Norwegian University of
Science and Technology O NTNU L

LATTICE-BASED VERIFIABLE SHUFFLE AND DECRYPTION

Diego Aranha, Carsten Baum, Kristan Gjøsteen, Thomas Haines, Johannes Muller, Peter Rønne, **Tjerand Silde** and Thor Tunge

November 26, 2020

 ${v_{\pi(i)}}\}_{\forall i}$

 $\{v_{\pi(i)}\}$ ∀i

[Introduction](#page-2-0) - Goals

- **1.** Build a zero-knowledge protocol to prove correct shuffle of messages
- **2.** Extend the shuffle to handle ciphertexts instead of messages
- **3.** Build a mixing network from the extended shuffle
- **4.** Combine everything to construct systems for electronic voting
- **5.** Use primitives based on lattices to achieve post-quantum security

[Preliminaries](#page-3-0) - Commitment

Algorithms:

Com : samples randomness r_m and commits to m as $[m] = \text{Com}(m; r_m)$. <code>Open</code> : <code>takes</code> as input ([m], $m, \bm{r}_m)$ and verifies that [m] $\stackrel{?}{=}$ Com(m; $\bm{r}_m).$

Properties:

Binding : it is hard to find $m \neq \hat{m}$ and $r_m \neq \hat{r}_{\hat{m}}$ s.t. Com($m; r_m$) = Com($\hat{m}; \hat{r}_{\hat{m}}$). Hiding : it is hard to distinguish $Com(m; r_m)$ from $Com(0; r₀)$ when given m.

For more details about the commitment scheme see Baum et al. $IBDL+181$.

[Preliminaries](#page-3-0) - Proof of Linearity

Let

$$
[x] = \text{Com}(x; \mathbf{r}) \quad \text{ and } \quad [x'] = [\alpha x + \beta] = \text{Com}(x'; \mathbf{r}').
$$

Then the protocol Π_{lin} is a sigma-protocol to prove the relation $x' = \alpha x + \beta$, given the commitments [x] , [x'] and the scalars α, β .

For more details about the proof of linearity see Baum et al. $[BDL+18]$ $[BDL+18]$.

[Preliminaries](#page-3-0) - Amortized Proof of Shortness

Let

$$
[x_1] = \text{Com}(x_1; \mathbf{r}_1), \quad [x_2] = \text{Com}(x_2; \mathbf{r}_2), \quad ..., \quad [x_n] = \text{Com}(x_n; \mathbf{r}_n),
$$

where all are commitments to short values. Then the protocol Π_{Δ} is a sigma-protocol to prove that the underlying messages of $[x_1]$, $[x_2]$, ..., $[x_n]$ are bounded.

For more details about the amortized proof see Baum et al. $[BBC + 18]$ $[BBC + 18]$.

[Preliminaries](#page-3-0) - BGV Encryption

<code>KeyGen samples</code> random $a \stackrel{\$} \leftarrow R_{\bm{q}}$, short $s \leftarrow R_{\bm{q}}$ and noise $e \leftarrow \mathcal{N}_{\sigma_{\bm{\mathsf{E}}}}.$ The algorithm outputs $pk = (a, b) = (a, as + pe)$ and $sk = s$.

 $\,$ Enc $\,$ samples a short $\,r \leftarrow R_{q}$ and noise $e_1,e_2 \leftarrow \mathcal{N}_{\sigma_{\rm E}}$, and outputs $(u, v) = (ar + pe_1, br + pe_2 + m).$

Dec outputs $m \equiv v - su \mod q \mod p$ when noise is bounded by $|q/2|$.

For more details about the encryption scheme see Brakerski et al. [\[BGV12\]](#page-23-2).

[Proof of Shuffle](#page-7-0) - Setting

► Public information: sets of commitments $\{[m_i]\}_{i=1}^{\tau}$ and messages $\{\hat{m}_i\}_{i=1}^{\tau}$.

- **P** knows the openings $\{(m_i, r_{m_i}, f_i)\}_{i=1}^{\tau}$ of the commitments $\{[m_i]\}_{i=1}^{\tau}$,
- **■** and P knows a permutation π such that $\hat{m}_i = m_{\pi^{-1}(i)}$ for all $i = 1, ..., \tau$.
- \triangleright We construct a 4 + 3 τ -move ZKPoK protocol to prove this statement.
- \triangleright This extends Neff's construction [\[Nef01\]](#page-24-0) to the realm of PQ assumptions.

[Proof of Shuffle](#page-7-0) - Linear System

As a first step, P draws $\theta_i \stackrel{\$}{\leftarrow} R_q$ uniformly at random for each $i \in \{1, \ldots, \tau\}$, and computes the commitments:

$$
[D_1] = \left[\theta_1 \hat{M}_1\right]
$$

\n
$$
\forall j \in \{2, \dots, \tau - 1\} : [D_j] = \left[\theta_{j-1} M_j + \theta_j \hat{M}_j\right]
$$

\n
$$
[D_\tau] = \left[\theta_{\tau-1} M_\tau\right].
$$
\n(1)

[Proof of Shuffle](#page-7-0) - Linear System

P receives a challenge $\beta \in R_q$ and computes $s_i \in R_q$ such that the following equations are satisfied:

$$
\beta M_1 + s_1 \hat{M}_1 = \theta_1 \hat{M}_1
$$

\n
$$
\forall j \in \{2, ..., \tau - 1\} : s_{j-1} M_j + s_j \hat{M}_j = \theta_{j-1} M_j + \theta_j \hat{M}_j
$$

\n
$$
s_{\tau-1} M_\tau + (-1)^\tau \beta \hat{M}_\tau = \theta_{\tau-1} M_\tau.
$$
\n(2)

[Proof of Shuffle](#page-7-0) - Linear System

P uses the protocol Π $_{\sf Lin}$ to prove that each commitment $[D_i]$ satisfies the equations [\(2\)](#page-9-0). In order to compute the s_i values, we can use the following fact:

Lemma *Choosing*

$$
s_j = (-1)^j \cdot \beta \prod_{i=1}^j \frac{M_i}{\hat{M}_i} + \theta_j \tag{3}
$$

for all $i \in 1, \ldots, \tau - 1$ *yields a valid assignment for Equation* [\(2\)](#page-9-0).

[Proof of Shuffle](#page-7-0) - Protocol

[Proof of Shuffle](#page-7-0) - Performance

▶ Optimal parameters for the commitment scheme is $q \approx 2^{32}$ and $N = 2^{10}$.

- The proof of linearity use Gaussian noise of standard deviation $\sigma_C \approx 2^{15}$.
- \triangleright The prover sends 1 commitment, 1 ring-element and 1 proof per message.
- **►** The shuffle proof is of total size $\approx 21\tau$ KB for τ messages.
- **IDE** The shuffle proof takes $\approx 18\tau$ ms to compute for τ messages.

[Mixing Network](#page-13-0) - Extending the Shuffle

- \triangleright We extend the shuffle to ciphertexts instead of messages
- \triangleright We create a mixing network that does the following:
	- **1.** Randomize the ciphertexts
	- **2.** Commit to the randomness
	- **3.** Permute the ciphertexts
	- **4.** Prove that shuffle is correct
	- **5.** Prove that the randomness is short
- \blacktriangleright Integrity holds because of the proofs
- \blacktriangleright Privacy if at least one server is honest

[Verifiable Key-Shifting](#page-14-0) - Protocol

 \blacktriangleright We're given a ciphertext (u, v) under key s_1 .

 \blacktriangleright We want the ciphertext (u', v') under key $s = s_1 + s_2$.

- \blacktriangleright The protocol works as following:
	- **1.** Compute $(u', v') = (u + ar' + pE_1, v + us_2 + br' + pE_2)$
	- **2.** We need s_1 and s_2 to be short to achieve correctness
	- **3.** We need E_1 and E_2 to be 2^{sec} larger than s for privacy
	- **4.** We use Π_{lin} to prove correctness of each computation
	- **5.** We use Π_A to prove that E_1 and E_2 are bounded
- \blacktriangleright Distributed protocol for $s_2 = \sum_j \hat{s}_j$ where \hat{s}_j are random.

[Verifiable Decryption](#page-15-0) - Distributed Decryption

Actively secure distributed decryption protocol from [\[DPSZ12\]](#page-23-3):

- \triangleright On input key s_i and ciphertext (u, v) , sample large noise E_j , output $t_j = s_j u + \rho E_j.$
- \blacktriangleright We use Π_{Lin} to prove correct computation.
- \blacktriangleright We use Π_A to prove that E_j is bounded.

We obtain the plaintext as $m \equiv (v - t \mod q)$ mod *p*, where $t = t_1 + t_2 + ... + t_{\xi}$.

[Verifiable Decryption](#page-15-0) - MPC in the Head

- **1.** Deal splits the key into two parts and prove correctness.
- **2.** Play compute a decryption share $t_{i,j}$ based on key share $s_i.$
- **3.** P commits to the shares, and V challenges half of them.
- **4.** V verifies all shares.
- **5.** V reconstructs to check the message from the shares.

Norwegian University of Science and Technology

[Verifiable Decryption](#page-15-0) - MPC in the Head

► Can run the protocol λ times for soundness $2^{-\lambda}$.

- **In Can choose security parameter** κ **such that** $\kappa > \lambda$ **.**
- **Deal is dependent on** λ **, not the number of messages** τ **.**
- **►** The decryption proof is of total size $\approx 8\lambda\tau$ KB for τ messages.
- **IDED** The decryption proof takes time \approx 34 $\lambda \tau$ μ s to compute for τ messages.

[Verifiable Decryption](#page-15-0) - One-Party Decryption

New: We can decrypt directly as following:

- \blacktriangleright Public commitment [s] to secret key s.
- \triangleright Compute $m_i \equiv (v_i su_i \mod q)$ mod p.

$$
\blacktriangleright \text{ Commit to } d_i = v_i - su_i - m_i \text{ as } [d_i].
$$

- \blacktriangleright Use Π_{lin} to prove correct computation.
- \blacktriangleright Use Π_A to prove that each d_i is bounded.

[Electronic Voting](#page-19-0) - Setting

 \triangleright We use a trusted printer to give users return codes.

- ▶ Each user have their own return-code-key \hat{k} .
- \blacktriangleright The return code server has a secret PRF-key k.
- \triangleright We encrypt openings of commitments using verifiable encryption.
- \triangleright Trusted election authorities EA verifies proofs and views.

[Electronic Voting](#page-19-0) - Verifiable Shuffle-Decryption

- \triangleright SD both shuffle and decrypt the votes.
- Integrity follows from the ZK -proof.
- ▶ Privacy if B and SD does not collude. \bigcap_{U_i}

[Electronic Voting](#page-19-0) - Verifiable Mix-Net

- \triangleright S may consist of many shuffle-servers.
- \triangleright D may consist of many decryption-servers, or many key-shifting servers and only one decryption server.
- \blacktriangleright Integrity follows from the ZK-proofs.
- \blacktriangleright Privacy holds if the following is true: **1.** at least one shuffle-server is honest, and **2.** at least one decryption-server is honest.

Thank you! Any questions?

O NTNU | Norwegian University of

冨 Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth, and Vadim Lyubashevsky.

Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits. In Hovav Shacham and Alexandra Boldyreva, editors, *CRYPTO 2018, Part II*, volume 10992 of *LNCS*, pages 669–699. Springer, Heidelberg, August 2018.

- **Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner, and** Chris Peikert. More efficient commitments from structured lattice assumptions. In Dario Catalano and Roberto De Prisco, editors, *SCN 18*, volume 11035 of *LNCS*, pages 368–385. Springer, Heidelberg, September 2018.
- **Z** Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption without bootstrapping. In Shafi Goldwasser, editor, *ITCS 2012*, pages 309–325. ACM, January 2012.
- 畐 Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.

Multiparty computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, *CRYPTO 2012*, volume 7417 of *LNCS*, pages 643–662. Springer, Heidelberg, August 2012.

C. Andrew Neff.

A verifiable secret shuffle and its application to e-voting.

In Michael K. Reiter and Pierangela Samarati, editors, *ACM CCS 2001*, pages 116–125. ACM Press, November 2001.

