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Introduction - Goals

1. Build a zero-knowledge protocol to prove correct shuffle of messages
2. Extend the shuffle to handle ciphertexts instead of messages
3. Build a mixing network from the extended shuffle
4. Combine everything to construct systems for electronic voting
5. Use primitives based on lattices to achieve post-quantum security
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Preliminaries - Commitment

Algorithms:
Com : samples randomness rm and commits to m as [m] = Com(m; rm).

Open : takes as input ([m],m, rm) and verifies that [m]
?
= Com(m; rm).

Properties:
Binding : it is hard to find m 6= m̂ and rm 6= r̂ m̂ s.t. Com(m; rm) = Com(m̂; r̂ m̂).
Hiding : it is hard to distinguish Com(m; rm) from Com(0; r0) when given m.

For more details about the commitment scheme see Baum et al. [BDL+18].
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Preliminaries - Proof of Linearity

Let

[x ] = Com(x ; r) and
[
x ′
]

= [αx + β] = Com(x ′; r ′).

Then the protocol ΠLin is a sigma-protocol to prove the relation
x ′ = αx + β, given the commitments [x ] , [x ′] and the scalars α, β.

For more details about the proof of linearity see Baum et al. [BDL+18].
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Preliminaries - Amortized Proof of Shortness

Let

[x1] = Com(x1; r1), [x2] = Com(x2; r2), ..., [xn] = Com(xn; rn),

where all are commitments to short values. Then the protocol
ΠA is a sigma-protocol to prove that the underlying messages
of [x1] , [x2] , ..., [xn] are bounded.

For more details about the amortized proof see Baum et al. [BBC+18].
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Preliminaries - BGV Encryption

KeyGen samples random a
$← Rq , short s ← Rq and noise e ← NσE .

The algorithm outputs pk = (a, b) = (a, as + pe) and sk = s.

Enc samples a short r ← Rq and noise e1, e2 ← NσE , and outputs
(u, v) = (ar + pe1, br + pe2 + m).

Dec outputs m ≡ v − su mod q mod p when noise is bounded by bq/2c.

For more details about the encryption scheme see Brakerski et al. [BGV12].
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Proof of Shuffle - Setting

I Public information: sets of commitments {[mi ]}τi=1 and messages {m̂i}τi=1.

I P knows the openings {(mi , rmi , fi )}τi=1 of the commitments {[mi ]}τi=1,

I and P knows a permutation π such that m̂i = mπ−1(i) for all i = 1, ..., τ .

I We construct a 4 + 3τ -move ZKPoK protocol to prove this statement.

I This extends Neff’s construction [Nef01] to the realm of PQ assumptions.

7 / 21



Proof of Shuffle - Linear System

As a first step, P draws θi $← Rq uniformly at random
for each i ∈ {1, . . . , τ}, and computes the commitments:

[D1] =
[
θ1M̂1

]
∀j ∈ {2, . . . , τ − 1} : [Dj ] =

[
θj−1Mj + θjM̂j

]
[Dτ ] = [θτ−1Mτ ] .

(1)
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Proof of Shuffle - Linear System

P receives a challenge β ∈ Rq and computes si ∈ Rq such
that the following equations are satisfied:

βM1 + s1M̂1 = θ1M̂1

∀j ∈ {2, . . . , τ − 1} : sj−1Mj + sjM̂j = θj−1Mj + θjM̂j

sτ−1Mτ + (−1)τβM̂τ = θτ−1Mτ .

(2)
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Proof of Shuffle - Linear System

P uses the protocol ΠLin to prove that each commitment [Di ] satisfies the
equations (2). In order to compute the si values, we can use the following fact:
Lemma
Choosing

sj = (−1)j · β
j∏

i=1

Mi

M̂i

+ θj (3)

for all j ∈ 1, . . . , τ − 1 yields a valid assignment for Equation (2).
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Proof of Shuffle - Protocol
Zero-Knowledge Proof ΠShuffle of Correct Shuffle
Prover,P Verifier,V

ρ ρ
$← Rq \ {m̂i}τi=1

M̂i = m̂i − ρ M̂i = m̂i − ρ
Mi = mi − ρ [Mi ] = [mi ]− ρ

θi
$← Rq,∀i ∈ [τ − 1]

Compute [Di ] as in Eq. (1), i.e.
[D1] = [θ1M̂1], [Dτ ] = [θτ−1Mτ ],

[Di ] = [θi−1Mi + θiM̂i ] for i ∈ [τ − 1] \ {1} {[Di ]}τi=1

β β
$← Rq

Compute si ,∀i ∈ [τ − 1] as in (3). {si}τ−1
i=1

Use ΠLin to prove that
(1) β[M1] + s1M̂1 = [D1]

(2) ∀i ∈ [τ − 1] \ {1} : si−1[Mi ] + siM̂i = [Di ]

(3) sτ−1[Mτ ] + (−1)τβM̂τ = [Dτ ]

i.e. all equations from (2)
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Proof of Shuffle - Performance

I Optimal parameters for the commitment scheme is q ≈ 232 and N = 210.

I The proof of linearity use Gaussian noise of standard deviation σC ≈ 215.

I The prover sends 1 commitment, 1 ring-element and 1 proof per message.

I The shuffle proof is of total size ≈ 21τ KB for τ messages.

I The shuffle proof takes ≈ 18τ ms to compute for τ messages.
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Mixing Network - Extending the Shuffle

I We extend the shuffle to ciphertexts
instead of messages

I We create a mixing network that does
the following:
1. Randomize the ciphertexts
2. Commit to the randomness
3. Permute the ciphertexts
4. Prove that shuffle is correct
5. Prove that the randomness is short

I Integrity holds because of the proofs
I Privacy if at least one server is honest

S1 S2 . . . Sn
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i } {c(1)
i } {c(2)

i } {c(n−1)
i } {c(n)

i }
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Verifiable Key-Shifting - Protocol

I We’re given a ciphertext (u, v) under key s1.

I We want the ciphertext (u′, v ′) under key s = s1 + s2.

I The protocol works as following:
1. Compute (u′, v ′) = (u + ar ′ + pE1, v + us2 + br ′ + pE2)
2. We need s1 and s2 to be short to achieve correctness
3. We need E1 and E2 to be 2sec larger than s for privacy
4. We use ΠLin to prove correctness of each computation
5. We use ΠA to prove that E1 and E2 are bounded

I Distributed protocol for s2 =
∑

j ŝj where ŝj are random.
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Verifiable Decryption - Distributed Decryption

Actively secure distributed decryption protocol
from [DPSZ12]:

I On input key sj and ciphertext (u, v),
sample large noise Ej , output tj = sju + pEj .

I We use ΠLin to prove correct computation.
I We use ΠA to prove that Ej is bounded.

We obtain the plaintext as m ≡ (v − t mod q)
mod p, where t = t1 + t2 + ...+ tξ.

S

D1

...

Dj

...

Dξ

{mi}

{c i}

{c i}

{c i}

{(ti ,1, πD1)}

{(ti ,j , πDj
)}

{(ti ,ξ, πDξ
)}
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Verifiable Decryption - MPC in the Head

1. Deal splits the key into two
parts and prove correctness.

2. Play compute a decryption
share ti ,j based on key share si .

3. P commits to the shares, and
V challenges half of them.

4. V verifies all shares.
5. V reconstructs to check the

message from the shares.

ΠZKPCD

Prover((pk, {cj}τj=1, {mj}τj=1), (sk)) Verifier(pk, {cj}τj=1, {mj}τj=1)

k = 1, ..., λ :

(sk0,k , sk1,k , auxk)← Deal(pk, sk)

i = 0, 1, j = 1, ..., τ :

ti,j,k ← Play(ski,k , cj ; ρi,k,j)

w ← ({auxk , {ti,j,k}})

w

β
$←− {0, 1}λ

β

z ← ({skβ[k],k}k , {ρβ[k],k,j}k,j)

z

k = 1, ..., λ :

Verify(pk, auxk ,β[k], skβ[k],k)
?
= 1

j = 1, ..., τ :

Play(skβ[k],k , cj ; ρβ[k],k,j)
?
= tβ[k],j,k

Reconstruct(cj , t0,j,k , t1,j,k)
?
= mj
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Verifiable Decryption - MPC in the Head

I Can run the protocol λ times for soundness 2−λ.

I Can choose security parameter κ such that κ > λ.

I Deal is dependent on λ, not the number of messages τ .

I The decryption proof is of total size ≈ 8λτ KB for τ messages.

I The decryption proof takes time ≈ 34λτ µs to compute for τ messages.
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Verifiable Decryption - One-Party Decryption

New: We can decrypt directly as following:

I Public commitment [s] to secret key s.

I Compute mi ≡ (vi − sui mod q) mod p.

I Commit to di = vi − sui −mi as [di ].

I Use ΠLin to prove correct computation.

I Use ΠA to prove that each di is bounded.
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Electronic Voting - Setting

I We use a trusted printer to give users return codes.

I Each user have their own return-code-key k̂ .

I The return code server has a secret PRF-key k .

I We encrypt openings of commitments using verifiable encryption.

I Trusted election authorities EA verifies proofs and views.
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Electronic Voting - Verifiable Shuffle-Decryption

I SD both shuffle and decrypt the votes.

I Integrity follows from the ZK-proof.

I Privacy if B and SD does not collude. Ui
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Electronic Voting - Verifiable Mix-Net

I S may consist of many shuffle-servers.

I D may consist of many decryption-servers,
or many key-shifting servers and only one
decryption server.

I Integrity follows from the ZK-proofs.

I Privacy holds if the following is true:
1. at least one shuffle-server is honest, and
2. at least one decryption-server is honest.
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Thank you! Any questions?
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