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Papers

This presentation is based on two works:

» Two-Round Threshold Lattice-Based Signatures from Threshold Homomorphic
Encryption, published at PQCrypto 2024, with Gur and Katz

» Olingo: Threshold Lattice Signatures with DKG and Identifiable Abort, soon to
appear at IACR ePrint, with Gur, Hough, Katz and Sandsbraten
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Threshold Cryptography Setting

The goal is that secrets are shared between n parties, and that any threshold
1 <t < ncanjointly compute a decryption or signature based on their shares.

This gives security against an adversary corrupting at most ¢ — 1 parties which

cannot complete the computation on its own, and robustness if at least ¢
honest parties are available for the computation to be completed.
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Threshold Cryptography Applications

Some potential practical applications are:

» sign transactions and legal documents
» sign authentication challenges or certificates
» decrypt ballots in an electronic voting system

» run pre-processing phases for MPC protocols
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Self-Target MSIS

Definition 1 (SelfTargetMSIS [DKL'18]). Let k, £ be positive integers and 0 <
n < q. Let H: Rg x {0,1}* — C, be a cryptographically secure hash function
modeled as a random oracle. Then, given (A,t) € R’;” X R’;, the Self-Target
MSIS problem asks an adversary A to find (z,u) € Rf; x {0,1}* such that 0 <
lzll, <n and H([A | t]-r,p) = c, wherer = [z c] . A is said to have advantage
esTmsis in solving SelfTargetMSIS, , . if

HIA | t]-r,u) =c

Pr
ANO<|z|,<n

A R (r= 2 ) e 4a0)] 2 sruss.
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MLWE with Hints

Definition 2 (H-MLWE [KLSS23]). Letk,¢,Q be positive integers, x1 and x2
be probability distributions over Ry, and C be a subset of Rq. The Hint-MLWE
problem H-MLWEy ¢ v, x.,@ then asks an adversary A to distinguish between the
following two cases:

1. (A7 AS7 (ci7 ZZ)ZE[Q]) f07" A+ R’;X(l-i—k):
2. (A,b, (ci,2:)iciq)) for A « Ry*“HH) b RE,

where s «— x %, ¢; < C fori € [Q], and z; == ¢; -s +y; where y; < x5F for

i € [Q]. We denote by en-muwe the advantage of A in solving H-MLWEg ¢ v, v..0-
A has advantage eqvmwe in solving H-MLWEyg ¢\ v..0 if

A RPXERg o btk o
Prib=1ly; < x5 2 :=cis+yi forie [Q];
b+ A(A7 AS7 (Cia ZZ)ZE[Q])
A« RE"tM.p  RE;
—Pr|b=1| S(_X?—k;ci —Ciyq <_Xg+k
zi = cis +y; fori €[Q);
b+ A(A,b)

> EMLWE-
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Basic Signature Scheme
The private key is a short s € R;™, and the verification key consists of a matrix

A=[A|I] € ngx(”’“) and vector y := As. The protocol proceeds as follows:
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1. The prover samples a short vector r R§+k and sends w := Ar.
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Basic Signature Scheme
The private key is a short s € R;™, and the verification key consists of a matrix

A=[A|I] € RZX(”’“) and vector y := As. The protocol proceeds as follows:

1. The prover samples a short vector r R§+k and sends w := Ar.
2. The verifier responds with a short challenge ¢ € C C R,.
3. The prover responds with a short vector z := ¢-s+r.

4. —The prover might abort because of rejection sampling.
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Basic Signature Scheme
The private key is a short s € R;™, and the verification key consists of a matrix

A=[A|I] € RZX(”’“) and vector y := As. The protocol proceeds as follows:

1. The prover samples a short vector r Rf;““ and sends w := Ar.

2. The verifier responds with a short challenge ¢ € C C R,.

w

. The prover responds with a short vector z := ¢-s+r.

»

—The prover might abort because of rejection sampling.

(5}

. The verifier accepts iff zis shortand Az = ¢ -y + w.

6. — Non-interactive signature scheme if ¢ = H(pk, w, m).

@ NTNU | séonanirecimons



Basic n-out-of-n Threshold Scheme

The ith signer holds short vector s; where s = 3=, s; is the private key. Then,
the n signers can run a distributed, two-round signing protocol as follows:
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Basic n-out-of-n Threshold Scheme

The ith signer holds short vector s; where s = > ic[n] Si is the private key. Then,
the n signers can run a distributed, two-round signing protocol as follows:

1. The ith signer chooses a short vector r; € Rf}*’“ and sends w; := Ar;.

2. Each signer computes w := 3= ,c(,) w; followed by ¢ := H(w). The ith signer
thensends z; :=c-s; +r;.
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Basic n-out-of-n Threshold Scheme

The ith signer holds short vector s; where s = > ic[n] Si is the private key. Then,
the n signers can run a distributed, two-round signing protocol as follows:

1. The ith signer chooses a short vector r; € Rf}*’“ and sends w; := Ar;.

2. Each signer computes w := 3= ,c(,) w; followed by ¢ := H(w). The ith signer
thensends z; :=c-s; +r;.

3. Each signer then computes z := 3°,(, z; and outputs the signature (c, z).
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Issues with Secret Sharing
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Issues with Secret Sharing

» The shared secret must be short for MSIS to be hard
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» The shared secret must be short for MSIS to be hard
» Individual secrets must be short to allow rejection sampling

» The sum of short elements is also short, but...
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Issues with Secret Sharing

» The shared secret must be short for MSIS to be hard
» Individual secrets must be short to allow rejection sampling
» The sum of short elements is also short, but...

» Shamir secret shared elements are uniformly random
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Issues with Random Oracles
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Issues with Random Oracles

» Fiat-Shamir signatures require a random oracle to produce challenges,
and we cannot evaluate th RO using MPC, ZKP, or FHE in a black-box way.
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Issues with Random Oracles

» Fiat-Shamir signatures require a random oracle to produce challenges,
and we cannot evaluate th RO using MPC, ZKP, or FHE in a black-box way.

» There are schemes computing threshold signatures using generic FHE
(heavy computation and evaluates the RO circuit) or MPC (many rounds of
commutation and distributed rejection sampling), but these are not ideal.
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Issues with Random Oracles

» Fiat-Shamir signatures require a random oracle to produce challenges,
and we cannot evaluate th RO using MPC, ZKP, or FHE in a black-box way.

» There are schemes computing threshold signatures using generic FHE
(heavy computation and evaluates the RO circuit) or MPC (many rounds of
commutation and distributed rejection sampling), but these are not ideal.

» We need a homomorphism to share and combine secrets, but we want to
evaluate the random oracle on public input (communicated messages).
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Issues with Zero-Knowledge
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Issues with Zero-Knowledge

» Signatures are (honest-verifier) zero-knowledge when no parties abort.
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Issues with Zero-Knowledge

» Signatures are (honest-verifier) zero-knowledge when no parties abort.

» Then the commit message cannot be sent in the clear if anyone aborts.
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Issues with Zero-Knowledge

» Signatures are (honest-verifier) zero-knowledge when no parties abort.
» Then the commit message cannot be sent in the clear if anyone aborts.

» We only learn if anyone aborts after we have computed the challenge...
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BGV Encryption

The BGV encryption scheme consists of the following algorithms:

@ NTNU | séonanrecimons



BGV Encryption

The BGV encryption scheme consists of the following algorithms:

» KGenggy: Sample a uniform element a € R, along with s, e < Dkgen, and
output the public key pk := (a, b) = (a, as + pe) and secret key sk := s.
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BGV Encryption

The BGV encryption scheme consists of the following algorithms:

» KGenggy: Sample a uniform element a € R, along with s, e < Dkgen, and
output the public key pk := (a, b) = (a, as + pe) and secret key sk := s.

» Encggy: On input a public key pk = (a, b) and a message m € R, sample

r, e, e’ «+ Dgnc and output the ciphertext (u, v) = (ar + pe’, br + pe’ + m).
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BGV Encryption

The BGV encryption scheme consists of the following algorithms:

» KGenggy: Sample a uniform element a € R, along with s, e < Dkgen, and
output the public key pk := (a, b) = (a, as + pe) and secret key sk := s.

» Encggy: On input a public key pk = (a, b) and a message m € R, sample

r, e, e" < Dgn and output the ciphertext (u, v) = (ar + pe’, br + pe” + m).

> Decggy: On input a secret key sk = s and a ciphertext (u, v), output the
message m := (v — su mod ¢) mod p.
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BGV DistKeyGen

The distributed key generation protocol for BGV works as follows:
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BGV DistKeyGen
The distributed key generation protocol for BGV works as follows:

1. P; samples s; and e; from a distribution Dkgen, COMputes b; := as; + pe;.
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BGV DistKeyGen

The distributed key generation protocol for BGV works as follows:

1. P; samples s; and e; from a distribution Dkgen, COMputes b; := as; + pe;.

2. P; secret shares s; into {s; ;} e[y USINg t-out-of-n Shamir secret sharing.

For each j, P; sends s; ; and b; to party P; over a secure channel.

@ NTNU | séonariremons



BGV DistKeyGen

The distributed key generation protocol for BGV works as follows:

1. P; samples s; and e; from a distribution Dkgen, COMputes b; := as; + pe;.

2. P; secret shares s; into {s; ;} e[y USINg t-out-of-n Shamir secret sharing.

For each j, P; sends s; ; and b; to party P; over a secure channel.

3. P; computes b:= 3" b;, s; = > s;4, and outputs pk = (a, b) and sk; = .
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BGV DistKeyGen
The distributed key generation protocol for BGV works as follows:

1. P; samples s; and e; from a distribution Dkgen, COMputes b; := as; + pe;.

2. P; secret shares s; into {s; ;} e[y USINg t-out-of-n Shamir secret sharing.
For each j, P; sends s; ; and b; to party P; over a secure channel.

3. P; computes b:= 3" b;, s; = > s;4, and outputs pk = (a, b) and sk; = .

4. — The protocol can be made actively secure with commitments and ZKPs.
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BGV DistKeyGen

Fig. 2. Actively secure key-generation protocol, from the point of view of P;. The

DKGen(ae, t,n)
Siy€i = Xtem, bi:=agsi+pei, hi:=H(i,b)
hi

{hi}izi

{sii}sepm < Sharen(si), {eis}jein  Sharesn(e:)

Vj € [n] : bij = agsij + pei;

Vj €[] : pij 4 S,y comi; = Com(sij; pi;)

Compute NIZK proof m; for shortness and linear relations

bi, {bij,comijYicn), Tis  [8i35 €555 Piiljen)

{05, (b comy kel M, (85,65 €4 Pl

if any h; # H(j,b;): abort (j)
if any 7; is invalid: abort (j)
if any 0 = Open(com;,i,s;,,pj,i): abort (j)
be:=30,b;, skii=3850, pi=3;p5
Vj € [n] : com; := Z comjk

ke[n]

return pke := (ag, be, {com,}jen), sk, i= (sk;, i)

elements in square brackets with subscript j are sent to P; over a private channel.
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BGV TDec

The threshold decryption procedure for BGV works as follows:
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BGV TDec

The threshold decryption procedure for BGV works as follows:

TDec On input a ciphertext ctx = (u, v), a decryption key share sk; = s;, and a set
of users U of size t, compute m; := \;su using Lagrange coefficient \;.

Sample noise E; < R, s.t || E;|| ., < 2°°“Bpec, then output ds; := m; + pE;.
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BGV TDec

The threshold decryption procedure for BGV works as follows:

TDec On input a ciphertext ctx = (u, v), a decryption key share sk; = s;, and a set
of users U of size t, compute m; := \;su using Lagrange coefficient \;.

Sample noise E; < R, s.t || E;|| ., < 2°°“Bpec, then output ds; := m; + pE;.

Comb On input a ciphertext ctx = (u, v) and a set of partial decryption shares
{ds;}jeu. it outputs m := (v — 37,5, ds;) mod p.
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BGV TDec

The threshold decryption procedure for BGV works as follows:

TDec On input a ciphertext ctx = (u, v), a decryption key share sk; = s;, and a set
of users U of size t, compute m; := \;su using Lagrange coefficient \;.

Sample noise E; < R, s.t || E;|| ., < 2°°“Bpec, then output ds; := m; + pE;.

Comb On input a ciphertext ctx = (u, v) and a set of partial decryption shares
{ds;}jeu. it outputs m := (v — 37,5, ds;) mod p.

» — TDec can be made actively secure using commitments and ZKPs.
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Ideas

» Use noise drowning techniques to avoid rejection sampling
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Ideas

» Use noise drowning techniques to avoid rejection sampling

» Use linearly homomorphic encryption to combine shares
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Ideas

» Use noise drowning techniques to avoid rejection sampling

» Use linearly homomorphic encryption to combine shares

» Use t-out-of-n threshold decryption to reconstruct signatures
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Passive Protocol

Keys s and (A, y := As) are as before. Instead of sharing s, signers will hold an
encryption ctxs = Enc(s) and share the decryption key k in a t-out-of-n fashion:
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Passive Protocol

Keys s and (A,y := As) are as before. Instead of sharing s, signers will hold an
encryption ctxs = Enc(s) and share the decryption key k in a t-out-of-n fashion:

1. The ith signer chooses a short vector r; € R4 and sends w; := Ar;. It
also sends ctx,,, an encryption of r;.
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Passive Protocol

Keys s and (A,y := As) are as before. Instead of sharing s, signers will hold an

encryption ctxs = Enc(s) and share the decryption key k in a t-out-of-n fashion:

1. The ith signer chooses a short vector r; € R4 and sends w; := Ar;. It
also sends ctx,,, an encryption of r;.

2. Each signer computes w := ., w;, ¢ = H(w), and “encrypted signature”
ctx, 1= ¢ - Ctxs + Y ;4 CtXy,. It SENAS its threshold decryption share of ctx,.

3. Given decryption shares from all parties, each signer can decrypt ctx, to
obtain z, and output the signature (¢, z).
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Passive Protocol

@ NTNU |

Signys(sky, U, 1)

sample bounded r; «+ D,

w; = Ar;, ctx,, == Enc(pkg, ;) Wi, CtXr,

W= Z wj, c:= H(w,pk,u) {(wj, ctxe;) e (3}

jeu
Ctx, := ¢ - ctxs + Z ctx,j
jeu
ds; := TDec(ctx,, sk;,U) ds;
z := Comb(ctx,, {ds;}jcu) {ds;}jeun (i)

return o := (c, z)

Norwegian University of
Science and Technology
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Optimizations

>

| 2

| 4

Renyi Divergence instead of noise drowning for decryption
MLWE with Hints instead of noise drowning for signatures
Three round scheme — avoid trapdoor commitments
Pre-processing first two rounds — non-interactive signing
Using improved zero-knowledge proofs from the literature
Improved distributed key generation for many parties
Formalizing and proving identifiable aborts for our signatures

Implementation based on the Raccoon signature scheme
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Distributed Key Generation

0
2
AP
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Actively Secure Scheme
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Signs (pks, sk, auxs, U, 1)
ri ¢ D}, e} s D},

wii= Agri+ ¢}

huw, 1= Hi (i, wi)

ctxr,; « Enc(pkg,ri)

Compute NIZK 7, ; w.r.t. relation in Step 2

if any 7, is invalid or hw, # Hi(j,w;):
abort ()

} s c:=Ha(pks, W', 1)
aw

b, i=coctxe + Y Ctae
jeu

ds; := TDec(ctxz, sk, U)

Compute NIZK 7e,; w.r.t. relation in[Step 3

2 := Comb(ctxs, {ds; }cu)

if 2= L with any m is invalid: abort (j)
ti= Ay 2-2% ey,

hi=w -t

return ¥ := (c,2,h)

haw,

{hw; iz

(Wi, € iy T i)

{(w, e, o) by

ds;, Tas,i

{dsj, mas,s }ieun iy
B Teiliants

Norwegian University of
Science and Technology
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Comparison

Scheme PK SIG | COM | Rounds | Users | DKG | ID-A
[GKS24] 13.6 | 46.6 | 3000 | 042 5 v | v)?
[DKM™24] 3.9 | 127 41| 0+3 | 1024 | X X
[EKT24] *° 55| 10.8 | 538 | 141 | 1024 | X X
[EKT24, ZT25] 87| 309 | 767 | 1+1 | 1024 | X X
[KRT24] 39| 127 | — | 243 | 1024 | X X
[CATZ24, ZT25] | 42.1 | 1445 | 1240 | 1+1 32 X | (X1
[BKL"25] 45| 134 | 629 | 1+1 | 1024 | X X
This work 26 | 97| 570 | 2+1 | 1024 | V v
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Thank you! Questions?
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