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This talk

1) Introduction to Zero Knowledge Proof (Akira)

2) Technical Challenges (Akira)

3) Real-World Applications (Tjerand)

4) Insights from ZKP Workshop (Tjerand)

5) Resources and Standards (Tjerand)
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What is Zero Knowledge Proof?

• ZKP is a two-party protocol, consisting of 
Prover and Verifier

•With ZKP, Prover can convince Verifier that 
she has some secret information without 
disclosing the secret

• Long history of research starting from the 
‘80s [GMR85]. Lots of efficiency 
improvements during the last decade

• cf. ZK-SNARK (Succinct Non-
interactive Argument of Knowledge)

Basics
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Syntax of ZKP

• If Prover and Verifier honestly follow the 
protocol, then Verifier halts by outputting 

Completeness
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Security Goals of Zero Knowledge Proof

?

• Protecting against malicious verifier

• Verifier learns nothing about Prover’s secret

• Formally, ZK is guaranteed by showing the existence of 
“Simulator”

Zero Knowledge (ZK)
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Security Goals of Zero Knowledge Proof

• Protecting against malicious verifier

• Verifier learns nothing about Prover’s secret

• Formally, ZK is guaranteed by showing the existence of 
“Simulator”

Zero Knowledge (ZK)

Knowledge Soundness (KSND)

• Protecting against malicious prover

• If Prover uses an invalid secret, then Verifier catches it 
with high probability

• Formally, knowledge soundness is guaranteed by 
showing the existence of “Knowledge Extractor”
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Non-interactive Zero Knowledge Proof (NIZK)

• Structured Reference String (SRS)

• Hash function modeled as Random Oracle 

• Or both!

Types of Trusted Setup

Removing Interactions

• Ideally, Prover should create a one-shot 
proof string π

• Verifier checks π asynchronously

• Such π is reusable and can be checked 
by potentially many verifiers
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Paradigm of NIZK I: Fiat-Shamir [FS87]

• Step 1. Construct a “public-coin” interactive protocol
● Verifier does not require a secret state
● ZK against semi-honest Verifier (Honest-Verifier ZK)

• Step 2. NI Prover and Verifier obtain challenge by locally 
hashing a partial transcript so far

• Bonus: By hashing the message, FS-NIZK gives rise to a 
digital signature

• Example: Schnorr/EdDSA, CRYSTALS-Dilithium, PLONK 
family, Bulletproofs, etc. 

• Many modern SNARKs are constructed from (Polynomial) 
Interactive Oracle Proofs converted to NIZK via Fiat-Shamir 
[BCS16, CHMMVW19, BFS19, GWC19, CFFQR20,...]  

Modular Design of NIZK
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Modular Design of NIZKInteractive Oracle Proof

Interactive Zero Knowledge Proof

Non-interactive Zero Knowledge Proof

(No computational assumption)

(Often only secure against computationally bounded adversaries)

+ Cryptographic Commitment

+ Fiat-Shamir
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Paradigm of NIZK II: Linear Interactive Proofs [GGPR13,BCI+13]

• Step 1. srs generator outputs a relation-dependent 
vector

• Step 2. NI Prover applies linear transformation to 
srs

• Step 3. NI Verifier derives a testing function, 
allowing to check whether correct linear 
transformation has been applied

• Example: Groth16

• Important: Prover and Verifier should never learn 
internal randomness of Gen; otherwise, malicious 
prover can easily prove a false statement

NIZK without Fiat-Shamir
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Technical Challenges

1) Balancing Generality, Efficiency and Assumptions

2)Advanced Security
 

3)Interoperability
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Types of ZKP

General-Purpose ZKP

• Supports arbitrary NP relation R

• Relation is often described using an arithmetic circuit

• Pros: 
● Can prove correct execution of any program
● Suitable for verifiable and outsourced computation

• Cons: 
● circuit gets complex for certain non-linear computations
● E.g., elliptic curve arithmetic, comparison, table lookup, etc.

Specialized ZKP

• Designed for particular type of NP relation R

• Pros:

● Can prove and verify designated relations efficiently

● Sufficient for some useful applications, e.g., proof of 
correct encryption, distributed key generation, 
signatures, etc.

• Cons: 

● Requires careful integration with general-purpose ZKP 
to support more complex statements 
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Desiderata

Proof Size

• Smaller proof saves storage and communication 
bandwidth

• Groth16 requires only 3 group elements from pairing-
friendly curves

• State-of-the-art Polymath [Lip24] and PARI [DMS24] 
achieve even smaller proof sizes!

Assumptions

Setup, Prover and Verifier Cost Scalability

• To minimize a trust assumption, SRS should be avoided

• Better alternative: only trust the security of hash 
function modeled as RO (aka transparent setup), e.g., 
Bulletproofs, Brakedown, STARK, LaBRADOR, MPC/VOLE-
in-the-Head, etc.

• Middle-ground solution: allows different parties to 
update SRS (aka updatable SRS) [GKMMM18]

• Universal Setup: Setup outputs SRS once and for all 
for arbitrary circuits

• Verifier sub-linear in 

• Prover time linear in #non-linear gates

• Verifier sub-linear in 

• Prover time linear in #non-linear gates

• How can we prove a large statement efficiently?
● Proof Aggregation: aggregate many, 

asynchronously generated proofs, e.g., SnarkPack 
● Incrementally Verifiable Computation [Valiant08]: 

succinct proof of incremental computations via 
recursion or folding, e.g., Halo2, Nova, etc. 
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Technical Challenges

1) Balancing Generality, Efficiency and Assumptions

2)Advanced Security
 

3)Interoperability
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ZK and Knowledge Soundness are not Enough: Malleability Attacks
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Combined Notion: Simulation-Extractability

SIM-EXT Security

• Intuitively, SIM-EXT guarantees non-malleability: a 
cheating prover cannot maul existing proofs to 
create a new one, without knowing a valid witness

• Cf. (S)EUF-CMA for signature and IND-CCA for PKE

• Crucial property NIZK should satisfy if used as a 
subroutine of another protocol

• Many practical NIZK schemes turn out to be SIM-EXT 
[GKKNZ22] [GOPTT22] [DG23] [FFKR23] [KPT23] [Lib24] 
[FFR24]

• Some schemes satisfy UC security [Canetti01] 
accepting some idealized setup  [CF24] [BFKT24]
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Anonymous Credentials (High Level)

• Issuer initially binds attributes and usk to secret credentials

• The owner of attributes produces a proof string in the form of 
ZKP

• By examining the proof string, Verifier gets convinced that User 
has valid attributes signed by Issuer

• Thanks to ZKP, the proof string only leaks minimum info about 
Prover’s identity

• E.g., Verifier learns “User is => 21 years old” but nothing else

Protocol
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Anonymous Credentials (High Level)

• Central ZKP for AC: Proof-of-Knowledge of valid signature

• If an arbitrary signature scheme is allowed, many efficient 
solutions exist: BBS+signature

• However, interoperability with standardized and widely 
deployed signature is often preferred in practice, e.g., RSA-PSS, 
ECDSA, EdDSA, etc.

• Verification condition of deployed schemes are not very ZK 
friendly. Can we make tailored ZKP more efficient?

Interoperability
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Takeaways

•ZKP allows Prover to prove the knowledge of a secret, while Verifier learns nothing about the secret

• Important Security Properties: Knowledge Soundness and Zero Knowledge

•Choose between general-purpose ZKP and specialized ZKP, or compose them carefully

•Which setup assumption is suitable for deployment?

● Trusted, Transparent, Updatable, … 

•What should you optimize? 

● Proof Size, Setup / Prover / Verifier Costs, Scalability, Assumptions, …

•Check whether ZKP satisfies advanced security such as SIM-EXT or UC if ZKP is used a building block 
of another protocol

•More research needed to optimize ZKP while retaining interoperability with standardized signatures 
or encryption schemes
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