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Electronic Voting
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Commitment

Algorithms:
Com : samples randomness rm and commits to m as [m] = Com(m; rm).

Open : takes as input ([m], m, rm) and verifies that [m] ?= Com(m; rm).

Properties:
Binding : it is hard to find m ̸= m̂ and rm ̸= r̂ m̂ s.t. Com(m; rm) = Com(m̂; r̂ m̂).
Hiding : it is hard to distinguish Com(m; rm) from Com(0; r0) when given m.

Here we can use the BDLOP18 lattice-based commitment scheme.
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Proof of Linearity

Let

[x ] = Com(x ; r) and
[
x ′] = [αx + β] = Com(x ′; r ′).

Then the protocol ΠLin is a sigma-protocol to prove the relation
x ′ = αx + β, given the commitments [x ] , [x ′] and the scalars α, β.

Here we can use the BDLOP18 proof of linear relations.
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Amortized Proof of Boundedness

Let

[x1] = Com(x1; r1), [x2] = Com(x2; r2), ..., [xn] = Com(xn; rn),

for bounded norm values xi . Let ΠBND be a sigma-protocol for this relation.

We have approximate proofs by BBCdGL18 and exact proofs by BLNS20.
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BGV Encryption

KeyGen samples random a $← Rq, short s ← Rq and noise e ← NσE .
The algorithm outputs pk = (a, b) = (a, as + pe) and sk = s.

Enc samples a short r ← Rq and noise e1, e2 ← NσE , and outputs
(u, v) = (ar + pe1, br + pe2 + m).

Dec outputs m ≡ v − su mod q mod p when noise is bounded by ⌊q/2⌋.

For more details about the encryption scheme see the BGV12 paper.
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Shuffle
▶ Public information: sets of commitments {[mi ]}τi=1 and messages {m̂i}τi=1.

▶ P knows the openings {(mi , rmi )}τi=1 of the commitments {[mi ]}τi=1,

and knows a permutation γ such that m̂i = mγ−1(i) for all i = 1, ..., τ .

▶ We constructed a ZKPoK protocol to prove the statement:

RShuffle =

 (x , w)
x = ([m1] , . . . , [mτ ] , m̂1, . . . , m̂τ , m̂i),
w = (γ, . . . , r1, . . . , r τ ), γ ∈ Sτ ,

∀i ∈ [τ ] : Open(
[
mγ−1(i)

]
, m̂i , r i) = 1


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Extending the Shuffle

▶ We extend the shuffle to ciphertext
vectors instead of single messages

▶ We create a mix-net as follows:
1. Re-randomize the ciphertexts
2. Commit to the randomness
3. Permute the ciphertexts
4. Prove that shuffle is correct
5. Prove that the randomness is short

▶ Integrity follows from the ZK-proofs
▶ Privacy if at least one server is honest
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Distributed Decryption

Verifiable distributed decryption protocol:

▶ On input key sj and ciphertext (u, v),
sample large noise Ej , output tj = sju + pEj .

▶ We use ΠLin to prove correct computation.
▶ We use ΠBND to prove that Ej is bounded.

We obtain the plaintext as m ≡ (v − t mod q)
mod p, where t = t1 + t2 + ... + tξ.
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Verifiable Shuffle-Decryption

▶ SD both shuffle and decrypt the votes.

▶ Integrity follows from the ZK-proof.

▶ Privacy if B and SD do not collude.
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Verifiable Mix-Net and Distributed Decryption

▶ {Si}may consist of many shuffle-servers.

▶ {Di} consists of many decryption-servers.

▶ Integrity follows from the ZK-proofs.

▶ Privacy holds if the following is true:
1. at least one shuffle-server is honest and
2. at least one decryption-server is honest.
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Proof of Shuffle [CT-RSA’21]

▶ Optimal parameters for the commitment scheme is q ≈ 232 and N = 210.

▶ The prover sends 1 commitment, 1 ring-element and 1 proof per message.

▶ The shuffle proof is of total size ≈ 22τ KB for τ messages.

▶ The shuffle proof takes ≈ 27τ ms to compute for τ messages.
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Verifiable Mixing and Decryption [CCS’23]

▶ Optimal parameters for the system is q ≈ 278 and N = 212.

▶ Commitments and ciphertexts are of size ≈ 80 KB each.

▶ The mixing proof is of size ≈ 370τ KB and takes ≈ 261τ ms.

▶ The decryption proof is of size ≈ 157τ KB and takes ≈ 138τ ms.
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NTRU Encryption
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NTRU Encryption

NTRU ciphertexts consist of one ring element instead of two. We also wanted
to decrease the dimension and moduli to reduce ciphertext sizes, but this was
not possible based on current security analysis on ternary secrets.

We analysed the concrete security of NTRU for arbitrary standard deviations σ,
and we found that the "fatigue point" for NTRU is q = 0.0058 · σ2 · d2.484.

We combined this with exact zero-knowledge proofs of boundedness to get
tighter bounds and smaller parameters (but more expensive proofs).
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NTRU Mixing Network [ePrint’23]
▶ Optimal parameters for the overall system is q ≈ 259 and N = 211.

Scheme Ciphertexts Shuffle Dist. Dec. Total
CCS’23 [KB] 80 370 157 2188
NTRU [KB] 15 130 85 875

CCS’23 [ms] 0.74 261 138 1182
NTRU [ms] 0.20 62 328 576

Table: Per vote comparison of ciphertexts, shuffle proofs, decryption proofs, and
overall with 4 servers. Shuffles are sequential, while decryption is run in parallel.
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▶ Lattice-Based Proof of Shuffle and Applications to Electronic Voting, Diego F.
Aranha, Carsten Baum, Kristian Gjøsteen, Tjerand Silde, and Thor Tunge.
Published at CT-RSA 2021, eprint.iacr.org/2023/1318

▶ Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based
Assumptions, Diego F. Aranha, Carsten Baum Kristian Gjøsteen, and
Tjerand Silde. Published at ACM CCS 2023, eprint.iacr.org/2022/422

▶ Concrete NTRU Security and Advances in Practical Lattice-Based Electronic
Voting, Patrick Hough, Caroline Sandsbråten, and Tjerand Silde. Available
at IACR ePrint 2023/993, eprint.iacr.org/2023/933
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