
LATTICE-BASED VERIFIABLE
SHUFFLE AND DECRYPTION

Diego Aranha, Carsten Baum, Kristan Gjøsteen, Thomas Haines,
Johannes Muller, Peter Rønne, Tjerand Silde and Thor Tunge

November 26, 2020



Introduction

Preliminaries

Proof of Shuffle

Mixing Network

Verifiable Key-Shifting

Verifiable Decryption

Electronic Voting

Ui

B SD

EA

{vπ(i)}∀i

{(cvi , evi )}∀i

(cvi , evi )

Ui

B {Si} {Di}

EA {vπ(i)}∀i

{evi}∀i {e ′vπ(i)
}∀i

evi

1 / 21



Introduction - Goals

1. Build a zero-knowledge protocol to prove correct shuffle of messages
2. Extend the shuffle to handle ciphertexts instead of messages
3. Build a mixing network from the extended shuffle
4. Combine everything to construct systems for electronic voting
5. Use primitives based on lattices to achieve post-quantum security

2 / 21



Preliminaries - Commitment

Algorithms:
Com : samples randomness rm and commits to m as [m] = Com(m; rm).

Open : takes as input ([m],m, rm) and verifies that [m]
?
= Com(m; rm).

Properties:
Binding : it is hard to find m 6= m̂ and rm 6= r̂ m̂ s.t. Com(m; rm) = Com(m̂; r̂ m̂).
Hiding : it is hard to distinguish Com(m; rm) from Com(0; r0) when given m.

For more details about the commitment scheme see Baum et al. [BDL+18].

3 / 21



Preliminaries - Proof of Linearity

Let

[x ] = Com(x ; r) and
[
x ′
]

= [αx + β] = Com(x ′; r ′).

Then the protocol ΠLin is a sigma-protocol to prove the relation
x ′ = αx + β, given the commitments [x ] , [x ′] and the scalars α, β.

For more details about the proof of linearity see Baum et al. [BDL+18].

4 / 21



Preliminaries - Amortized Proof of Shortness

Let

[x1] = Com(x1; r1), [x2] = Com(x2; r2), ..., [xn] = Com(xn; rn),

where all are commitments to short values. Then the protocol
ΠA is a sigma-protocol to prove that the underlying messages
of [x1] , [x2] , ..., [xn] are bounded.

For more details about the amortized proof see Baum et al. [BBC+18].

5 / 21



Preliminaries - BGV Encryption

KeyGen samples random a
$← Rq , short s ← Rq and noise e ← NσE .

The algorithm outputs pk = (a, b) = (a, as + pe) and sk = s.

Enc samples a short r ← Rq and noise e1, e2 ← NσE , and outputs
(u, v) = (ar + pe1, br + pe2 + m).

Dec outputs m ≡ v − su mod q mod p when noise is bounded by bq/2c.

For more details about the encryption scheme see Brakerski et al. [BGV12].

6 / 21



Proof of Shuffle - Setting

I Public information: sets of commitments {[mi ]}τi=1 and messages {m̂i}τi=1.

I P knows the openings {(mi , rmi , fi )}τi=1 of the commitments {[mi ]}τi=1,

I and P knows a permutation π such that m̂i = mπ−1(i) for all i = 1, ..., τ .

I We construct a 4 + 3τ -move ZKPoK protocol to prove this statement.

I This extends Neff’s construction [Nef01] to the realm of PQ assumptions.

7 / 21



Proof of Shuffle - Linear System

As a first step, P draws θi $← Rq uniformly at random
for each i ∈ {1, . . . , τ}, and computes the commitments:

[D1] =
[
θ1M̂1

]
∀j ∈ {2, . . . , τ − 1} : [Dj ] =

[
θj−1Mj + θjM̂j

]
[Dτ ] = [θτ−1Mτ ] .

(1)

8 / 21



Proof of Shuffle - Linear System

P receives a challenge β ∈ Rq and computes si ∈ Rq such
that the following equations are satisfied:

βM1 + s1M̂1 = θ1M̂1

∀j ∈ {2, . . . , τ − 1} : sj−1Mj + sjM̂j = θj−1Mj + θjM̂j

sτ−1Mτ + (−1)τβM̂τ = θτ−1Mτ .

(2)

9 / 21



Proof of Shuffle - Linear System

P uses the protocol ΠLin to prove that each commitment [Di ] satisfies the
equations (2). In order to compute the si values, we can use the following fact:
Lemma
Choosing

sj = (−1)j · β
j∏

i=1

Mi

M̂i

+ θj (3)

for all j ∈ 1, . . . , τ − 1 yields a valid assignment for Equation (2).

10 / 21



Proof of Shuffle - Protocol
Zero-Knowledge Proof ΠShuffle of Correct Shuffle
Prover,P Verifier,V

ρ ρ
$← Rq \ {m̂i}τi=1

M̂i = m̂i − ρ M̂i = m̂i − ρ
Mi = mi − ρ [Mi ] = [mi ]− ρ

θi
$← Rq,∀i ∈ [τ − 1]

Compute [Di ] as in Eq. (1), i.e.
[D1] = [θ1M̂1], [Dτ ] = [θτ−1Mτ ],

[Di ] = [θi−1Mi + θiM̂i ] for i ∈ [τ − 1] \ {1} {[Di ]}τi=1

β β
$← Rq

Compute si ,∀i ∈ [τ − 1] as in (3). {si}τ−1
i=1

Use ΠLin to prove that
(1) β[M1] + s1M̂1 = [D1]

(2) ∀i ∈ [τ − 1] \ {1} : si−1[Mi ] + siM̂i = [Di ]

(3) sτ−1[Mτ ] + (−1)τβM̂τ = [Dτ ]

i.e. all equations from (2)

11 / 21



Proof of Shuffle - Performance

I Optimal parameters for the commitment scheme is q ≈ 232 and N = 210.

I The proof of linearity use Gaussian noise of standard deviation σC ≈ 215.

I The prover sends 1 commitment, 1 ring-element and 1 proof per message.

I The shuffle proof is of total size ≈ 21τ KB for τ messages.

I The shuffle proof takes ≈ 18τ ms to compute for τ messages.

12 / 21



Mixing Network - Extending the Shuffle

I We extend the shuffle to ciphertexts
instead of messages

I We create a mixing network that does
the following:
1. Randomize the ciphertexts
2. Commit to the randomness
3. Permute the ciphertexts
4. Prove that shuffle is correct
5. Prove that the randomness is short

I Integrity holds because of the proofs
I Privacy if at least one server is honest

S1 S2 . . . Sn
{c(0)

i } {c(1)
i } {c(2)

i } {c(n−1)
i } {c(n)

i }

ΠS1 ΠS2 ΠSn

13 / 21



Verifiable Key-Shifting - Protocol

I We’re given a ciphertext (u, v) under key s1.

I We want the ciphertext (u′, v ′) under key s = s1 + s2.

I The protocol works as following:
1. Compute (u′, v ′) = (u + ar ′ + pE1, v + us2 + br ′ + pE2)
2. We need s1 and s2 to be short to achieve correctness
3. We need E1 and E2 to be 2sec larger than s for privacy
4. We use ΠLin to prove correctness of each computation
5. We use ΠA to prove that E1 and E2 are bounded

I Distributed protocol for s2 =
∑

j ŝj where ŝj are random.

14 / 21



Verifiable Decryption - Distributed Decryption

Actively secure distributed decryption protocol
from [DPSZ12]:

I On input key sj and ciphertext (u, v),
sample large noise Ej , output tj = sju + pEj .

I We use ΠLin to prove correct computation.
I We use ΠA to prove that Ej is bounded.

We obtain the plaintext as m ≡ (v − t mod q)
mod p, where t = t1 + t2 + ...+ tξ.

S

D1

...

Dj

...

Dξ

{mi}

{c i}

{c i}

{c i}

{(ti ,1, πD1)}

{(ti ,j , πDj
)}

{(ti ,ξ, πDξ
)}

15 / 21



Verifiable Decryption - MPC in the Head

1. Deal splits the key into two
parts and prove correctness.

2. Play compute a decryption
share ti ,j based on key share si .

3. P commits to the shares, and
V challenges half of them.

4. V verifies all shares.
5. V reconstructs to check the

message from the shares.

ΠZKPCD

Prover((pk, {cj}τj=1, {mj}τj=1), (sk)) Verifier(pk, {cj}τj=1, {mj}τj=1)

k = 1, ..., λ :

(sk0,k , sk1,k , auxk)← Deal(pk, sk)

i = 0, 1, j = 1, ..., τ :

ti,j,k ← Play(ski,k , cj ; ρi,k,j)

w ← ({auxk , {ti,j,k}})

w

β
$←− {0, 1}λ

β

z ← ({skβ[k],k}k , {ρβ[k],k,j}k,j)

z

k = 1, ..., λ :

Verify(pk, auxk ,β[k], skβ[k],k)
?
= 1

j = 1, ..., τ :

Play(skβ[k],k , cj ; ρβ[k],k,j)
?
= tβ[k],j,k

Reconstruct(cj , t0,j,k , t1,j,k)
?
= mj

16 / 21



Verifiable Decryption - MPC in the Head

I Can run the protocol λ times for soundness 2−λ.

I Can choose security parameter κ such that κ > λ.

I Deal is dependent on λ, not the number of messages τ .

I The decryption proof is of total size ≈ 8λτ KB for τ messages.

I The decryption proof takes time ≈ 34λτ µs to compute for τ messages.

17 / 21



Verifiable Decryption - One-Party Decryption

New: We can decrypt directly as following:

I Public commitment [s] to secret key s.

I Compute mi ≡ (vi − sui mod q) mod p.

I Commit to di = vi − sui −mi as [di ].

I Use ΠLin to prove correct computation.

I Use ΠA to prove that each di is bounded.

18 / 21



Electronic Voting - Setting

I We use a trusted printer to give users return codes.

I Each user have their own return-code-key k̂ .

I The return code server has a secret PRF-key k .

I We encrypt openings of commitments using verifiable encryption.

I Trusted election authorities EA verifies proofs and views.

19 / 21



Electronic Voting - Verifiable Shuffle-Decryption

I SD both shuffle and decrypt the votes.

I Integrity follows from the ZK-proof.

I Privacy if B and SD does not collude. Ui

B SD

EA

{vπ(i)}∀i

{(cvi , evi )}∀i

(cvi , evi )

20 / 21



Electronic Voting - Verifiable Mix-Net

I S may consist of many shuffle-servers.

I D may consist of many decryption-servers,
or many key-shifting servers and only one
decryption server.

I Integrity follows from the ZK-proofs.

I Privacy holds if the following is true:
1. at least one shuffle-server is honest, and
2. at least one decryption-server is honest.

Ui

B {Si} {Di}

EA {vπ(i)}∀i

{evi}∀i {e ′vπ(i)
}∀i

evi

21 / 21



Thank you! Any questions?



Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens
Groth, and Vadim Lyubashevsky.
Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II,
volume 10992 of LNCS, pages 669–699. Springer, Heidelberg, August 2018.

Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner, and
Chris Peikert.
More efficient commitments from structured lattice assumptions.
In Dario Catalano and Roberto De Prisco, editors, SCN 18, volume 11035 of
LNCS, pages 368–385. Springer, Heidelberg, September 2018.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
(Leveled) fully homomorphic encryption without bootstrapping.
In Shafi Goldwasser, editor, ITCS 2012, pages 309–325. ACM, January 2012.

Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.

21 / 21



Multiparty computation from somewhat homomorphic encryption.
In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume
7417 of LNCS, pages 643–662. Springer, Heidelberg, August 2012.

C. Andrew Neff.
A verifiable secret shuffle and its application to e-voting.
In Michael K. Reiter and Pierangela Samarati, editors, ACM CCS 2001, pages
116–125. ACM Press, November 2001.

21 / 21


	Introduction
	Preliminaries
	Proof of Shuffle
	Mixing Network
	Verifiable Key-Shifting
	Verifiable Decryption
	Electronic Voting

