
Zero Knowledge Proofs:

Challenges, Applications, and Real-world Deployment
NIST Workshop on Privacy Enhancing Cryptography

September 26th, 2024

 Tjerand Silde & Akira Takahashi

2WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

This talk

1) Introduction to Zero Knowledge Proof (Akira)

2) Technical Challenges (Akira)

3) Real-World Applications (Tjerand)

4) Insights from ZKP Workshop (Tjerand)

5) Resources and Standards (Tjerand)

3WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

What is Zero Knowledge Proof?

• ZKP is a two-party protocol, consisting of
Prover and Verifier

•With ZKP, Prover can convince Verifier that
she has some secret information without
disclosing the secret

• Long history of research starting from the
‘80s [GMR85]. Lots of efficiency
improvements during the last decade

• cf. ZK-SNARK (Succinct Non-
interactive Argument of Knowledge)

Basics

4WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Syntax of ZKP

• If Prover and Verifier honestly follow the
protocol, then Verifier halts by outputting

Completeness

5WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Security Goals of Zero Knowledge Proof

?

• Protecting against malicious verifier

• Verifier learns nothing about Prover’s secret

• Formally, ZK is guaranteed by showing the existence of
“Simulator”

Zero Knowledge (ZK)

6WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Security Goals of Zero Knowledge Proof

• Protecting against malicious verifier

• Verifier learns nothing about Prover’s secret

• Formally, ZK is guaranteed by showing the existence of
“Simulator”

Zero Knowledge (ZK)

Knowledge Soundness (KSND)

• Protecting against malicious prover

• If Prover uses an invalid secret, then Verifier catches it
with high probability

• Formally, knowledge soundness is guaranteed by
showing the existence of “Knowledge Extractor”

7WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Non-interactive Zero Knowledge Proof (NIZK)

• Structured Reference String (SRS)

• Hash function modeled as Random Oracle

• Or both!

Types of Trusted Setup

Removing Interactions

• Ideally, Prover should create a one-shot
proof string π

• Verifier checks π asynchronously

• Such π is reusable and can be checked
by potentially many verifiers

8WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Non-interactive Zero Knowledge Proof (NIZK)

• Structured Reference String (SRS)

• Hash function modeled as Random Oracle

• Or both!

Types of Trusted Setup

Removing Interactions

• Ideally, Prover should create a one-shot
proof string π

• Verifier checks π asynchronously

• Such π is reusable and can be checked
by potentially many verifiers

9WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Non-interactive Zero Knowledge Proof (NIZK)

Types of Trusted Setup

Removing Interactions

• Ideally, Prover should create a one-shot
proof string π

• Verifier checks π asynchronously

• Such π is reusable and can be checked
by potentially many verifiers

• Structured Reference String (SRS)

• Hash function modeled as Random Oracle

• Or both!

10WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Non-interactive Zero Knowledge Proof (NIZK)

Types of Trusted Setup

Removing Interactions

• Ideally, Prover should create a one-shot
proof string π

• Verifier checks π asynchronously

• Such π is reusable and can be checked
by potentially many verifiers

• Structured Reference String (SRS)

• Hash function modeled as Random Oracle

• Or both!

11WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Paradigm of NIZK I: Fiat-Shamir [FS87]

• Step 1. Construct a “public-coin” interactive protocol
● Verifier does not require a secret state
● ZK against semi-honest Verifier (Honest-Verifier ZK)

• Step 2. NI Prover and Verifier obtain challenge by locally
hashing a partial transcript so far

• Bonus: By hashing the message, FS-NIZK gives rise to a
digital signature

• Example: Schnorr/EdDSA, CRYSTALS-Dilithium, PLONK
family, Bulletproofs, etc.

• Many modern SNARKs are constructed from (Polynomial)
Interactive Oracle Proofs converted to NIZK via Fiat-Shamir
[BCS16, CHMMVW19, BFS19, GWC19, CFFQR20,...]

Modular Design of NIZK

12WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Paradigm of NIZK I: Fiat-Shamir [FS87]

• Step 1. Construct a “public-coin” interactive protocol
● Verifier does not require a secret state
● ZK against semi-honest Verifier (Honest-Verifier ZK)

• Step 2. NI Prover and Verifier obtain challenge by locally
hashing a partial transcript so far

• Bonus: By hashing the message, FS-NIZK gives rise to a
digital signature

• Example: Schnorr/EdDSA, CRYSTALS-Dilithium, PLONK
family, Bulletproofs, etc.

• Many modern SNARKs are constructed from (Polynomial)
Interactive Oracle Proofs converted to NIZK via Fiat-Shamir
[BCS16, CHMMVW19, BFS19, GWC19, CFFQR20,...]

Modular Design of NIZK

13WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Paradigm of NIZK I: Fiat-Shamir [FS87]

• Step 1. Construct a “public-coin” interactive protocol
● Verifier does not require a secret state
● ZK against semi-honest Verifier (Honest-Verifier ZK)

• Step 2. NI Prover and Verifier obtain challenge by locally
hashing a partial transcript so far

• Bonus: By hashing the message, FS-NIZK gives rise to a
digital signature

• Example: Schnorr/EdDSA, CRYSTALS-Dilithium, PLONK
family, Bulletproofs, etc.

• Many modern SNARKs are constructed from (Polynomial)
Interactive Oracle Proofs converted to NIZK via Fiat-Shamir
[BCS16, CHMMVW19, BFS19, GWC19, CFFQR20,...]

Modular Design of NIZK

14WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Paradigm of NIZK I: Fiat-Shamir [FS87]

• Step 1. Construct a “public-coin” interactive protocol
● Verifier does not require a secret state
● ZK against semi-honest Verifier (Honest-Verifier ZK)

• Step 2. NI Prover and Verifier obtain challenge by locally
hashing a partial transcript so far

• Bonus: By hashing the message, FS-NIZK gives rise to a
digital signature

• Example: Schnorr/EdDSA, CRYSTALS-Dilithium, PLONK
family, Bulletproofs, etc.

• Many modern SNARKs are constructed from (Polynomial)
Interactive Oracle Proofs converted to NIZK via Fiat-Shamir
[BCS16, CHMMVW19, BFS19, GWC19, CFFQR20,...]

Modular Design of NIZKInteractive Oracle Proof

Interactive Zero Knowledge Proof

Non-interactive Zero Knowledge Proof

(No computational assumption)

(Often only secure against computationally bounded adversaries)

+ Cryptographic Commitment

+ Fiat-Shamir

15WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Paradigm of NIZK II: Linear Interactive Proofs [GGPR13,BCI+13]

• Step 1. srs generator outputs a relation-dependent
vector

• Step 2. NI Prover applies linear transformation to
srs

• Step 3. NI Verifier derives a testing function,
allowing to check whether correct linear
transformation has been applied

• Example: Groth16

• Important: Prover and Verifier should never learn
internal randomness of Gen; otherwise, malicious
prover can easily prove a false statement

NIZK without Fiat-Shamir

16WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Technical Challenges

1) Balancing Generality, Efficiency and Assumptions

2)Advanced Security

3)Interoperability

17WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Types of ZKP

General-Purpose ZKP

• Supports arbitrary NP relation R

• Relation is often described using an arithmetic circuit

• Pros:
● Can prove correct execution of any program
● Suitable for verifiable and outsourced computation

• Cons:
● circuit gets complex for certain non-linear computations
● E.g., elliptic curve arithmetic, comparison, table lookup, etc.

Specialized ZKP

• Designed for particular type of NP relation R

• Pros:

● Can prove and verify designated relations efficiently

● Sufficient for some useful applications, e.g., proof of
correct encryption, distributed key generation,
signatures, etc.

• Cons:

● Requires careful integration with general-purpose ZKP
to support more complex statements

18WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Types of ZKP

General-Purpose ZKP

• Supports arbitrary NP relation R

• Relation is often described using an arithmetic circuit

• Pros:
● Can prove correct execution of any program
● Suitable for verifiable and outsourced computation

• Cons:
● circuit gets complex for certain non-linear computations
● E.g., elliptic curve arithmetic, comparison, table lookup, etc.

Specialized ZKP

• Designed for particular type of NP relation R

• Pros:

● Can prove and verify designated relations efficiently

● Sufficient for some useful applications, e.g., proof of
correct encryption, distributed key generation,
signatures, etc.

• Cons:

● Requires careful integration with general-purpose ZKP
to support more complex statements

19WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Desiderata

Proof Size

• Smaller proof saves storage and communication
bandwidth

• Groth16 requires only 3 group elements from pairing-
friendly curves

• State-of-the-art Polymath [Lip24] and PARI [DMS24]
achieve even smaller proof sizes!

Assumptions

Setup, Prover and Verifier Cost Scalability

• To minimize a trust assumption, SRS should be avoided

• Better alternative: only trust the security of hash
function modeled as RO (aka transparent setup), e.g.,
Bulletproofs, Brakedown, STARK, LaBRADOR, MPC/VOLE-
in-the-Head, etc.

• Middle-ground solution: allows different parties to
update SRS (aka updatable SRS) [GKMMM18]

• Universal Setup: Setup outputs SRS once and for all
for arbitrary circuits

• Verifier sub-linear in

• Prover time linear in #non-linear gates

• Verifier sub-linear in

• Prover time linear in #non-linear gates

• How can we prove a large statement efficiently?
● Proof Aggregation: aggregate many,

asynchronously generated proofs, e.g., SnarkPack
● Incrementally Verifiable Computation [Valiant08]:

succinct proof of incremental computations via
recursion or folding, e.g., Halo2, Nova, etc.

20WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Desiderata

Proof Size

• Smaller proof saves storage and communication
bandwidth

• Groth16 requires only 3 group elements from pairing-
friendly curves

• State-of-the-art Polymath [Lip24] and PARI [DMS24]
achieve even smaller proof sizes!

Assumptions

Setup, Prover and Verifier Cost Scalability

• To minimize a trust assumption, SRS should be avoided

• Better alternative: only trust the security of hash
function modeled as RO (aka transparent setup), e.g.,
Bulletproofs, Brakedown, STARK, LaBRADOR, MPC/VOLE-
in-the-Head, etc.

• Middle-ground solution: allows different parties to
update SRS (aka updatable SRS) [GKMMM18]

• Universal Setup: Setup outputs SRS once and for all
for arbitrary circuits

• Verifier sub-linear in

• Prover time linear in #non-linear gates

• Verifier sub-linear in

• Prover time linear in #non-linear gates

• How can we prove a large statement efficiently?
● Proof Aggregation: aggregate many,

asynchronously generated proofs, e.g., SnarkPack
● Incrementally Verifiable Computation [Valiant08]:

succinct proof of incremental computations via
recursion or folding, e.g., Halo2, Nova, etc.

21WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Desiderata

Proof Size

• Smaller proof saves storage and communication
bandwidth

• Groth16 requires only 3 group elements from pairing-
friendly curves

• State-of-the-art Polymath [Lip24] and PARI [DMS24]
achieve even smaller proof sizes!

Assumptions

Setup, Prover and Verifier Cost Scalability

• To minimize a trust assumption, SRS should be avoided

• Better alternative: only trust the security of hash
function modeled as RO (aka transparent setup), e.g.,
Bulletproofs, Brakedown, STARK, LaBRADOR, MPC/VOLE-
in-the-Head, etc.

• Middle-ground solution: allows different parties to
update SRS (aka updatable SRS) [GKMMM18]

• Universal Setup: Setup outputs SRS once and for all
for arbitrary circuits

• Verifier sub-linear in

• Prover time linear in #non-linear gates

• Verifier sub-linear in

• Prover time linear in #non-linear gates

• How can we prove a large statement efficiently?
● Proof Aggregation: aggregate many,

asynchronously generated proofs, e.g., SnarkPack
● Incrementally Verifiable Computation [Valiant08]:

succinct proof of incremental computations via
recursion or folding, e.g., Halo2, Nova, etc.

22WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Desiderata

Proof Size

• Smaller proof saves storage and communication
bandwidth

• Groth16 requires only 3 group elements from pairing-
friendly curves

• State-of-the-art Polymath [Lip24] and PARI [DMS24]
achieve even smaller proof sizes!

Assumptions

Setup, Prover and Verifier Cost Scalability

• To minimize a trust assumption, SRS should be avoided

• Better alternative: only trust the security of hash
function modeled as RO (aka transparent setup), e.g.,
Bulletproofs, Brakedown, STARK, LaBRADOR, MPC/VOLE-
in-the-Head, etc.

• Middle-ground solution: allows different parties to
update SRS (aka updatable SRS) [GKMMM18]

• Universal Setup: Setup outputs SRS once and for all
for arbitrary circuits

• Verifier sub-linear in

• Prover time linear in #non-linear gates

• Verifier sub-linear in

• Prover time linear in #non-linear gates

• How can we prove a large statement efficiently?
● Proof Aggregation: aggregate many,

asynchronously generated proofs, e.g., SnarkPack
● Incrementally Verifiable Computation [Valiant08]:

succinct proof of incremental computations via
recursion or folding, e.g., Halo2, Nova, etc.

23WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Technical Challenges

1) Balancing Generality, Efficiency and Assumptions

2)Advanced Security

3)Interoperability

24WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

ZK and Knowledge Soundness are not Enough: Malleability Attacks

25WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Combined Notion: Simulation-Extractability

SIM-EXT Security

• Intuitively, SIM-EXT guarantees non-malleability: a
cheating prover cannot maul existing proofs to
create a new one, without knowing a valid witness

• Cf. (S)EUF-CMA for signature and IND-CCA for PKE

• Crucial property NIZK should satisfy if used as a
subroutine of another protocol

• Many practical NIZK schemes turn out to be SIM-EXT
[GKKNZ22] [GOPTT22] [DG23] [FFKR23] [KPT23] [Lib24]
[FFR24]

• Some schemes satisfy UC security [Canetti01]
accepting some idealized setup [CF24] [BFKT24]

26WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Technical Challenges

1) Balancing Generality, Efficiency and Assumptions

2)Advanced Security

3)Interoperability

27WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Anonymous Credentials (High Level)

• Issuer initially binds attributes and usk to secret credentials

• The owner of attributes produces a proof string in the form of
ZKP

• By examining the proof string, Verifier gets convinced that User
has valid attributes signed by Issuer

• Thanks to ZKP, the proof string only leaks minimum info about
Prover’s identity

• E.g., Verifier learns “User is => 21 years old” but nothing else

Protocol

28WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Anonymous Credentials (High Level)

• Central ZKP for AC: Proof-of-Knowledge of valid signature

• If an arbitrary signature scheme is allowed, many efficient
solutions exist: BBS+signature

• However, interoperability with standardized and widely
deployed signature is often preferred in practice, e.g., RSA-PSS,
ECDSA, EdDSA, etc.

• Verification condition of deployed schemes are not very ZK
friendly. Can we make tailored ZKP more efficient?

Interoperability

29WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Takeaways

•ZKP allows Prover to prove the knowledge of a secret, while Verifier learns nothing about the secret

• Important Security Properties: Knowledge Soundness and Zero Knowledge

•Choose between general-purpose ZKP and specialized ZKP, or compose them carefully

•Which setup assumption is suitable for deployment?

● Trusted, Transparent, Updatable, …

•What should you optimize?

● Proof Size, Setup / Prover / Verifier Costs, Scalability, Assumptions, …

•Check whether ZKP satisfies advanced security such as SIM-EXT or UC if ZKP is used a building block
of another protocol

•More research needed to optimize ZKP while retaining interoperability with standardized signatures
or encryption schemes

30WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

References

• [GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems
(extended abstract). In 17th ACM STOC, 1985.

• [FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO’86, 1986.

• [BCI+13] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. Succinct non-interactive arguments via
linear interactive proofs. In TCC’13. 2013. https://ia.cr/2012/718

• [GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct NIZKs without
PCPs. In EUROCRYP’13, 2013. https://ia.cr/2012/215

• [GKMMM18] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. Updatable and Universal Common
Reference Strings with Applications to zk-SNARKs, CRYPTO’18, 2018. https://ia.cr/2018/280

https://ia.cr/2012/718
https://ia.cr/2012/215
https://ia.cr/2018/280

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

