
OLINGO: THRESHOLD LATTICE SIGNATURES
WITH DKG AND IDENTIFIABLE ABORT

Kamil Doruk Gur, Patrick Hough, Jonathan Katz,
Caroline Sandsbråten and Tjerand Silde



Papers

This presentation is based on two works:

▶ Two-Round Threshold Lattice-Based Signatures from Threshold Homomorphic
Encryption, published at PQCrypto 2024, with Gur and Katz

▶ Olingo: Threshold Lattice Signatures with DKG and Identifiable Abort, soon to
appear at IACR ePrint, with Gur, Hough, Katz and Sandsbråten

2



Contents

Threshold Cryptography

Lattice Assumptions

Threshold Challenges

Threshold BGV Encryption

Passive Signature Scheme

Optimizations

Comparison

3



Threshold Cryptography Setting

The goal is that secrets are shared between n parties, and that any threshold
1 ≤ t ≤ n can jointly compute a decryption or signature based on their shares.

This gives security against an adversary corrupting at most t − 1 parties which
cannot complete the computation on its own, and robustness if at least t
honest parties are available for the computation to be completed.

4



Threshold Cryptography Applications

Some potential practical applications are:

▶ sign transactions and legal documents

▶ sign authentication challenges or certificates

▶ decrypt ballots in an electronic voting system

▶ run pre-processing phases for MPC protocols

5



Contents

Threshold Cryptography

Lattice Assumptions

Threshold Challenges

Threshold BGV Encryption

Passive Signature Scheme

Optimizations

Comparison

6



Self-Target MSIS

7



MLWE with Hints

8



Contents

Threshold Cryptography

Lattice Assumptions

Threshold Challenges

Threshold BGV Encryption

Passive Signature Scheme

Optimizations

Comparison

9



Basic Signature Scheme
The private key is a short s ∈ Rℓ+k

q , and the verification key consists of a matrix
Ā := [A | I ] ∈ Rk×(ℓ+k)

q and vector y := Ās. The protocol proceeds as follows:

1. The prover samples a short vector r ∈ Rℓ+k
q and sends w := Ār.

2. The verifier responds with a short challenge c ∈ C ⊂ Rq .

3. The prover responds with a short vector z := c · s + r.

4. →The prover might abort because of rejection sampling.

5. The verifier accepts iff z is short and Āz = c · y + w .

6. → Non-interactive signature scheme if c = H (pk, w, m).

10



Basic Signature Scheme
The private key is a short s ∈ Rℓ+k

q , and the verification key consists of a matrix
Ā := [A | I ] ∈ Rk×(ℓ+k)

q and vector y := Ās. The protocol proceeds as follows:

1. The prover samples a short vector r ∈ Rℓ+k
q and sends w := Ār.

2. The verifier responds with a short challenge c ∈ C ⊂ Rq .

3. The prover responds with a short vector z := c · s + r.

4. →The prover might abort because of rejection sampling.

5. The verifier accepts iff z is short and Āz = c · y + w .

6. → Non-interactive signature scheme if c = H (pk, w, m).

10



Basic Signature Scheme
The private key is a short s ∈ Rℓ+k

q , and the verification key consists of a matrix
Ā := [A | I ] ∈ Rk×(ℓ+k)

q and vector y := Ās. The protocol proceeds as follows:

1. The prover samples a short vector r ∈ Rℓ+k
q and sends w := Ār.

2. The verifier responds with a short challenge c ∈ C ⊂ Rq .

3. The prover responds with a short vector z := c · s + r.

4. →The prover might abort because of rejection sampling.

5. The verifier accepts iff z is short and Āz = c · y + w .

6. → Non-interactive signature scheme if c = H (pk, w, m).

10



Basic Signature Scheme
The private key is a short s ∈ Rℓ+k

q , and the verification key consists of a matrix
Ā := [A | I ] ∈ Rk×(ℓ+k)

q and vector y := Ās. The protocol proceeds as follows:

1. The prover samples a short vector r ∈ Rℓ+k
q and sends w := Ār.

2. The verifier responds with a short challenge c ∈ C ⊂ Rq .

3. The prover responds with a short vector z := c · s + r.

4. →The prover might abort because of rejection sampling.

5. The verifier accepts iff z is short and Āz = c · y + w .

6. → Non-interactive signature scheme if c = H (pk, w, m).

10



Basic Signature Scheme
The private key is a short s ∈ Rℓ+k

q , and the verification key consists of a matrix
Ā := [A | I ] ∈ Rk×(ℓ+k)

q and vector y := Ās. The protocol proceeds as follows:

1. The prover samples a short vector r ∈ Rℓ+k
q and sends w := Ār.

2. The verifier responds with a short challenge c ∈ C ⊂ Rq .

3. The prover responds with a short vector z := c · s + r.

4. →The prover might abort because of rejection sampling.

5. The verifier accepts iff z is short and Āz = c · y + w .

6. → Non-interactive signature scheme if c = H (pk, w, m).

10



Basic Signature Scheme
The private key is a short s ∈ Rℓ+k

q , and the verification key consists of a matrix
Ā := [A | I ] ∈ Rk×(ℓ+k)

q and vector y := Ās. The protocol proceeds as follows:

1. The prover samples a short vector r ∈ Rℓ+k
q and sends w := Ār.

2. The verifier responds with a short challenge c ∈ C ⊂ Rq .

3. The prover responds with a short vector z := c · s + r.

4. →The prover might abort because of rejection sampling.

5. The verifier accepts iff z is short and Āz = c · y + w .

6. → Non-interactive signature scheme if c = H (pk, w, m).

10



Basic n-out-of-n Threshold Scheme

The ith signer holds short vector si where s =
∑

i∈[n] si is the private key. Then,
the n signers can run a distributed, two-round signing protocol as follows:

1. The ith signer chooses a short vector ri ∈ Rℓ+k
q and sends w i := Āri .

2. Each signer computes w :=
∑

i∈[n] w i followed by c := H (w). The ith signer
then sends zi := c · si + ri .

3. Each signer then computes z :=
∑

i∈[n] zi and outputs the signature (c, z).

11



Basic n-out-of-n Threshold Scheme

The ith signer holds short vector si where s =
∑

i∈[n] si is the private key. Then,
the n signers can run a distributed, two-round signing protocol as follows:

1. The ith signer chooses a short vector ri ∈ Rℓ+k
q and sends w i := Āri .

2. Each signer computes w :=
∑

i∈[n] w i followed by c := H (w). The ith signer
then sends zi := c · si + ri .

3. Each signer then computes z :=
∑

i∈[n] zi and outputs the signature (c, z).

11



Basic n-out-of-n Threshold Scheme

The ith signer holds short vector si where s =
∑

i∈[n] si is the private key. Then,
the n signers can run a distributed, two-round signing protocol as follows:

1. The ith signer chooses a short vector ri ∈ Rℓ+k
q and sends w i := Āri .

2. Each signer computes w :=
∑

i∈[n] w i followed by c := H (w). The ith signer
then sends zi := c · si + ri .

3. Each signer then computes z :=
∑

i∈[n] zi and outputs the signature (c, z).

11



Basic n-out-of-n Threshold Scheme

The ith signer holds short vector si where s =
∑

i∈[n] si is the private key. Then,
the n signers can run a distributed, two-round signing protocol as follows:

1. The ith signer chooses a short vector ri ∈ Rℓ+k
q and sends w i := Āri .

2. Each signer computes w :=
∑

i∈[n] w i followed by c := H (w). The ith signer
then sends zi := c · si + ri .

3. Each signer then computes z :=
∑

i∈[n] zi and outputs the signature (c, z).

11



Issues with Secret Sharing

▶ The shared secret must be short for MSIS to be hard

▶ Individual secrets must be short to allow rejection sampling

▶ The sum of short elements is also short, but...

▶ Shamir secret shared elements are uniformly random

12



Issues with Secret Sharing

▶ The shared secret must be short for MSIS to be hard

▶ Individual secrets must be short to allow rejection sampling

▶ The sum of short elements is also short, but...

▶ Shamir secret shared elements are uniformly random

12



Issues with Secret Sharing

▶ The shared secret must be short for MSIS to be hard

▶ Individual secrets must be short to allow rejection sampling

▶ The sum of short elements is also short, but...

▶ Shamir secret shared elements are uniformly random

12



Issues with Secret Sharing

▶ The shared secret must be short for MSIS to be hard

▶ Individual secrets must be short to allow rejection sampling

▶ The sum of short elements is also short, but...

▶ Shamir secret shared elements are uniformly random

12



Issues with Secret Sharing

▶ The shared secret must be short for MSIS to be hard

▶ Individual secrets must be short to allow rejection sampling

▶ The sum of short elements is also short, but...

▶ Shamir secret shared elements are uniformly random

12



Issues with Random Oracles

▶ Fiat-Shamir signatures require a random oracle to produce challenges,
and we cannot evaluate th RO using MPC, ZKP, or FHE in a black-box way.

▶ There are schemes computing threshold signatures using generic FHE
(heavy computation and evaluates the RO circuit) or MPC (many rounds of
commutation and distributed rejection sampling), but these are not ideal.

▶ We need a homomorphism to share and combine secrets, but we want to
evaluate the random oracle on public input (communicated messages).

13



Issues with Random Oracles

▶ Fiat-Shamir signatures require a random oracle to produce challenges,
and we cannot evaluate th RO using MPC, ZKP, or FHE in a black-box way.

▶ There are schemes computing threshold signatures using generic FHE
(heavy computation and evaluates the RO circuit) or MPC (many rounds of
commutation and distributed rejection sampling), but these are not ideal.

▶ We need a homomorphism to share and combine secrets, but we want to
evaluate the random oracle on public input (communicated messages).

13



Issues with Random Oracles

▶ Fiat-Shamir signatures require a random oracle to produce challenges,
and we cannot evaluate th RO using MPC, ZKP, or FHE in a black-box way.

▶ There are schemes computing threshold signatures using generic FHE
(heavy computation and evaluates the RO circuit) or MPC (many rounds of
commutation and distributed rejection sampling), but these are not ideal.

▶ We need a homomorphism to share and combine secrets, but we want to
evaluate the random oracle on public input (communicated messages).

13



Issues with Random Oracles

▶ Fiat-Shamir signatures require a random oracle to produce challenges,
and we cannot evaluate th RO using MPC, ZKP, or FHE in a black-box way.

▶ There are schemes computing threshold signatures using generic FHE
(heavy computation and evaluates the RO circuit) or MPC (many rounds of
commutation and distributed rejection sampling), but these are not ideal.

▶ We need a homomorphism to share and combine secrets, but we want to
evaluate the random oracle on public input (communicated messages).

13



Issues with Zero-Knowledge

▶ Signatures are (honest-verifier) zero-knowledge when no parties abort.

▶ Then the commit message cannot be sent in the clear if anyone aborts.

▶ We only learn if anyone aborts after we have computed the challenge...

14



Issues with Zero-Knowledge

▶ Signatures are (honest-verifier) zero-knowledge when no parties abort.

▶ Then the commit message cannot be sent in the clear if anyone aborts.

▶ We only learn if anyone aborts after we have computed the challenge...

14



Issues with Zero-Knowledge

▶ Signatures are (honest-verifier) zero-knowledge when no parties abort.

▶ Then the commit message cannot be sent in the clear if anyone aborts.

▶ We only learn if anyone aborts after we have computed the challenge...

14



Issues with Zero-Knowledge

▶ Signatures are (honest-verifier) zero-knowledge when no parties abort.

▶ Then the commit message cannot be sent in the clear if anyone aborts.

▶ We only learn if anyone aborts after we have computed the challenge...

14



Contents

Threshold Cryptography

Lattice Assumptions

Threshold Challenges

Threshold BGV Encryption

Passive Signature Scheme

Optimizations

Comparison

15



BGV Encryption

The BGV encryption scheme consists of the following algorithms:

▶ KGenBGV: Sample a uniform element a ∈ Rq along with s, e ← DKGen, and
output the public key pk := (a, b) = (a, as + pe) and secret key sk := s.

▶ EncBGV: On input a public key pk = (a, b) and a message m ∈ Rp, sample
r , e′, e′′ ← DEnc and output the ciphertext (u, v) = (ar + pe′, br + pe′′ + m).

▶ DecBGV: On input a secret key sk = s and a ciphertext (u, v), output the
message m := (v − su mod q) mod p.

16



BGV Encryption

The BGV encryption scheme consists of the following algorithms:

▶ KGenBGV: Sample a uniform element a ∈ Rq along with s, e ← DKGen, and
output the public key pk := (a, b) = (a, as + pe) and secret key sk := s.

▶ EncBGV: On input a public key pk = (a, b) and a message m ∈ Rp, sample
r , e′, e′′ ← DEnc and output the ciphertext (u, v) = (ar + pe′, br + pe′′ + m).

▶ DecBGV: On input a secret key sk = s and a ciphertext (u, v), output the
message m := (v − su mod q) mod p.

16



BGV Encryption

The BGV encryption scheme consists of the following algorithms:

▶ KGenBGV: Sample a uniform element a ∈ Rq along with s, e ← DKGen, and
output the public key pk := (a, b) = (a, as + pe) and secret key sk := s.

▶ EncBGV: On input a public key pk = (a, b) and a message m ∈ Rp, sample
r , e′, e′′ ← DEnc and output the ciphertext (u, v) = (ar + pe′, br + pe′′ + m).

▶ DecBGV: On input a secret key sk = s and a ciphertext (u, v), output the
message m := (v − su mod q) mod p.

16



BGV Encryption

The BGV encryption scheme consists of the following algorithms:

▶ KGenBGV: Sample a uniform element a ∈ Rq along with s, e ← DKGen, and
output the public key pk := (a, b) = (a, as + pe) and secret key sk := s.

▶ EncBGV: On input a public key pk = (a, b) and a message m ∈ Rp, sample
r , e′, e′′ ← DEnc and output the ciphertext (u, v) = (ar + pe′, br + pe′′ + m).

▶ DecBGV: On input a secret key sk = s and a ciphertext (u, v), output the
message m := (v − su mod q) mod p.

16



BGV DistKeyGen

The distributed key generation protocol for BGV works as follows:

1. Pi samples si and ei from a distribution DKGen, computes bi := asi + pei .

2. Pi secret shares si into {si,j}j∈[n] using t-out-of-n Shamir secret sharing.
For each j , Pi sends si,j and bi to party Pj over a secure channel.

3. Pi computes b :=
∑

bj , s′
i =

∑
sj,i , and outputs pk = (a, b) and ski = s′

i .

4. → The protocol can be made actively secure with commitments and ZKPs.

17



BGV DistKeyGen

The distributed key generation protocol for BGV works as follows:

1. Pi samples si and ei from a distribution DKGen, computes bi := asi + pei .

2. Pi secret shares si into {si,j}j∈[n] using t-out-of-n Shamir secret sharing.
For each j , Pi sends si,j and bi to party Pj over a secure channel.

3. Pi computes b :=
∑

bj , s′
i =

∑
sj,i , and outputs pk = (a, b) and ski = s′

i .

4. → The protocol can be made actively secure with commitments and ZKPs.

17



BGV DistKeyGen

The distributed key generation protocol for BGV works as follows:

1. Pi samples si and ei from a distribution DKGen, computes bi := asi + pei .

2. Pi secret shares si into {si,j}j∈[n] using t-out-of-n Shamir secret sharing.
For each j , Pi sends si,j and bi to party Pj over a secure channel.

3. Pi computes b :=
∑

bj , s′
i =

∑
sj,i , and outputs pk = (a, b) and ski = s′

i .

4. → The protocol can be made actively secure with commitments and ZKPs.

17



BGV DistKeyGen

The distributed key generation protocol for BGV works as follows:

1. Pi samples si and ei from a distribution DKGen, computes bi := asi + pei .

2. Pi secret shares si into {si,j}j∈[n] using t-out-of-n Shamir secret sharing.
For each j , Pi sends si,j and bi to party Pj over a secure channel.

3. Pi computes b :=
∑

bj , s′
i =

∑
sj,i , and outputs pk = (a, b) and ski = s′

i .

4. → The protocol can be made actively secure with commitments and ZKPs.

17



BGV DistKeyGen

The distributed key generation protocol for BGV works as follows:

1. Pi samples si and ei from a distribution DKGen, computes bi := asi + pei .

2. Pi secret shares si into {si,j}j∈[n] using t-out-of-n Shamir secret sharing.
For each j , Pi sends si,j and bi to party Pj over a secure channel.

3. Pi computes b :=
∑

bj , s′
i =

∑
sj,i , and outputs pk = (a, b) and ski = s′

i .

4. → The protocol can be made actively secure with commitments and ZKPs.

17



BGV DistKeyGen

18



BGV TDec
The threshold decryption procedure for BGV works as follows:

TDec On input a ciphertext ctx = (u, v), a decryption key share ski = si , and a set
of users U of size t, compute mi := λisu using Lagrange coefficient λi .

Sample noise Ei ← Rq s.t ∥Ei∥∞ ≤ 2secBDec, then output dsi := mi + pEi .

Comb On input a ciphertext ctx = (u, v) and a set of partial decryption shares
{dsj}j∈U , it outputs m := (v −

∑
j∈U dsj) mod p.

▶ → TDec can be made actively secure using commitments and ZKPs.

19



BGV TDec
The threshold decryption procedure for BGV works as follows:

TDec On input a ciphertext ctx = (u, v), a decryption key share ski = si , and a set
of users U of size t, compute mi := λisu using Lagrange coefficient λi .

Sample noise Ei ← Rq s.t ∥Ei∥∞ ≤ 2secBDec, then output dsi := mi + pEi .

Comb On input a ciphertext ctx = (u, v) and a set of partial decryption shares
{dsj}j∈U , it outputs m := (v −

∑
j∈U dsj) mod p.

▶ → TDec can be made actively secure using commitments and ZKPs.

19



BGV TDec
The threshold decryption procedure for BGV works as follows:

TDec On input a ciphertext ctx = (u, v), a decryption key share ski = si , and a set
of users U of size t, compute mi := λisu using Lagrange coefficient λi .

Sample noise Ei ← Rq s.t ∥Ei∥∞ ≤ 2secBDec, then output dsi := mi + pEi .

Comb On input a ciphertext ctx = (u, v) and a set of partial decryption shares
{dsj}j∈U , it outputs m := (v −

∑
j∈U dsj) mod p.

▶ → TDec can be made actively secure using commitments and ZKPs.

19



BGV TDec
The threshold decryption procedure for BGV works as follows:

TDec On input a ciphertext ctx = (u, v), a decryption key share ski = si , and a set
of users U of size t, compute mi := λisu using Lagrange coefficient λi .

Sample noise Ei ← Rq s.t ∥Ei∥∞ ≤ 2secBDec, then output dsi := mi + pEi .

Comb On input a ciphertext ctx = (u, v) and a set of partial decryption shares
{dsj}j∈U , it outputs m := (v −

∑
j∈U dsj) mod p.

▶ → TDec can be made actively secure using commitments and ZKPs.

19



Contents

Threshold Cryptography

Lattice Assumptions

Threshold Challenges

Threshold BGV Encryption

Passive Signature Scheme

Optimizations

Comparison

20



Ideas

▶ Use noise drowning techniques to avoid rejection sampling

▶ Use linearly homomorphic encryption to combine shares

▶ Use t-out-of-n threshold decryption to reconstruct signatures

21



Ideas

▶ Use noise drowning techniques to avoid rejection sampling

▶ Use linearly homomorphic encryption to combine shares

▶ Use t-out-of-n threshold decryption to reconstruct signatures

21



Ideas

▶ Use noise drowning techniques to avoid rejection sampling

▶ Use linearly homomorphic encryption to combine shares

▶ Use t-out-of-n threshold decryption to reconstruct signatures

21



Passive Protocol

Keys s and (Ā, y := Ās) are as before. Instead of sharing s, signers will hold an
encryption ctxs = Enc(s) and share the decryption key k in a t-out-of-n fashion:

1. The ith signer chooses a short vector ri ∈ Rℓ+k
q and sends w i := Āri . It

also sends ctxri , an encryption of ri .

2. Each signer computes w :=
∑

i∈U w i , c = H (w), and “encrypted signature”
ctxz := c · ctxs +

∑
i∈U ctxri . It sends its threshold decryption share of ctxz .

3. Given decryption shares from all parties, each signer can decrypt ctxz to
obtain z, and output the signature (c, z).

22



Passive Protocol

Keys s and (Ā, y := Ās) are as before. Instead of sharing s, signers will hold an
encryption ctxs = Enc(s) and share the decryption key k in a t-out-of-n fashion:

1. The ith signer chooses a short vector ri ∈ Rℓ+k
q and sends w i := Āri . It

also sends ctxri , an encryption of ri .

2. Each signer computes w :=
∑

i∈U w i , c = H (w), and “encrypted signature”
ctxz := c · ctxs +

∑
i∈U ctxri . It sends its threshold decryption share of ctxz .

3. Given decryption shares from all parties, each signer can decrypt ctxz to
obtain z, and output the signature (c, z).

22



Passive Protocol

Keys s and (Ā, y := Ās) are as before. Instead of sharing s, signers will hold an
encryption ctxs = Enc(s) and share the decryption key k in a t-out-of-n fashion:

1. The ith signer chooses a short vector ri ∈ Rℓ+k
q and sends w i := Āri . It

also sends ctxri , an encryption of ri .

2. Each signer computes w :=
∑

i∈U w i , c = H (w), and “encrypted signature”
ctxz := c · ctxs +

∑
i∈U ctxri . It sends its threshold decryption share of ctxz .

3. Given decryption shares from all parties, each signer can decrypt ctxz to
obtain z, and output the signature (c, z).

22



Passive Protocol

Keys s and (Ā, y := Ās) are as before. Instead of sharing s, signers will hold an
encryption ctxs = Enc(s) and share the decryption key k in a t-out-of-n fashion:

1. The ith signer chooses a short vector ri ∈ Rℓ+k
q and sends w i := Āri . It

also sends ctxri , an encryption of ri .

2. Each signer computes w :=
∑

i∈U w i , c = H (w), and “encrypted signature”
ctxz := c · ctxs +

∑
i∈U ctxri . It sends its threshold decryption share of ctxz .

3. Given decryption shares from all parties, each signer can decrypt ctxz to
obtain z, and output the signature (c, z).

22



Passive Protocol
SignT S(ski ,U , µ)
sample bounded ri ← Dr

w i := Āri , ctxri := Enc(pkE , ri) w i , ctxri

w :=
∑
j∈U

w j , c := H (w, pk, µ) {(w j , ctxrj )}j∈U\{i}

ctxz := c · ctxs +
∑
j∈U

ctxrj

dsi := TDec(ctxz , ski ,U) dsi

z := Comb(ctxz , {dsj}j∈U ) {dsj}j∈U\{i}

return σ := (c, z)

23



Contents

Threshold Cryptography

Lattice Assumptions

Threshold Challenges

Threshold BGV Encryption

Passive Signature Scheme

Optimizations

Comparison

24



Optimizations
▶ Renyi Divergence instead of noise drowning for decryption

▶ MLWE with Hints instead of noise drowning for signatures

▶ Three round scheme→ avoid trapdoor commitments

▶ Pre-processing first two rounds→ non-interactive signing

▶ Using improved zero-knowledge proofs from the literature

▶ Improved distributed key generation for many parties

▶ Formalizing and proving identifiable aborts for our signatures

▶ Implementation based on the Raccoon signature scheme

25



Distributed Key Generation

26



Actively Secure Scheme

27



Contents

Threshold Cryptography

Lattice Assumptions

Threshold Challenges

Threshold BGV Encryption

Passive Signature Scheme

Optimizations

Comparison

28



Comparison

29



Thank you! Questions?

30


	Threshold Cryptography
	Lattice Assumptions
	Threshold Challenges
	Threshold BGV Encryption
	Passive Signature Scheme
	Optimizations
	Comparison

