ [β]m, e←$ [β]n, b←$A(A,As+ e)]|

(23)

■

The LWE problem can be generalized by instead of choosing matrices over
the integers, one can choose among matrices over the polynomial ring Rq,f .
This generalization, referred to as the Module LWE problem, is the version
we will focus on the most.

Definition 5.2 (The Module Learning With Errors problem (The MLWE
problem) [Lyu24]). For positive integers n,m, q, β ∈ Z+, where β < q and
ring Rq,f , the Rq,f -LWEn,m,β problem asks to distinguish between the two
following distributions:

0. (A,As+ e), where A←$Rn×m
q,f , s←$ [β]m, e←$ [β]n

1. (A,u), where A←$Rn×m
q,f and u←$Rn

q,f .

The advantage of an adversary A solving the Rq,f -LWEn,m,β problem is
defined as

AdvMLWEn,m,β
(A) = |Pr[b = 1| A←$Rn×m

q,f ,u←$Rn
q,f , b←$A(A,u)]

− Pr[b = 1| A←$Rn×m
q,f , s←$ [β]m, e←$ [β]n, b←$A(A,As+ e)]|

(24)

■

Unless otherwise stated, we let the MLWEn,m,β problem refer to the
Rq,f -LWEn,m,β problem, where the ring Rq,f is implicitly understood.
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5.2 The Short Integer Solution Problem

The Short Integer Solution (SIS) problem was first proposed by Ajtai [Ajt96],
and is a computational search problem that relies on the hardness of finding
short vectors that satisfies an equation for a given matrix A. That is, no
adversary that is given a matrix A should be able to efficiently compute
such a solution.

Definition 5.3 (The Short Integer Solution problem (The SIS problem)
[Lyu24]). For positive integers n,m, q, β ∈ Z+

q where β < q, the SISn,m,q,β

problem asks to find, for a randomly chosen matrix A ∈ Zn×m
q , vectors

s1 ∈ [β]m and s2 ∈ [β]n (both not being 0), such that As1 + s2 = 0 mod q.
The advantage of adversary A solving the SISn,m,q,β problem is defined as

AdvMSISn,m,β
(A) =|Pr[(s1, s2)←$A(A)| s1 ∈ [β]m, s2 ∈ [β]n,

A←$ Zn×m
q , (s1, s2) ̸= 0, As1 + s2 = 0 mod q]|

(25)

■

Here as well, The SIS problem can be generalized by instead of choosing ma-
trices over the integers, one can choose among matrices over the polynomial
ring Rq,f . This generalization, referred to as the Module SIS problem, is the
version we will focus on the most.

Definition 5.4 (The Module Short Integer Solution problem (The MSIS
problem) [Lyu24]). For positive integers n,m, q, β ∈ Z+ where β < q and
ring Rq,f , the Rq,f -SISn,m,β problem asks to find, for a randomly chosen
matrix A ∈ Rn×m

q,f , vectors s1 ∈ [β]m and s2 ∈ [β]n (both not being 0), such
that As1 + s2 = 0 mod q. The advantage of an adversary A solving the
Rq,f -SISn,m,β problem is defined as

AdvMSISn,m,β
(A) =|Pr[(s1, s2)←$A(A)| s1 ∈ [β]m, s2 ∈ [β]n,

A←$Rn×m
q,f , (s1, s2) ̸= 0, As1 + s2 = 0 mod q]|

(26)

■

Unless otherwise stated, we let theMSISn,m,β problem refer to theRq,f -SISn,m,β

problem, where the ring Rq,f is implicitly understood.

5.3 Choice of Parameters

The following gives an intuition for how the parameters in the LWE problem
and the SIS problem relate to the hardness of solving them. For the LWE
problem, a larger norm bound β for the noise e adds more randomness to
the public matrix multiplied with the secret vector, and therefore makes the
problem harder to solve. For SIS, allowing solutions of larger norm β makes
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the problem easier, since there can be more solutions that satisfies a given
public matrix A. Note that this is for a given modulus q and dimension n.

One of the difficulties when choosing parameters is that we often want
both the LWE problem and the SIS problem to be hard simultaneously, but
they have some opposite requirements on the parameters to offer the best
security. If the LWE problem is sufficiently hard but the SIS problem is
not, a solution could be to increase the modulus q. Conversely, if we have
high SIS security but low LWE security, we can increase the norm bound β.
Note that the SIS problem cannot be made harder by increasing m, for if we
would find a solution to the SIS problem with all the other variables fixed,
but for m′ < m, we could extend the solution to m as well by letting the
appropriate m −m′ remaining variables in the solution equal 0. For both
assumptions, increasing the dimension n makes the problem harder, but a
downside with this is that everything we work with then gets larger. If we
would want to build a Σ-protocol from these assumptions, increasing the
dimension would increase the proof size.

We also note that there is a difference between theoretically and prac-
tically chosen parameters for the hardness of the underlying assumptions.
When doing a practical analysis for LWE, there are certain known attacks
we have to check the system for, and then set the parameters such that these
attacks become infeasible [APS15]. For SIS, we have a formula to choose
the best parameters [MR09].
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6 Σ-Protocols from Lattice Assumptions

Say that for an MLWEn,m,β instance (A, t = As1+ s2), a prover P wants to
prove that they have values s1 ∈ [β]m, s2 ∈ [β]n that satisfies the equation
for t, while also being in the appropriate range. We can define a relation
for these requirements as

RSIS :=
{
(X = (A ∈ Rn×m

q,f , t ∈ Rn
q,f ), w = (s1 ∈ [β]m, s2 ∈ [β]n))

: As1 + s2 = t
}
,

(27)

where we refer to it as a relation for SIS, since the witness is a solution to the
MSISn,m,β problem for matrix A. As mentioned in Section 1, constructing
a Σ-protocol directly can lead to inefficient protocols. The proof can be
optimized by instead proving knowledge of s̄1, s̄2 with coefficients from a
somewhat larger set [2β̄], that satisfy the altered equation

As̄1 + s̄2 = c̄t. (28)

Here, c̄ is either 1 or an element of C̄ as defined in Equation 22. The reason
we allow the coefficients of (s1, s2) to be in [2β̄], is that this will allow us to
construct an extractor for special soundness that outputs a somewhat larger
witness that still satisfies the equation.

As we will see in Lemma 6.2, solving Equation 28 with s̄1, s̄2, c̄ as men-
tioned is equivalent to solving either the MLWE or the MSIS problem for
matrix A [Lyu24, Section 5.1]. For this reason, constructing Σ-protocols
where we prove possession of polynomials with slightly larger coefficients
that satisfies the altered Equation 28 are still of interest.

6.1 Σ-Protocol from MSIS

In order to construct a Σ-protocol for the altered Equation 28, we define the
altered relation

R̄SIS :=
{
(X = (A ∈ Rn×m

q,f , t ∈ Rn
q,f ), w = (s̄1 ∈ [2β̄]m, s̄2 ∈ [2β̄]n))

: As̄1 + s̄2 = c̄t, (c̄ ∈ C̄ ∨ c̄ = 1)
}
.

(29)

We present an interactive protocol ΠSIS for relation R̄SIS in Figure 9. There
are multiple changes that can be made to protocol ΠSIS, depending on the
desired use case. One of these is hashing the first message sent by the prover,
and this change is shown in the white boxes.
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Hashing Bit Strings into the Set C In protocol ΠSIS, a verifier instead
of sending an element of C to the prover sends a bit string that the prover and
verifier each maps into the challenge set C. Mapping bit strings into C can
be done by employing the hash function HashInBall described in the NIST
Standard [Nat24, Section 7.3, Algorithm 29], which we will denote by H.
Since the hash function is collision-resistant, there is a negligible probability
of collisions occurring, meaning that we have a one-to-one correspondence
between bit strings from {0, 1}256 and elements of C. Doing XOR operations
on the bit strings before applying the hash function H, will therefore allow
us to apply the OR-construction to the protocol.

Input(A ∈ Rn×m
q,f , t = As1 + s2 ∈ Rn

q,f ; s1 ∈ [β]m, s2 ∈ [β]n)

Interaction in ΠSIS, ΠSIS for Relation R̄SIS:

Prover P Verifier V
y1 ←$ [γ + β̄]m

y2 ←$ [γ + β̄]n

w := Ay1 + y2

w, H(w)

s←$ {0, 1}256

s

c := H(s) ∈ C
z1 := cs1 + y1

z2 := cs2 + y2

if z1 /∈ [β̄]m or z2 /∈ [β̄]n:

(z1, z2) := ⊥

(z1, z2)

V Computes c := H(s)
and accepts iff

(z1, z2) ̸= ⊥
∧ z1 ∈ [β̄]m ∧ z2 ∈ [β̄]n

∧ (w = Az1 + z2 − ct

∨ H(w) = H(Az1 + z2 − ct) )

Figure 9: Schnorr-Like Σ-Protocol from Lattice Assumptions
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Hashing the First Message Sent by the Prover In protocol ΠSIS ,
instead of sending the commit value w in clear, we apply a hash function
H : Rn

q,f → {0, 1}∗ to it before sending it. The reason we do so, is that ΠSIS

as an interactive protocol is not a Σ-protocol, as we are not guaranteed that
simulated transcripts with aborts have the same probability distribution as
honestly generated transcripts. The abort step in the protocol is dependent
on the secret values s1 and s2, and may therefore leak information about the
witness. By instead hashing the commit value w, a verifier will not learn
anything about the values y1,y2 used to compute it, and we can argue that
H(w) is uniformly distributed when proving Special HVZK in the ROM.

To prove that ΠSIS is a Σ-protocol, the following Lemma 6.1 grants us
the necessary probabilities for proving that the protocol is Special HVZK.

Lemma 6.1 ([Lyu24]). If γ ∈ Z+ is such that for all polynomials s ∈ [β],
c ∈ C we have that cs ∈ [γ], then for all s1, s2, c as in the protocol in Figure 9,
we have

Pr
y1,y2

[(z1, z2) ̸= ⊥] =
(

2β̄ + 1

2(γ + β̄) + 1

)d(m+n)

, (30)

and for all z′1 ∈ [β̄]m, z′2 ∈ [β̄]n, we have

Pr
y1,y2

[(z1, z2) = (z′1, z
′
2)| (z1, z2) ̸= ⊥] =

(
1

2β̄ + 1

)d(m+n)

. (31)

Proof. Suppose that z1 = cs1+y1 and z2 = cs2+y2 for some y1,y2 ∈ [γ+β̄].
Using vector notation, this can jointly be written as

z :=

[
z1
z2

]
=

[
cs1
cs2

]
+

[
y1

y2

]
∈ Rn+m

q,f , (32)

since z1 ∈ Rm
q,f and z2 ∈ Rn

q,f . Using the notation introduced in Section
2.1, we can also express z by the polynomial coefficients of z1 and z2 in an
integer vector as

Vz :=

[
Vz1
Vz2

]
=

[
Vcs1
Vcs2

]
+

[
Vy1

Vy2

]
∈ Zd(n+m)

q .

We will begin by obtaining Equation 30, which gives us the probability that
the prover P does not abort. For (z1, z2) ̸= ⊥ to hold, we need that each
coefficient νz ∈ Vz satisfies νz ∈ [β̄], where |[β̄]| = 2β̄ + 1. This gives us the
number of favorable outcomes for each of the d(n+m) coefficients in Vz.

We are now interested in the number of all possible (z1, z2) when we let

y1,y2 vary. For any coefficient νcs in

[
Vcs1
Vcs2

]
and νy in

[
Vy1

Vy2

]
, we have that

νcs ∈ [γ] by assumption and νy ∈ [γ+β̄] by how the values y1,y2 are sampled
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in the protocol. Any coefficient νz ∈ Vz is computed as νz = νcs + νy,
and must therefore be an element of

{
νcs + [γ + β̄]

}
. This set is of the

same size as [γ + β̄], namely 2(γ + β̄) + 1, and gives us the number of
possible outcomes for each of the d(n+m) coefficients in Vz. Note also that
[β̄] ⊆

{
νcs + [γ + β̄]

}
as νcs ∈ [γ], which guarantees that all the favorable

outcomes are contained in the possible ones.
Putting this together, we obtain the desired expression in Equation 30

from

Pr
y1,y2

[(z1, z2) ̸= ⊥] =
d(n+m)∏

i=1

(
2β̄ + 1

2(γ + β̄) + 1

)
=

(
2β̄ + 1

2(γ + β̄) + 1

)d(m+n)

.

For Equation 31, suppose that z′1 ∈ [β̄]m and z′2 ∈ [β̄]n, and let z′ :=

[
z′1
z′2

]
.

We want to calculate the probability that a non-aborting z defined as in
Equation 32 equals z′, when we let y1,y2 vary.

We begin by proving the claim that

∀z′1 ∈ [β̄]m, z′2 ∈ [β̄]n, Pr
y1,y2

[(z1, z2) = (z′1, z
′
2)] =

(
1

2(γ + β̄) + 1

)d(m+n)

. (33)

To show this, let νz′ ∈ Vz′ be the ith coefficient in z′, and define νcs, νz and νy
similarly. For νz = νz′ to hold, we must have that νy = νz′ − νcs ∈ [γ + β̄].
Since νy is chosen uniformly at random from the same set [γ + β̄], the
probability that it equals the specific value νz′ − νcs is

1

2(γ + β̄) + 1
.

This proves Equation 33, as there are d(m+n) coefficients in z this applies to.
We also have that

∀z′1 ∈ [β̄]m, z′2 ∈ [β̄]n, Pr
y1,y2

[(z1, z2) ̸= ⊥|(z1, z2) = (z′1, z
′
2)] = 1, (34)

since all the coefficients in z are in [β̄] when they equal coefficients in z′ that
by assumption are chosen from this set. Using Bayes’ theorem, we obtain
the desired Equation 31 from (31) = (34) · (33)/(30).

The first part of the Lemma tells us the probability of obtaining aborting
transcripts when running protocol ΠSIS. This tells us how to choose β̄ to
obtain a favorable number of protocol repetitions for obtaining an accepting
transcript. It also tells us how often a simulator for the protocol should
abort, in order to get the correct probability distribution for the simulated
transcripts. We also note that one can, using the same arguments as above,
prove that Lemma 6.1 also applies to the adjusted protocol ΠSIS .
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The second part of the Lemma states that non-aborting (z1, z2) have
coefficients with the same probability distribution as the ones in y1,y2 cho-
sen as in the real protocol, namely the uniform distribution. This will be
helpful when proving that the protocol satisfies Special HVZK, since we
then want to choose the z-values first and then use them to compute w,
while still arguing that the distribution of real and simulated transcripts are
indistinguishable.

We now proceed with proving that the protocol ΠSIS is a Σ-protocol.

Completeness Since the protocol has a rejection sampling step, the pro-
tocol will not have perfect completeness, meaning that the protocol does not
produce an accepting transcript for every honest execution of the protocol
between a prover and a verifier. The rejection sampling step demands that
the coefficients of z1 and z2 are in the range [β̄], and therefore this value
affects the completeness of the protocol. We have that the probability of
the prover not sending ⊥ is approximately

(
2β̄ + 1

2(γ + β̄) + 1

)d(m+n)

>

(
β̄

β̄ + γ

)d(m+n)

=

(
1 +

γ

β̄

)−d(m+n)

≈ e−γd(m+n)/β̄,

so setting β̄ = γd(m + n) gives us a protocol that produces an accepting
transcript after an expected number of e repetitions. The probability of
getting an accepting transcript when doing one honest execution of the pro-
tocol is therefore 1/e. Note that the expected number of repetitions can be
lowered by choosing a larger β̄, but doing so will however makes the protocol
less efficient.

Special Soundness In order to prove that the protocol satisfies special
soundness, we make use of the following Lemma.

Lemma 6.2 ([Lyu24]). Suppose that an extractor E upon input (A ∈ Rn×m
q,f , t =

As1 + s2) for s1 ∈ [β], s2 ∈ [β]n is able to produce values s̄1 ∈ [2β̄]m,
s̄2 ∈ [2β̄]n and c̄ ∈ C̄ such that the equation As̄1 + s̄2 = c̄t is satisfied. Then
it either breaks the MLWEn,m,2β̄ or the MSISn,m+1,2β̄ problem.

Proof. We prove the Lemma using a hybrid argument, where we have the
following sequence of games.

Game G0: The first game corresponds to the real version of the extrac-
tion procedure by E . That is, we have some algorithm B that sends input
(A ∈ Rn×m

q,f , t = As1 + s2) to an extractor E , which tries to produce values
(s̄1, s̄2, c̄) that satisfy the winning condition. If we let AdvSS(E) denote the
probability that extractor E successfully produces such values, we have that
AdvSS(E) = Pr[G0].
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Game G1: In the next game, B changes the value it sends to extrac-
tor E to a matrix chosen uniformly at random. That is, it instead sends
Ā := [A|t]←$Rn×m+1

q,f to extractor E . By the MLWEn,m,2β̄ assumption, it
is computationally infeasible for an adversary C to distinguish the two games
G0 and G1, since if there existed an algorithm distinguishing them with a
non-negligible probability, C could run it as a subroutine and break the
MLWEn,m,2β̄ problem.

Furthermore, if extractor E is able to produce the correct values (s̄1, s̄2, c̄),
algorithm B can produce a solution to the MSISn,m+1,2β̄ problem for matrix

Ā, namely ([s̄1| − c̄]⊤ , s̄2) such that Ā [s̄1| − c̄]⊤ + s̄2 = As̄1 − c̄t+ s̄2 = 0.
Putting this together, we obtain that

AdvSS(E) = Pr[G0]

≤ |Pr[G0]− Pr[G1]|+ Pr[G1]

= AdvMLWEn,m,2β̄
(C) + AdvMSISn,m+1,2β̄

(B).

We now construct an extractor E for special soundness, given in Figure 10.

Extractor E(X,π, π′):

1 : Upon input X = (A ∈ Rn×m
q,f , t ∈ Rn

q,f ) and two accepting transcripts

π = (w, s, (z1, z2)), π
′ = (w, s′, (z′1, z

′
2)), compute c = H(s) and c′ = H(s′).

2 : Since π and π′ are accepting transcripts, we have that

H(w) = H(Az1 + z2 − tc) and H(w) = H(Az′1 + z′2 − tc′).

3 : Because the hash function H is collision-resistant, w = Az1 + z2 − tc

and w = Az′1 + z′2 − tc′ with overwhelming probability.

4 : This implies that Az1 + z2 − tc = Az′1 + z′2 − tc′, which is

equivalent to A(z1 − z′1) + (z2 − z′2)− t(c− c′) = 0.

5 : We let s̄1 := (z1 − z′1) ∈ [2β̄]m, s̄2 := (z2 − z′2) ∈ [2β̄]n and c̄ := (c− c′) ∈ C̄.
6 : return (s̄1, s̄2, c̄)

Figure 10: Extractor for Special Soundness of Protocol ΠSIS

The extractor E returns a triple (s̄1, s̄2, c̄) with s̄1 ∈ [2β̄]m, s̄2 ∈ [2β̄]n and
c ∈ C̄, which by Lemma 6.2 either breaks theMLWEn,m,2β̄ or theMSISn,m+1,2β̄

problem. Note that by how we defined the altered relation R̄SIS, the triple
(s̄1, s̄2, c̄) is a valid witness for common input X, even though the coefficients
are from a larger set than what was initially allowed in relation RSIS. We
therefore in this protocol have a soundness gap between what we can prove
knowledge of, and what E can extract.
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Special HVZK To show that ΠSIS is Special HVZK, we construct a
simulator S, given in Figure 11.

Simulator S(X = (A, t), s ∈ {0, 1}256):

1 : Flip a coin s.t. Pr[coin = 1] = α :=

(
2β̄ + 1

2(γ + β̄) + 1

)d(m+n)

(30)

2 : if coin = 1 : // non-aborting transcript

3 : z1 ←$ [β̄]m, z2 ←$ [β̄]n

4 : c = H(s) ∈ C
5 : w := Az1 + z2 − tc

6 : return (H(w), s, (z1, z2))

7 : else : // aborting transcript

8 : h←$ {0, 1}∗ // sampled from the codomain of H

9 : return (h, s,⊥)

Figure 11: Simulator for Special HVZK of Protocol ΠSIS

We proceed by arguing that transcripts produced by S are of the same
distribution as those that are produced by an honest protocol run. We
first note that S is a PPT algorithm, since sampling integers from [β̄] and
performing ring operations are polynomial time operations. We split the
analysis of the probability distributions into the two following cases.

• Non-aborting transcripts: In the real protocol, the values z1 and
z2 will be uniformly distributed, since y1 and y2 are uniformly dis-
tributed. By Lemma 6.1, the z-values produced by S will also be
uniformly distributed, since coin = 1 is the equivalent condition as
the one the probability is conditioned on in the Lemma. We have
computed w to satisfy the exact equation needed for the transcript
to be accepting, and H(w) will therefore also be distributed correctly
as well. Real transcripts and simulated transcripts with no aborts
therefore have the same probability distribution.

• Aborting transcripts: For transcripts where we abort, h is uni-
formly distributed and therefore indistinguishable from a real execu-
tion of the protocol, when assuming that the output of the hash func-
tion H looks random. Therefore simulated transcripts with aborts and
real ones have the same distribution.

The coin flip done in step 1 ensures that the expected number of simulated
transcripts that abort and simulated transcripts that do not is the same as
in the real protocol, as the coin equals 1 with the probability of not aborting
as computed in Equation 30.

Putting all of this together, we have now shown that ΠSIS is a Σ-protocol.
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6.2 Instantiating the OR-Construction

We are now ready to apply the OR-construction the protocol ΠSIS . As we
have seen, it is a Σ-protocol that has a group operation on the set of bit
strings {0, 1}256 that the verifier chooses a challenge from. By using the
hash function H, we have a one-to-one correspondence to elements of C, and
can apply the OR-construction to it. We define the relation

R̄SIS-OR := {((X,X ′), w) | (X,w) ∈ R̄SIS ∨ (X ′, w) ∈ R̄SIS},

and assume without loss of generality that (X,w) ∈ R. The resulting pro-
tocol ΠSIS-OR is presented in Figure 12.

Input((A, t), (A′, t′) ∈ Rn×m
q,f ×Rn

q,f ; s1 ∈ [β]m, s2 ∈ [β]n)

Interaction in ΠSIS-OR for Relation R̄SIS-OR:

Prover P Verifier V
Sample e′ ←$ {0, 1}256

Run (w′, (z′1, z
′
2))←$ S(X ′, e′)

z′ := (z′1, z
′
2)

y1 ←$ [γ + β̄]m, y2 ←$ [γ + β̄]n

w := Ay1 + y2

w, w′

s←$ {0, 1}256

s

Define e := s⊕ e′

Compute c := H(e) ∈ C
z1 := cs1 + y1, z2 := cs1 + y2

if z1 /∈ [β̄]m or z2 /∈ [β̄]n:

(z1, z2) := ⊥
z := (z1, z2)

z, z′, e, e′

V computes c = H(e)
and c′ = H(e′),
and accepts if

e⊕ e′ = s

∧ z1, z
′
1 ∈ [β̄]m, ∧ z2, z

′
2 ∈ [β̄]n

∧ Az1 + z2 − ct = w

∧ A′z′1 + z′2 − c′t′ = w′

Figure 12: OR-Proof for Schnorr-Like Σ-Protocol from Lattice Assumptions
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7 Compressed Σ-Protocols from Lattices

The following section is based on “A General Framework for Compressed
Σ-Protocols over Lattices” [ACK21, Section 5]. Applying the compression
mechanism introduced in Section 4 to lattice-based Σ-protocols entails con-
structing a new framework that is compatible with different underlying as-
sumptions. Ideally, we want a compression mechanism that can be composed
recursively, in such a way that we reduce communication costs from linear to
roughly logarithmic in the size of the witness. As we will see in Section 7.4,
we are able to achieve poly-logarithmic communication costs when using a
compact lattice-based commitment scheme (Definition 7.9).

The compression mechanism presented in Figure 7 is designed for the
discrete log setting, and makes use of the fact that we build it from the Ped-
ersen vector commitment scheme (Definition 4.1) when recursively redefining
the generators in the public parameter to be halved for each iteration of the
protocol. However when constructing Σ-protocols from a different underly-
ing assumptions, we do not necessarily have generators in the common input
that behave similarly to what we had in the dlog setting. Instead, we want
to make use of what we will refer to as an extractable compression function
(Definition 7.6), which is an abstraction that will allow us to halve the size
of the response message sent by the prover, doing so while being compatible
with the lattice setting. In addition to halve the size of the response message
for each recursive call, we also want to be able to bound the norm of the
response sent by the prover.

The setting is as follows. For some R-modules M with norm ∥·∥ and N
and R-module homomorphism Ψ : M → N , a prover want to convince the
verifier that for a publicly known value Y ∈ N , it knows a value y of small
norm in its preimage such that Ψ(y) = Y . This is captured by the relation

R(Ψ, α) = {(Y ∈ N ; y ∈M) : Y = Ψ(y), ∥y∥ ≤ α} . (35)

Note that this is a generalization of how we defined the relation Rcom in
Equation 12 for which we constructed the dlog compression mechanism,
where we instead showed that a witness we commit to satisfies a linear
constraint. If we let

Ψ : Zn
q × Zq → G× Zq, (x, γ) 7→

(
Com(g,h)(x, γ), L(x)

)
(36)

for L ∈ L(Zn
q ), y ∈ Zq and Y ∈ G where G is of order q, the relations

R(Ψ, α) and Rcom coincide given that we omit the norm bound.
One of the main difficulties when constructing lattice-based Σ-protocols,

is that the witness is required to be small. As we saw in Figure 9 for protocol
ΠSIS , a rejection sampling step was included in order to not reveal values
of too large norm to the verifier, since they may leak information about
the small witness. Furthermore, in the special soundness proof for ΠSIS in
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Theorem 7.4, there is a soundness gap between what we can prove and what
the extractor given in Figure 10 can retrieve, leading to us to introduce an
altered relation, as a relaxed version of the first one. We similarly define a
relaxed version of R(Ψ, α) as

R(Ψ, β, ζ) = {(Y ∈ N ; y ∈M) : ζ · Y = Ψ(y), ∥y∥ ≤ β} (37)

for some ζ ∈ R. Here, we have fixed the relaxed value ζ for the given
relation, such that it will be easier to describe the soundness slack when
composing protocols further. This is done instead of allowing each element
of the relation to satisfy c̄ ·Y = Ψ(y) for some arbitrary challenge difference,
which is what we did for the relation R̄SIS in Equation 28.

We begin by establishing some definitions and concepts that are neces-
sary to construct the protocols we will use to obtain the final compressed
Σ-protocol.

Definition 7.1 (V -Hiding and β-Bounded Sampling [ACK21]). Let R be
a ring, M be an R-module, and let V be a set such that V ⊆ M . Let D
be an efficiently computable distribution of over M , and let F be a PPT
algorithm. We say that (D,F) is V -hiding if there exists a PPT algorithm
F ′, such that the output distributions of the following are statistically close:

0. F upon input (r ∈M, v ∈ V ) outputs either r + v or ⊥,

1. F ′ upon input 1λ outputs either m ∈M or ⊥.

In other words, no adversary A should have non-negligible advantage

AdvV -hiding(A) = |Pr[b = 1| b←$A(F ′(1λ))]

− Pr[b = 1| b←$A(F(r, v))]|.
(38)

Furthermore, let β ∈ N. We say that (D,F) is β-bounded if for all v ∈ V
and r ∈M output by D with non-zero probability such that F(r, v) ̸= ⊥, it
holds that ∥F(r, v)∥ ≤ β. ■

Remark 7.2. As a consequence of V -hiding, the abort probability of F can
be upper-bounded by

δ := Pr[F ′(1λ) = ⊥] + 2−λ.

Definition 7.1 gives an abstraction of rejection sampling, and in Lemma 7.13
we show how it can be instantiated as uniform rejection sampling. The
property β-bounded can help us ensure that the output of F is not too
large compared to the secret witness, while V -hiding helps us guarantee
that adding elements from V to elements of M adds sufficient randomness
to hide them.
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Definition 7.3 (ζ-Exceptional Subset [ACK21]). Let R be a ring, ζ ∈ R
and C ⊆ R. We say that C is a ζ-exceptional subset of R if for all distinct
pairs c, c′ ∈ C, there exists a non-zero ring element a ∈ R such that

a(c− c′) = ζ.

For ζ-exceptional subsets C, we define the upper bounds w(C) and w̄(C, ζ):

w(C) := max
c∈C,x∈R\{0}

∥cx∥
∥x∥

,

w̄(C, ζ) := max
c ̸=c′∈C,x∈R\{0}

max
a∈R:a(c−c′)=ζ

∥ax∥
∥x∥

.

(39)

Here, w(C) is such that ∥cx∥ ≤ w(C) for all c ∈ C, r ∈ R, and w̄(C, ζ) gives
an upper bound on how much the norm of an element of R increases, when
it is multiplied with the inverse of some challenge differences.

For an R-module M with norm ∥·∥ we also define

wM (C) := max
c∈C,x∈M\{0}

∥cx∥
∥x∥

,

w̄M (C, ζ) := max
c ̸=c′∈C,x∈M\{0}

max
a∈R:a(c−c′)=ζ

∥ax∥
∥x∥

(40)

in a similar manner, where we let x ∈M \ {0} instead. ■

ζ-exceptional subsets can be seen as a tool to create an extension of the
challenge set C̄ given in Equation 22, allowing us to bound challenge differ-
ence of a certain form. We will use ζ-exceptional subsets when defining the
norm bound we allow in the relaxed relation.

7.1 Σ-Protocol for Composition

We present the standard Σ-protocol Π′
0 we use as our starting point in Figure

13. As pointed out by Attema, Cramer and Kohl [ACK21, Section 5.1], the
protocol is very similar to the Σ-protocol presented by Schnorr [Sch90].

Theorem 7.4. Let R be a ring, and let M with norm ∥·∥ and N be R-
modules. Let Ψ : M → N be an efficiently computable R-module homo-
morphism, and for ζ ∈ R, let C ⊆ R be a ζ-exceptional subset of R. For
α, β ∈ N, let

V = {cy| y ∈M, ∥y∥ ≤ α, c ∈ C} ,
and let (D,F) be a β-bounded and V -hiding distribution with abort proba-
bility upper-bounded by δ.

The protocol Π′
0 given in Figure 13 is a Σ-protocol for the relations

(R(Ψ, α),R(Ψ, 2βσ, ζ)) ,

where we let σ = w̄M (C, ζ). It has completeness with error δ, unconditional
2-special soundness and is statistical special HVZK without aborts.
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Input(Y = Ψ(y) ∈ N ; y ∈M)

Standard Σ-Protocol Π′
0 for Relations (R(Ψ, α),R(Ψ, 2βσ, ζ)):

Y = Ψ(y) ∈ N

Prover P Verifier V
w ←$ D,W = Ψ(w)

W

c←$ C ⊆ R
c

if F(w, cy) = ⊥:
abort

else :
x = w + cy

x

V accepts iff

∥x∥ ≤ β ∧
Ψ(x) = W + cY

Figure 13: Standard Σ-Protocol Π′
0

Proof. We divide the proof into three parts, where we let each paragraph
prove a property of being a Σ-protocol. The properties can be shown in a
similar manner as the ones we have looked at previously.

Completeness Suppose that a prover P and a verifier V follow the pro-
tocol specifications of Π′

0(Y ; y) such that (Y, y) ∈ R(Ψ, α), and let (W, c, x)
be a non-aborting transcript. Since (D,F) is β-bounded, the response x has
to be of norm ∥x∥ ≤ β. Since the transcript did not abort, we know that
x = w + cy. Using that Ψ is an R-module homomorphism,

Ψ(x) = Ψ(w + cy) = Ψ(w) + cΨ(y) = W + cY.

This shows that the verifier always accepts non-aborting transcripts. Fur-
thermore, since (D,F) is V -hiding, the abort probability of F upon input
(w, cy) is upper-bounded by δ. As this is the only requirement that decides
if the transcript aborts or not, the completeness error equals δ as well.

2-Special Soundness Let E be an extractor that is given common input
Y and two accepting transcripts (W, c, x) and (W, c′, x′) with c ̸= c′ for pro-
tocol Π′

0. We want to construct a witness ỹ such that (Y ; ỹ) ∈ R(Ψ, 2βσ, ζ).
Using that Ψ is a module homomorphism,

Ψ(x)−Ψ(x′) = (W + cY )− (W + c′Y ) = (c− c′)Y.
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Since c ̸= c′ ∈ C and we know that C is ζ-exceptional, there exists an a ∈ R
such that a(c− c′) = ζ. Therefore if we let ỹ := a(x− x′), we obtain

Ψ(ỹ) = a(Ψ(x)−Ψ(x′)) = a(c− c′) · Y = ζ · Y,

as required. Furthermore, it holds that

∥ỹ∥ = ∥a(x− x′)∥ ≤ w̄M (C, ζ)∥x− x′∥ ≤ w̄M (C, ζ)2β

as required, by the definition of w̄M (C, ζ) and that ∥x∥, ∥x′∥ ≤ β. This shows
that the extractor E manages to produce a valid witness ỹ for common input
Y such that (Y, ỹ) is an element of the relaxed relation R(Ψ, 2βσ, ζ).

Special HVZK without aborts Let F ′ be a PPT algorithm that satisfies
the V -hiding property of (D,F). We construct a simulator S for Π′

0, given
in Figure 14.

Simulator S (Y = Ψ(y), c ∈ C):
1 : Run x←$ F ′(1λ)

2 : if x ̸= ⊥ :

3 : Compute W := Ψ(x)− c · Y
4 : return T = (W, c, x)

Figure 14: Simulator for Special HVZK of Protocol Π′
0

Since (D,F) is V -hiding, the output distributions of F and F ′ are statisti-
cally close, which gives the distance between x-values in the real and simu-
lated transcripts. The value W is decided by the choices of x, c and Y , and
therefore the distribution of real and simulated transcripts are statistically
close as well. This shows special HVZK in the case of no aborts.

Remark 7.5. In order to achieve special HVZK with aborts, the prover can
either replace the first message W that is sent in clear with a commitment
of it using a statistically hiding commitment scheme, or it can send a hashed
version of it as we did in protocol ΠSIS in Figure 9. If the prover chooses to
commit to the first message, the response message has to include an opening
of it when the protocol does not abort, and if the prover chooses to hash
the first message, the value has to be chosen from a large set in such a way
that it is not easily predictable by the verifier.

Applying either of these methods will however give us a weaker 2-special
soundness guarantee given that we still want statistical special HVZK, as
we will have to go from unconditional to computational special soundness.
Similarly to how special soundness gives us guarantees against malicious
provers and how special HVZK guarantees that the honest verifier does not
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learn anything from talking to the prover, the binding property of a com-
mitment scheme gives guarantees against cheating senders, and the hiding
property gives guarantees against recipients that tries to learn what message
the sender has commited to. As the prover is the one sending a commited
value to the verifier, we must use a commitment scheme that is uncondition-
ally hiding to continue to have statistical special HVZK. Any commitment
scheme cannot be both unconditionally hiding and binding at once, so we
must settle for computational binding which then implies we can only achieve
computational 2-special soundness.

7.2 The Generic Compression Mechanism

Similarly to protocol Π0 (Figure 4), the response message x in protocol Π′
0

(Figure 13) is a trivial PoK for showing that Ψ(x) = W + cY . Following
the same strategy as in Section 4.3 where we looked at the compression
mechanism by Attema and Cramer [AC20], we want to take inspiration from
the folding mechanism in Bulletproofs [Bün+18] to replace the last message
with a smaller PoK for the same statement, in a way that can be repeated
iteratively. The following definition give us a tool with the properties we
need to construct the compression mechanism in the lattice setting.

Definition 7.6 (Extractable Compression Function [ACK21]). Let M and
M ′ be R-modules, where M has even rank n, and M ′ has rank n/2 over R.
Let C ⊆ R be a ζ-exceptional subset. Let Comp = {Compc : M →M ′ : c ∈ C}
and Φ := {Φc : M

′ →M : c ∈ C}, where Φc is an R-module homomorphism
for each c ∈ C. We say that (Comp,Φ) is an extractable compression function
for C if there exists maps πL, πR : M →M ′ such that for all c ∈ C,

Φc(Compc(x)) = πL(x) + c · x+ c2 · πR(x). (41)

Furthermore, we say that (Comp,Φ) is (τ, τ ′)- preserving if for all c ∈ C,
x ∈M, z ∈M ′:

∥Compc(x)∥ ≤ τ · ∥x∥,
∥Φc(z)∥ ≤ τ ′ · ∥z∥.

Throughout this thesis, we refer to elements of Comp as compression func-
tions, and elements of Φ as compression homomorphisms. ■

Remark 7.7. By letting M = Rn and M = Rn/2, the Bulletproof compres-
sion mechanism used in protocol Π2 in Section 4.3 can be written as an
extractable compression function by defining the compression functions and
compression homomorphisms by

Compc(z) := zL + c · zR and Φc(z) :=

(
cz
z

)
, (42)
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and also defining the projection maps as

πL(z) :=

(
0
zL

)
and πR(z) :=

(
zR
0

)
. (43)

Moreover, it is (1 + w(C), w(C))-preserving, since for all c ∈ C and z ∈ M ,
we have that

∥zL + c · zR∥ ≤ ∥z∥+ w(C)∥z∥ = (1 + w(C))∥z∥ and

∥
(
cz
z

)
∥ ≤ w(C)∥z∥.

For an extractable compression function (Comp,Φ) that is (τ, τ ′)-preserving,
we present the generic compression mechanism in Figure 15. We want to
apply a compression function Compc dependent on a given challenge c to
the value x that we want to construct a PoK for. In order for the verifier to
accept the conversation, we reveal partial evaluations of the secret value x
using the projection maps composed with the compression homomorphism
Φc, before sending Compc(x) as the response.

Note that if the extractable compression function is instantiated as in
Equation 42 with projection maps as in Equation 43 while also defining the
homomorphism as in Equation 36, the protocols Π′

1 and Π2 from Figure 7
coincide given that we omit the norm bound.

Input(X = Ψ(x) ∈ N ; x ∈M)

Compression Mechanism Π′
1 for Relations (R(Ψ, β),R(Ψ, βσ, ζ3)):

X = Ψ(x) ∈ N

Prover P Verifier V
A = Ψ(πL(x))

B = Ψ(πR(x))

A,B

c←$ C ⊆ R
c

z = Compc(x)

z

V accepts iff

∥z∥ ≤ τ · β ∧
A+ cX + c2B = Ψ(Φc(z))

Figure 15: Generic Compression Mechanism
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Theorem 7.8 (Generic Compression Mechanism [ACK21]). Let M,M ′ and
N be R-modules for a commutative ring R, where M has even rank n, and
M ′ has rank n/2 over R, and let C ⊆ R be ζ-exceptional for ζ ∈ R. Let
Ψ : M → N be an R-module homomorphism, and let (Comp,Φ) be a (τ, τ ′)-
norm preserving extractable compression function with projection maps πL
and πR, and let σ := 6w̄M (C, ζ)3 ·wM (C)2 · τ ′ · τ . Then the protocol Π1 given
in Figure 15 for relations (R(Ψ, β),R(Ψ, βσ, ζ3)) has perfect completeness
and 3-special soundness.

Proof. The proof is divided into two parts, and we note that the 3-special
soundness proof for Π′

1 shares similarities with the 3-special soundness proof
of Π1 given in Theorem 4.7.

Completeness Suppose that a prover P and verifier V follows the protocol
specifications of Π′

1(X;x) for (X,x) ∈ R(Ψ, β), and let ((A,B), c, z) be a
resulting transcript. Since Compc is τ -preserving for all c ∈ C and ∥x∥ ≤ β
as (X,x) ∈ R(Ψ, β), we have that

∥z∥ = ∥Compc(x)∥ ≤ τ · ∥x∥ ≤ τ · β,

as required. Using that Φc ◦ Compc satisfies Equation 41 for all c ∈ C and
that Ψ is an R-module homomorphism, we also have that

Ψ(Φc(z)) = Ψ(Φc(Compc(x)))

= Ψ(πL(x) + cx+ c2πR(x))

= Ψ(πL(x)) + cΨ(x) + c2Ψ(πR(x))

= A+ cX + C2B,

which shows that the verifier always accepts.

3-Special Soundness Let E be an extractor that is given common in-
put X and three accepting transcripts ((A,B), c1, z1), ((A,B), c2, z2) and
((A,B), c3, z3) for Π′

1(X;x), with ci ̸= cj for all i, j. We want to construct
an extractor E that returns a witness x̃ such that (X, x̃) ∈ R(Ψ, βσ, ζ3).

For each i = 1, 2, 3, we know that

A+ ciX + c2iB = Ψ(Φci(zi)).

This can be rewritten as1 c1 c21
1 c2 c22
1 c3 c23

A
X
B

 =

Ψ(Φc1(z1))
Ψ(Φc2(z2))
Ψ(Φc3(z3))

 ∈ N3, (44)

where

V :=

1 c1 c21
1 c2 c22
1 c3 c23


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is a Vandermonde matrix of the same form as the one we used in the proof
of Theorem 4.7.

We want to retrieve an x̃ of sufficiently small norm such that Ψ(x̃) = X,
and we therefore want to try and solve Equation 44 for X. Previously in
the 3-special soundness proof of Theorem 4.7, we used that the determinant
det(V ) = (c3 − c1)(c3 − c2)(c2 − c1) is non-zero under the assumptions that
ci ̸= cj for all i, j to find an inverse matrix V −1 to multiply with on each
side. Now however, we are working over an arbitrary ring R, and we are not
guaranteed that an inverse V −1 exists. To circumvent this, we still want to
find values a1, a2, a3 such that(

a1 a2 a3
)
· V =

(
0 c̃ 0

)
, (45)

for some c̃ ∈ R∗. We do so to find an alternative expression for X multiplied
with some constant, using a linear combination of the values we already
know. By the expression above, we know that a1, a2 and a3 has to satisfy
the equations

a1 + a2 + a3 = 0 and

a1c
2
1 + a2c

2
2 + a3c

2
3 = 0.

We let a1 = −a2 − a3 and get that (c22 − c21)a2 + (c23 − c21)a3 = 0. Therefore
we can choose a2 = c21 − c23 and a3 = c22 − c21, and when solving again for a1
we obtain that (

a1 a2 a3
)
=
(
c23 − c22 c21 − c23 c22 − c21

)
.

If we plug this back into Equation 45, we obtain that

c̃ = (c23 − c22)c1 + (c21 − c23)c2 + (c22 − c21)c3

= (c1 − c2)(c1 − c3)(c2 − c3)

which is non-zero since ci ̸= cj for all i, j. The last equality is obtained by
using that R is commutative. Since C is ζ-exceptional, there must exist a
value a ∈ R such that a · c̃ = ζ3. We now let

x̃ := a ·
3∑

i=1

aiΦci(zi) ∈M,

which satisfies

Ψ(x̃) = a ·
3∑

i=1

aiΨ(Φci(zi)) = a ·
3∑

i=1

ai(A+ ciX + c2iB)

= a · (0 ·A+ c̃ ·X + 0 ·B) = ζ3 ·X

as required.
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Using that the extractable compression function (Comp,Φ) is (τ, τ ′)-
preserving, as well as the definitions of wM (c̄) and w̄M (C, ζ), we obtain

∥x̃∥ ≤ w̄M (C, ζ)3 · ∥
3∑

i=1

aiΦci(zi)∥

≤ w̄M (C, ζ)3 ·
3∑

i=1

2wM (C)2 · ∥Φci(zi)∥

≤ w̄M (C, ζ)3 ·
3∑

i=1

2wM (C)2 · τ ′ · ∥zi∥

≤ w̄M (C, ζ)3 ·
3∑

i=1

2wM (C)2 · τ ′ · τ · β

= 6w̄M (C, ζ)3 · wM (C)2 · τ ′ · τ · β
= σ · β,

and note that we defined σ to equal 6w̄M (C, ζ)3 ·wM (C)2 · τ ′ · τ . This shows
that the extractor E produces a witness x̃ such that (X, x̃) ∈ R(Ψ, βσ, ζ3),
and we conclude that Π′

1 has 3-special soundness.

7.3 General Framework for Compressed Σ-Protocols

In protocol Π′
1, the response message z is a PoK of Q := A+ cX + c2B for

the relation R(Ψ ◦ Φc, τ · β) from Equation 35. This allows us to compose
protocol Π′

1 with itself iteratively, replacing the response message with a
new run of Π′

1 until we have halved its size the desirable amount.
The final compressed Σ-protocol is obtained by combining the protocols

Π′
0 from Figure 13 and Π′

1 from Figure 15. Here, we have not written Π′
1 as

a recursive protocol, and therefore define the compressed Σ-protocol as

Πcomp := Π′
1 ⋄ . . . ⋄Π′

1 ⋄Π′
0. (46)

For each time we compose with protocol Π′
1, the size of the last message

being sent is halved. If we let M = R2µ , we have to repeat the protocol Π′
1

µ times for the response message to be an element of R.
In order to guarantee that the soundness gap that is introduced when

composing the protocols is sufficiently small, a formal analysis has to be
done. We refer to the work of Attema, Cramer and Kohl for this analy-
sis [ACK21, Appendix B], where they introduce the notion of transforming
protocols to guarantee that the composed protocol can have a witness ex-
tracted form it. As a result of their analysis, the soundness slack of Πcomp

equals the product of the soundness slack of the protocols we have com-
posed together to obtain it. If we instantiate the compression mechanism
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with the (1 + w(C), w(C))-preserving extractable compression function de-
scribed in Remark 7.7, we obtain the generic compressed Σ-protocol given
in Corollary 7.8.1.

Corollary 7.8.1 (Generic Compressed Σ-Protocol [ACK21]). Let µ ∈ N,
and let M = R2µ be an R-module with infinity norm ∥·∥∞. Let Ψ : M → N
be an R-module homomorphism, let ζ ∈ R and let C be a ζ-exceptional
subset of R. Let α, β ∈ N and δ ∈ [0, 1), and define

V := {cy| y ∈M, ∥y∥∞ ≤ α, c ∈ C}. (47)

Let (D,F) be a β-bounded and V -hiding distribution with abort probability
δ. Then there exists a (2µ+ 3)-move interactive public-coin protocol Πcomp

for the relations

(R(Ψ, α),R(Ψ, 2β · w̄(C, ζ) · σµ, ζ3µ+1)),

where
σ = 6 · w(C)3 · (1 + w(C)) · w̄(C, ζ)3.

It is unconditionally (2, k1, . . . , kµ)-special sound with ki = 3 for i = 1, . . . , µ,
non-abort special HVZK and has completeness with error δ.
The communication costs are:

• P → V: 2µ+ 1 elements of N and 1 elements of R.

• V → P: µ+ 1 elements of C.

7.4 Compressed Σ-Protocol from MSIS

Suppose that we want to instantiate Πcomp from Equation 46 closely to
protocol Πc in Figure 8 by defining Ψ of a similar form as in Equation 36.
That is, we want to define it as

Ψ(x, γ) = (Compp(x, γ), L(x))

for some commitment scheme and linear form L. However this time, we
want to make use of a lattice-based commitment scheme (Definition 7.9).
The Pedersen vector commitment scheme (Definition 4.1) had the property
of being compact, which allowed us to reduce the communication costs since
each commitment only consisted of one group element. We similarly want
the lattice-based commitment scheme to produce commitments of a size
independent of the input we want to commit to.

The Lattice-based commitment scheme we will make use of, allows the
prover to commit to vectors x ∈ Rn

f for some n such that all the coefficients
of x are elements in [η] for some η ∈ N, doing so while using randomness of
some dimension r sampled with coefficients from the same set.

66



Definition 7.9 (Compact Lattice-Based Commitment Scheme [Ajt96; ACK21]).
Let f be a monic and irreducible polynomial of degree d over Z, and let Rf

and Rq,f be defined as in Section 2.1 for a prime q. Let η ∈ N and define

Sη = {x ∈ Rf | : |∥x∥ ≤ η}. (48)

Then the following PPT algorithms define a lattice-based commitment scheme.

• Gen(1λ): A1 ←$Rk×r
q,f , A2 ←$Rk×n

q,f return pp = (A1, A2).

• Compp(x, γ) : S
n
η × Sr

η → Rk
q,f (x, γ) 7→ A1γ +A2x mod q.

When instantiating the commitment scheme, the sender samples γ uniformly
at random from the set Sr

η . ■

Since the output of Com are elements of Rk
q,f and their size does not de-

pend on the inputted messages that are elements of Sn
η , we say that the

commitment scheme is compact. The size of the commitments is however
polynomially bounded with respect to the security parameter we instantiate
the system with. Furthermore, the commitment scheme satisfy the following
hiding and binding guarantees.

Lemma 7.10 ([ACK21]). The lattice-based commitment scheme given in
Definition 7.9 is statistically hiding given that we choose r such that

r ≥ d · k · log2(q) + 2λ− 2

d · log2(2η + 1)

for security parameter λ ∈ N.
Furthermore, the commitment scheme is computationally binding under

the assumption that the MSISk,n+r,2η problem is hard over Rq,f .

Proof. We begin by proving that the commitment scheme is statistically
hiding. That is, we want to prove that such that commited values are
statistically close to uniformly chosen ones. In order to guarantee that the
commitment scheme introduces a sufficient amount of randomness, we want
to make use of the Leftover Hash Lemma given in Theorem 2.5.

Let hA1 : Rr
q,f → Rk

q,f , γ 7→ A1γ be a family of functions indexed by

A1 ∈ Rk×r
q,f . We want to show that {hA1}A1∈Rk×r

q,f
is a UHF (Definition 2.3),

which means we want to show that for a uniformly chosen matrix A1,

Pr[A1γ = A1γ
′] ≤ 1

qdk

for γ, γ′ ∈ Rr
q,f with γ ̸= γ. Proving the statement above is equivalent to

upper-bounding the probability of matrix A1 sending a non-zero element of
Rr

q,f to 0, namely showing that for z ̸= 0 ∈ Rr
q,f ,

Pr[A1z = 0] ≤ 1

qdk
.
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In general, if v1, . . . ,vn are independently chosen uniformly at random from
Rr

q,f , then for any non-zero w ∈ Rr
q,f , the dot product vi · w will also for

each i = 1, . . . , n be independently and uniformly distributed over Rr
q,f .

Here we are using that Rq,f is a field, and therefore any non-zero element is
invertible. The row vectors of A1 are sampled uniformly and independent
of each other, and each entry of A1z is given by a dot product of a row of
A1 with z. Therefore A1z is uniformly distributed over Rk

q,f . It follows that

Pr[A1z = 0] equals the probability of picking 0 ∈ Rk
q,f at random, namely

1/qdk as desired. This shows that {hA1}A1∈Rk×r
q,f

is a UHF.

Since A1 is chosen uniformly at random from Rk×r
q,f and γ is sampled

uniformly from Sr
η , they are independent of each other and we can apply the

Leftover Hash Lemma given in Theorem 2.5. We have that |Sr
η | = (2η+1)dr

and |Rk
q,f | = qdk, and note that the collision probability (Definition 2.4) β of

γ equals 1/|Sr
η | = 1/(2η+1)dr since γ is uniformly distributed. Therefore the

statistical distance δ′ (Definition 2.9) between (A1, hA1(γ)) and the uniform
distribution on (Rk×r

q,f ,Rk
q,f ) is upper-bounded by

δ′ ≤ 1

2

√
qdk

(2η + 1)dr
.

In order to obtain the desired level of security, we choose r such that

1

2

√
qdk

(2η + 1)dr
≤ 2−λ.

Solving for r, this can be achieved by choosing r such that

r ≥ d · k · log2(q) + 2λ− 2

d · log2(2η + 1)
.

Therefore the commitment scheme is statistically hiding given that γ is
chosen uniformly at random, and r satisfies the given constraint. Choosing
the r value to satisfy the inequality above then ensures that the value γ
used in the commitment scheme adds sufficient randomness to make the
two distributions statistically close.

We proceed by showing that the commitment scheme is computationally
binding when we assume that the MSISk,n+r,2η problem is hard over Rq,f .
Suppose that (x, γ) and (x′, γ′) with x ̸= x′ are two distinct openings of a
commitment P . Then if we let

s := (x− x′, γ − γ′),

we have that ∥s∥ ≤ 2η, since all the coefficients in each of x,x′, γ and γ′ are
bounded by η. In addition to this, s satisfies

(A2, A1) · s = A2(γ − γ′) +A1(x− x′)

= (A2γ +A1x)− (A2γ
′ +A1x

′) = P − P = 0,
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and is therefore a solution to the MSISk,n+r,2η problem. Therefore the com-
mitment scheme is computationally binding, which completes our proof.

Similarly to how we introduced relaxed relations to allow witnesses we can
extract in special soundness to be of slightly larger norm, we introduce a
relaxed version of commitment schemes.

Definition 7.11 ((β, ζ)-Relaxed Opening [ACK21]). Suppose β ∈ N and
let ζ ∈ R. We say that (x, γ) is a (β, ζ)-relaxed opening (x, γ) ∈ Rn ×Rr

of a commitment P if

Compp(x, γ) = ζ · P and ∥(x, γ)∥∞ ≤ β.

■

Breaking binding of a (β, ζ)-relaxed version of the commitment scheme in
Definition 7.9, can be shown to break MSIS with a norm bound only twice
the size of the one with exact openings.

Lemma 7.12 (Binding of (β, ζ)-Relaxed Openings [ACK21]). Suppose that
β ∈ N and ζ ∈ Rf . The lattice-based commitment scheme described in
Definition 7.9 is computationally binding with (β, ζ)-relaxed openings under
the assumption that the MSISk,n+r,2β problem is hard over Rq,f .

Proof. Suppose that (x, γ) and (x′, γ′) with x ̸= x′ are two distinct (β, ζ)-
relaxed openings of a commitment P . Then if we let

s := (x− x′, γ − γ′),

we have that ∥s∥ ≤ 2β, since all the coefficients in each of x,x′, γ and γ′ are
bounded by β by assumption. In addition to this, s satisfies

(A2, A1) · s = A2(γ − γ′) +A1(x− x′)

= (A1γ +A2x)− (A1γ
′ +A2x

′) = ζ · P − ζ · P = 0,

and is therefore a solution to the MSISk,n+r,2β problem. Hence, the commit-
ment scheme is computationally (β, ζ)-binding, which completes our proof.

In Lemma 7.13, we show how to instantiate the abstracted notion of rejection
sampling from Definition 7.1 with uniform rejection sampling. Since our goal
is to instantiate the compressed Σ-protocol given in Corollary 7.8.1, we want
the distribution (D,F) to be V -hiding on the set V defined in Equation 47.
Furthermore, we want to make use of the lattice-based commitment scheme
described in Definition 7.9, which takes in messages from the set Sη given
in Equation 48. We let η = ⌈(p − 1)/2⌉, and therefore state V -hiding on a
set with that given bound as well.
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Lemma 7.13 (Uniform Rejection Sampling [ACK21]). Let f be a monic
and irreducible polynomial of degree d over Z, and let Rf be defined as in
Section 2.1. Let C ∈ Rf , and suppose m, η ∈ N. Let ∥·∥∞ be the infinity
norm of the coefficients in Rm

f . Let

w(C) = max
c∈C,x∈R\{0}

∥cx∥∞
∥x∥∞

,

and define

V := {cx ∈ Rm
f : c ∈ C ⊆ R, ∥x∥∞ ≤ ⌈(p− 1)/2⌉}.

Let D be the uniform distribution over M := {x ∈ Rm
f : ∥x∥∞ ≤ η} and let

F(r, v) :=

{
⊥, if ∥v + r∥∞ > η − w(C)⌈(p− 1)/2⌉,
v + r, otherwise.

Then (D,F) is perfectly V -hiding and β-bounded for

β = η − w(C)⌈(p− 1)/2⌉

with abort probability

δ ≤ 1− e
w(C)pmd

2η+1 .

Proof. Let δ denote the abort probability of algorithm F , and let

α := w(C)⌈(p− 1)/2⌉.

Then we have that

δ = 1− Pr [∥v + r∥∞ ≤ η − α : v ∈ V, r ←$ D] .

We note that how we calculate δ is similar to how we obtained Equation 30.
Using the notation introduced in Section 2.1, we can express v + r by its
polynomial coefficients in an integer vector as

Vv+r := Vv + Vr ∈ Zdm.

In order to have v + r ̸= ⊥, we must have that each coefficient νv+r ∈ Vv+r

satisfies νv+r ∈ [η − α], where |[η − α]| = 2(η−α)+1. Therefore the number
of favorable outcomes equals (2η + 1− 2α)dm.

We are now interested in how many possible v + r there are, when we
sample r from the distribution D. For each v ∈ V , we have that

∥v∥∞ = ∥cx∥∞ ≤ w(C)∥x∥∞ ≤ w(C)⌈(p− 1)/2⌉ = α.

This holds for any coefficient νv ∈ Vv, and also we have that ∥r∥∞ ≤ η by
sampling it uniformly from M . Therefore for any coefficient νv, we have

70



that νv+r ∈ {νv + [η]}. This set is of the same size as [η], and therefore for
each of the dm coefficients in Vv+r, there are 2η + 1 possibilities. Note that
[η − α] ⊆ [νv + [η]] since νv ∈ [α], and therefore all the favorable outcomes
are contained in the possible ones.

Putting this together, we obtain that

δ = 1− Pr [∥v + r∥∞ ≤ η − α : v ∈ V, r ←$ D]

= 1−
(
2η + 1− 2α

2η + 1

)dm

= 1−
(
1− 2w(C)⌈(p− 1)/2⌉

2η + 1

)dm

≤ 1−
(
1− w(C)p

2η + 1

)dm

= 1− e
md log

(
1−w(C)p

2η+1

)

≤ 1− e
−w(C)pmd

2η+1 .

We now continue by proving that (D,F) is perfectly V -hiding. Let F ′

be an algorithm that aborts with probability δ, and otherwise outputs

z ←$ {x ∈ Rm
f : ∥z∥∞ ≤ η − w(C)⌈(p− 1)/2⌉}

sampled uniformly at random. The output distributions {F(r, v)| r ←$

D} and {F ′} then both abort with exactly the same probability, and the
non-aborting output has exactly the same distribution. Therefore (D,F) is
V -hiding. Also, since F only outputs v + r such that

∥v + r∥∞ ≤ η − α = η − w(C)⌈(p− 1)/2⌉ = β,

it follows directly that (D,F) is β-bounded.

Remark 7.14. By choosing the parameters p,m, d, η such that the fraction

w(C)pmd

2η + 1

in the exponent is close to 0, we can decrease the abort probability of (D,F).
The instantiation of the generic compressed Σ-protocol based on the MSIS
assumption is given in Corollary 7.14.1. When defining the module homo-
morphism Ψ, we use the lattice-based commitment scheme given in Defini-
tion 7.9 with norm bound η = ⌈(p− 1)/2⌉, as well as some arbitrary linear
form L. Furthermore, we instantiate the compression mechanism with the
(1 + w(C), w(C))-preserving extractable compression function from Remark
7.7, just as we did for the general Corollary 7.8.1. The resulting protocol
uses a logarithmic amount of rounds, while the size of the messages be-
ing sent is polynomial in the security parameter. Therefore we achieve the
poly-logarithmic communication complexity we desired.
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Corollary 7.14.1 (Compressed Lattice-Based Σ-Protocol [ACK21]).
Let n, r, µ, η ∈ N such that n+ r = 2µ, and let p and q be primes. Let f be a
monic and irreducible polynomial of degree d over Z, and let Rf , Rq,f and
Rp,f be defined as in Section 2.1. Let ζ ∈ Rf be non-zero when projected
onto Rp,f , and let C be a ζ-exceptional subset of Rf . Let (D,F) with abort
probability δ be defined as in Lemma 7.13. Let A1 ∈ Rk×r

q,f and A2 ∈ Rk×n
q,f ,

and define

Ψ : Rn
f×Rr

f → Rk
q,f×Rp,f , (x, γ) 7→ (A1γ+A2x mod q, L(x) mod p).

Then there exists a (2µ+3)-move interactive public-coin protocol ΠΛ for the
relation

RΛ :=
{
(X = ((P, y) ∈ Rk

q,f ×Rp,f , w = (x, γ) ∈ Rn
f ×Rr

f ))

: Ψ(x, γ) = (P, y), ∥(x, γ)∥∞ ≤ ⌈(p− 1)/2⌉
} (49)

and relaxed relation

R′
Λ :=

{
(X ′ = (P ′, y′) ∈ Rk

q,f ×Rp,f , w
′ = (x′, γ′) ∈ Rn

f ×Rr
f )

: Ψ(x′, γ′) = ζ3µ+1 · (P ′, y′) ,

∥(x′, γ′)∥∞ ≤ 2(η − w(C))⌈(p− 1)/2⌉ · w̄(C, ζ) · σµ
}
,

(50)

where
σ = 6 · w(C)3 · (1 + w(C)) · w̄(C, ζ)3.

It is unconditionally (2, k1, . . . , kµ)-special sound with ki = 3 for i = 1, . . . , µ,
non-abort special HVZK and has completeness with error

δ ≤ 1− e
−w(C)p(n+r)d

2η+1 .

The communication costs are:

• P → V: 2µ + 1 elements of Rk
q,f , 2µ + 1 elements of Rp,f and 1

elements of Rf .

• V → P: µ+ 1 elements of C.
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8 Discussion

In the compression mechanisms, there is a trade-off between computational
costs and communication costs. That is, even though we manage to reduce
the communication costs from linear to roughly logarithmic, the prover and
verifier have to do more computations when compressing the proof. For this
reason, compressed Σ-protocols can be of great use in applications where
there are limitations on the proof size rather than computing power.

Soundness Slack One of the topics that have not been covered in detail,
is how to formally analyze the soundness slack that is introduced when com-
posing the protocols Π′

0 and Π′
1 to obtain Πcomp, and ensure that it is low

enough for the composed protocol to be of use. In order to guarantee that
a witness extracted from a composed protocol is of some norm, we have to
define trees of transcripts, which gets its name from the growth of possible
transcripts one gets by including more rounds in a protocol, and the gen-
eralized notion of (k1, . . . , kn)-special soundness. The aforementioned topic
is covered by Attema, Cramer and Kohl [ACK21, Appendix B] through
transforming protocols. There does however exist exact lattice-based proof
systems, that eliminate the soundness slack between what we want to prove
knowledge of and what we in reality can prove knowledge of. These construc-
tions are however significantly more complex than Σ-protocols [LNP22].

Non-Linear Constraints Up until this point, we have seen how we can
use compressed Σ-protocol theory to reduce the communication costs for
interactive protocols where we want to prove knowledge of a partial opening
of a commitment scheme that satisfies a linear constraint. These ideas can
be extended to handle non-linear constraints as well, using techniques from
MPC [ACK21, Section 7]. With this, a prover can, following the so-called
commit-and-prove paradigm, commit to its witness and convince the verifier
that it satisfies an arbitrary arithmetic circuit C such that C(w) = 0, where
non-linear constraints include the use of multiplication gates.

QROM As mentioned in Section 3, the Fiat-Shamir transformation turns
any Σ-protocol into a digital signature. However when we want to evaluate
if systems are post-quantum secure, the attacker is also assumed to have
access to a quantum computer. This result in its interaction with the ran-
dom oracle having to be modeled slightly different than before, in order to
handle an adversary that wants to evaluate superpositions of given inputs.
The following setting is referred to as the Quantum Random Oracle Model
(QROM). Because of the different modeling of the random oracle, security
proofs in the ROM are not guaranteed to hold to in the QROM as well, and
can be hard to formalize [Don+19].
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Recently, an active research question has been to fill this gap between
the classical ROM and the QROM. In 2021, Katsumata gave a semi-generic
transform that ensures that several existing lattice-based Σ-protocols with
security proofs in the ROM can be extended to the QROM as well [Kat21].
These constructions are also shown to be straight-line simulation extractable,
which refers to the property of being able to extract a valid witness from a
protocol without the need to rewind the prover. It is especially favorable in
systems with many users where concurrent executions of a non-interactive
Σ-protocol is demanded, as the running time of a rewindable extractor may
increase exponentially. Other ways of turning Σ-protocols non-interactive
have also emerged, such as the Fishlin transform [Fis05] that directly gives
straight-line extractability. The proposed transform was not particularly
efficient, however Lindell recently provided an optimized version that yields
better run time and is of more practical use [CL24].
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