Side-Channel Attacks

Tjerand Silde,
Department of Mathematics,
NTNU in Trondheim

c
()
©
—
o
>
()
—
©
(4]
o]
c
()
—
(o)
o
o
©
X
0)
c
c
=)
x

@ About me

* Doing a integrated Ph.D. in cryptography at IMF

* Focusing on Post-Quantum Cryptography

* Internship at Intrinsic-ID in Eindhoven,
Netherlands summer of 2018: focusing on secure
implementation of cryptography in hardware

Side-Channel Attacks

Cryptographic algorithms are traditionally designed and analyzed
using the black-box model, where the adversary knows the
specification of the algorithm and can observe pairs of inputs and
outputs from the algorithm.

This is not sufficient to protect a system when it's implemented on
embedded devices. In this case the device is often in the control
of the adversary, and one can apply a wide range of attacks
through different side-channels to break the cryptography.

Countermeasures

Countermeasures against side-channel attacks can be
classified into two categories.

In the first category, one tries to eliminate or to minimize
the leakage of information. This is achieved by reducing
the signal-to-noise ratio of the side-channel signals.

In the second category, one tries to ensure that the
information that leaks through side-channels cannot be
exploited to recover secrets.

Attacks against primitives

« RSA

« DSA

- ECDSA
- ECDH
 AES

Today: The RSA Cryptosystem

RSA Key Generation

1.

2 A A

Let p, g be distinct prime numbers, randomly chosen from
the set of all prime numbers of a certain size.

Compute n = pq.

Select e randomly with ged(e, ¢(n)) = 1.
Compute d = e~ mod ¢(n).

The public key is the pair n and e.

The private key consists of the values p, g and d.

Lecture 8: Public Key Cryptography and RSA. Slide 12.

RSA Operations

Encryption The public key for encryption is Kg = (n, e)

1. Input is any value M where 0 < M < n.
2. Compute C = E(M, Kg) = M® mod n.

Decryption The private key for decryption is Kp = d (values p
and g are not used here).

1. Compute D(C,Kp) = C% mod n = M.

Lecture 8: Public Key Cryptography and RSA. Slide 13.

Square-And-Multiply Algorithm

k
mé = meo(m2)91 (m4)82 o (m2)ek

Data: m.n,e = exex_1... €169
Result: m® mod n
zZ <+ 1;
fori =0to kdo
if e =1 then
‘ Z < Zxmmod n;
end
if / < k then
‘ m < m? mod n;
end
end
return z

Lecture 8: Public Key Cryptography and RSA. Slide 25.

Square-And-Multiply

compute mAe mod n
def square_and_multiply(m, exponent, n):

e = bin(exponent) # string with prefix @b
zZ=m

for 1 in range(3, len(exp)):
z=2z%z%n
ifC e[i] = "1"):
z =z*m%n

return z

Timing attacks

Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems

Paul C. Kocher

Cryptography Research, Inc.
607 Market Street, 5th Floor, San Francisco, CA 94105, USA.
E-mail: paul@cryptography. com.

In proceedings of the 16th Annual International Cryptology Conference, 1996.
https://www.paulkocher.com/doc/TimingAttacks.pdf

https://www.paulkocher.com/doc/TimingAttacks.pdf

Timing attacks

Remote Timing Attacks are Practical

David Brumley Dan Boneh
Stanford University Stanford University
dbrumley@cs.stanford.edu dabo@cs.stanford.edu

In proceedings of the 12th Usenix Security Symposium, 2003.
https://crypto.stanford.edu/~dabo/pubs/papers/ssI-timing.pdf

https://crypto.stanford.edu/~dabo/pubs/papers/ssl-timing.pdf

Timing attacks

We show that using about a million queries we
can remotely extract a 1024-bit RSA private key from an
OpenSSL 0.9.7 server. The attack takes about two hours.

In proceedings of the 12th Usenix Security Symposium, 2003.
https://crypto.stanford.edu/~dabo/pubs/papers/ssI-timing.pdf

https://crypto.stanford.edu/~dabo/pubs/papers/ssl-timing.pdf

Timing attacks

Timing attacks try to extract cryptographic keys by
measuring how long it takes for a system to perform
cryptographic computations.

If the algorithms use different amounts of time
depending on the input and the keys, it is possible to
extract secret information from the time the system
takes to respond to different requests.

Simple Power Analysis

Differential Power Analysis

Paul Kocher, Joshua Jaffe, and Benjamin Jun

Cryptography Research, Inc.
—607 Market-Street; 5th-Floor-
SanFraneiseo CA-941055SA-
http://www.cryptography.com

In proceedings of the 19th Annual International Cryptology Conference, 1999.
https://www.paulkocher.com/doc/DifferentialPowerAnalysis.pdf

https://www.paulkocher.com/doc/DifferentialPowerAnalysis.pdf

Simple Power Analysis

Simple Power Analysis (SPA) is a technique that involves directly interpret-
ing power consumption measurements collected during cryptographic operations.
SPA can yield information about a device’s operation as well as key material.

Current (mA)

@
[~}

2.75

3.2 . 40 48 5.6 6.4 7.2 80
Time (mS)

Figure 1: SPA trace showing an entire DES operation.

0 0.8 1.6 24

In proceedings of the 19th Annual International Cryptology Conference, 1999.
https://www.paulkocher.com/doc/DifferentialPowerAnalysis.pdf

https://www.paulkocher.com/doc/DifferentialPowerAnalysis.pdf

NTNU

Simple Power Analysis

Figure 3 shows the execution path through an SPA feature where a jump in-
struction is performed, and the lower trace shows a case where the jump is not
taken. The point of divergence is at clock cycle 6 and is clearly visible.

7.0
6.0
5.0
4.0
-~ 30
EZO
w 1.0
E) 0.0
= 6.0
O 5.0
4.0
3.0
2.0
1.0
0.0

1 2 3 3 5 6 7
Time (in 3.5714MHZz clock cycles)

Figure 3: SPA trace showing individual clock cycles.

In proceedings of the 19th Annual International Cryptology Conference, 1999.
https://www.paulkocher.com/doc/DifferentialPowerAnalysis.pdf

https://www.paulkocher.com/doc/DifferentialPowerAnalysis.pdf

Simple Power Analysis

Simple power analysis (SPA) attacks try to extract
cryptographic keys by measuring the power
consumption of a device while the system is doing
cryptographic computations.

Example: Simple power analysis

A
|

bR

Example: Simple power analysis

A

Countermeasure: Constant Time Code

Make it so, that the variations in execution time do
not depend on secret information.

compute mre mod n in constant time

@ def square_and_multiply(m, exponent, n):
e = bin(exponent) # string with prefix @b
Z=m
X =0

for 1 in range(3, len(e)):

z=z2*%z2%n

1fC e[1] = "1"):
Z =z2*m%n
1fC e[i1] = '0"):

X =zZ*m%n

return z

Fault attacks

Checking Before Output May Not Be Enough
Against Fault-Based Cryptanalysis

[Published in IEEE Transactions on Computers 49(9):967-970, 2000.]

Sung-Ming Yen' and Marc Joye?

! Laboratory of Cryptography and Information Security (LCIS)
National Central University, Chung-Li, Taiwan 320, R.O.C.
yensm@csie.ncu.edu.tw
2 Gemplus Card International
Parc d’Activités de Gémenos, B.P. 100, 13881 Gémenos, France
marc.joye@gemplus.com

IEEE Transactions on Computers, 2000.
http://joye.site88.net/papers/YJ00chkb.pdf

http://joye.site88.net/papers/YJ00chkb.pdf

NTNU

Fault attacks

Abstract. In order to avoid fault-based attacks on cryptographic se-
curity modules (e.g., smart-cards), some authors suggest that the com-
putation results should be checked for faults before being transmitted.
In this paper, we describe a potential fault-based attack where key bits
leak only through the information whether the device produces after a
temporary fault a correct answer or not. This information is available to
the adversary even if a check is performed before output.

IEEE Transactions on Computers, 2000.
http://joye.site88.net/papers/YJ00chkb.pdf

http://joye.site88.net/papers/YJ00chkb.pdf

NTNU

Fault attacks

It is important to note that when an error is introduced to register A dur-
ing the operation A «+ A% mod N, it will force the squaring operation to be
incorrect. This is evident because the correct value of A is required during each
iteration of the interleaved modular multiplication procedure. However, if a safe
error is introduced into A during the operation A « A - M mod N, then this
error will not damage the final result. The above attack is sketched hereafter.

IEEE Transactions on Computers, 2000.
http://joye.site88.net/papers/YJ00chkb.pdf

http://joye.site88.net/papers/YJ00chkb.pdf

Countermeasure: Data-Dependency

Make it so, that the final result is dependent on
each calculation in the computation.

compute mAe mod n in constant time
using Montgomery ladder
def square_and_multiply(m, exponent, n):

e = bin(exponent) # string with prefix @b
zl =m
z2 = m*m

for 1 in range(3, len(e)):

1ifCe[i] = "1"):
z1 =21 *22%n #z1 =21 % z2
z2 =22 * z2 % n # z2 =22 * 22
1fC e[1] = '0"):
z2 =21 *22%n # z2 =21 % z2
z1 =21 * z1 % n #z1 =21 % z1

return z1

NTNU

Differential Power Analysis

Differential Power Analysis

Paul Kocher, Joshua Jaffe, and Benjamin Jun

Cryptography Research, Inc.
i Secket Sbreets She Bl
SanFraneiseo CA-941055SA-
http://www.cryptography.com

E-matbk{paul;josh;ben}Qeryptography——com-

In proceedings of the 19th Annual International Cryptology Conference, 1999.
https://www.paulkocher.com/doc/DifferentialPowerAnalysis.pdf

https://www.paulkocher.com/doc/DifferentialPowerAnalysis.pdf

NTNU

Differential Power Analysis

To implement the DPA attack, an attacker first observes m encryption op-
erations and captures power traces T; ,,[l..k] containing k& samples each. In
addition, the attacker records the ciphertexts C;_,,. No knowledge of the plain-
text is required.

DPA analysis uses power consumption measurements to determine whether a
key block guess K is correct. The attacker computes a k-sample differential trace
Ap[l..k] by finding the difference between the average of the traces for which
D(C,b,Ky) is one and the average of the traces for which D(C,b, K) is zero.

In proceedings of the 19th Annual International Cryptology Conference, 1999.
https://www.paulkocher.com/doc/DifferentialPowerAnalysis.pdf

https://www.paulkocher.com/doc/DifferentialPowerAnalysis.pdf

Differential Power Analysis

Differential power analysis (DPA) attacks try to extract
cryptographic keys by performing a statistical analysis of
many executions of the same algorithm.

The attack is performed with many different inputs
measuring the differences in power consumption of a
device while the system is performing cryptographic
computations.

Countermeasure: Randomizing Message

Make it so, that the calculations are performed
on a randomly chosen message each time, not
an input by the attackers choice.

compute mAe mod n in constant time using Montgomery
ladder with randomized message, given rl and r2

such that rl = (r2A-1 mod n)Ae mod n

def square_and_multiply(m, exponent, rl, r2, p, q):

n = p*q

m = m*rl

e = bin(exponent)
zl=m

z2 = m*m

for 1 in range(3, len(e)):

ifC e[i] = '1'

z1 =21 * z2 % n
22 =22 ¥ 22 %n

ifC e[i] = "0"):

z2 =21 %22 %n
z1 =21 *%21%n

return zl*r2

+*

randomize message
string with prefix @b

+*

#2z1=121% 22
#z2 =22 % 22
#z2=21% 22
#z1=21%21

de-randomize message

Countermeasure: Scalar Blinding

Make it so, that the calculations are performed
with a randomly chosen exponent each time, to
not leak to the attacker how large the real
exponent is.

compute mAe mod n in constant time using Montgomery
ladder with randomized message, given rl and r2

such that rl = (r2A-1 mod n)Ae mod n, and

randomized exponend, given some r

def square_and_multiply(m, exponent, r, rl, r2, p, q):

n = p*q

m = m*rl # randomize message
exponent += r * (p-1)*(g-1) # exp = exp + r * phi(n)
e = bin(exponent) # string with prefix @b
zl=m

z2 = m*m

for 1 in range(3, len(e)):

ifCe[i] = "1"):

z1 =21 *22%n #z1=2z1%* 22
z2 =22 * 22 %n # z2 =22 * 22

ifC e[i] = '0'):

z2 =21 *22%n #z2=21% 22
z1 =21 *2z1 %n #z1=21%2z1

return z1*r2 # de-randomize message

But there are also...

« Cache timing attacks

« Electromagnetic attacks

* Acoustic cryptanalysis

* Optical side-channel attack
« Horizontal attacks

Questions?

