NTNU | Norwegian University of Science and Technology

LATTICE-BASED VERIFIABLE SHUFFLE AND DECRYPTION

Diego Aranha, Carsten Baum, Kristan Gjøsteen, Thomas Haines, Johannes Muller, Peter Rønne, **Tjerand Silde** and Thor Tunge

November 26, 2020

{D:]

Introduction - Goals

- 1. Build a zero-knowledge protocol to prove correct shuffle of messages
- 2. Extend the shuffle to handle ciphertexts instead of messages
- 3. Build a mixing network from the extended shuffle
- 4. Combine everything to construct systems for electronic voting
- 5. Use primitives based on lattices to achieve post-quantum security

Preliminaries - Commitment

Algorithms:

Com : samples randomness \mathbf{r}_m and commits to m as $[m] = \text{Com}(m; \mathbf{r}_m)$. Open : takes as input $([m], m, \mathbf{r}_m)$ and verifies that $[m] \stackrel{?}{=} \text{Com}(m; \mathbf{r}_m)$.

Properties:

Binding : it is hard to find $m \neq \hat{m}$ and $\mathbf{r}_m \neq \hat{\mathbf{r}}_{\hat{m}}$ s.t. $\operatorname{Com}(m; \mathbf{r}_m) = \operatorname{Com}(\hat{m}; \hat{\mathbf{r}}_{\hat{m}})$. Hiding : it is hard to distinguish $\operatorname{Com}(m; \mathbf{r}_m)$ from $\operatorname{Com}(0; \mathbf{r}_0)$ when given m.

For more details about the commitment scheme see Baum et al. [BDL+18].

Preliminaries - Proof of Linearity

Let

$$[x] = \operatorname{Com}(x; \mathbf{r})$$
 and $[x'] = [\alpha x + \beta] = \operatorname{Com}(x'; \mathbf{r}').$

Then the protocol Π_{Lin} is a sigma-protocol to prove the relation $x' = \alpha x + \beta$, given the commitments [x], [x'] and the scalars α, β .

For more details about the proof of linearity see Baum et al. [BDL⁺18].

Preliminaries - Amortized Proof of Shortness

Let

$$[x_1] = \operatorname{Com}(x_1; \mathbf{r}_1), \quad [x_2] = \operatorname{Com}(x_2; \mathbf{r}_2), \quad \dots, \quad [x_n] = \operatorname{Com}(x_n; \mathbf{r}_n),$$

where all are commitments to short values. Then the protocol Π_A is a sigma-protocol to prove that the underlying messages of $[x_1], [x_2], ..., [x_n]$ are bounded.

For more details about the amortized proof see Baum et al. [BBC⁺18].

Preliminaries - BGV Encryption

KeyGen samples random $a \stackrel{\$}{\leftarrow} R_q$, short $s \leftarrow R_q$ and noise $e \leftarrow \mathcal{N}_{\sigma_E}$. The algorithm outputs pk = (a, b) = (a, as + pe) and sk = s.

Enc samples a short $r \leftarrow R_q$ and noise $e_1, e_2 \leftarrow \mathcal{N}_{\sigma_E}$, and outputs $(u, v) = (ar + pe_1, br + pe_2 + m)$.

Dec outputs $m \equiv v - su \mod q \mod p$ when noise is bounded by $\lfloor q/2 \rfloor$.

For more details about the encryption scheme see Brakerski et al. [BGV12].

Proof of Shuffle - Setting

- Public information: sets of commitments $\{[m_i]\}_{i=1}^{\tau}$ and messages $\{\hat{m}_i\}_{i=1}^{\tau}$.
- ▶ P knows the openings $\{(m_i, r_{m_i}, f_i)\}_{i=1}^{\tau}$ of the commitments $\{[m_i]\}_{i=1}^{\tau}$,
- ▶ and P knows a permutation π such that $\hat{m}_i = m_{\pi^{-1}(i)}$ for all $i = 1, ..., \tau$.
- We construct a $4 + 3\tau$ -move ZKPoK protocol to prove this statement.
- This extends Neff's construction [Nef01] to the realm of PQ assumptions.

Proof of Shuffle - Linear System

As a first step, P draws $\theta_i \stackrel{\$}{\leftarrow} R_q$ uniformly at random for each $i \in \{1, ..., \tau\}$, and computes the commitments:

$$[D_{1}] = \left[\theta_{1}\hat{M}_{1}\right]$$

$$\forall j \in \{2, \dots, \tau - 1\} : [D_{j}] = \left[\theta_{j-1}M_{j} + \theta_{j}\hat{M}_{j}\right]$$

$$[D_{\tau}] = \left[\theta_{\tau-1}M_{\tau}\right].$$
(1)

Proof of Shuffle - Linear System

P receives a challenge $\beta \in R_q$ and computes $s_i \in R_q$ such that the following equations are satisfied:

$$\beta M_1 + s_1 \hat{M}_1 = \theta_1 \hat{M}_1$$

$$\forall j \in \{2, \dots, \tau - 1\} : s_{j-1} M_j + s_j \hat{M}_j = \theta_{j-1} M_j + \theta_j \hat{M}_j$$

$$s_{\tau-1} M_\tau + (-1)^\tau \beta \hat{M}_\tau = \theta_{\tau-1} M_\tau.$$
(2)

Proof of Shuffle - Linear System

P uses the protocol Π_{Lin} to prove that each commitment $[D_i]$ satisfies the equations (2). In order to compute the s_i values, we can use the following fact:

Lemma

Choosing

$$s_j = (-1)^j \cdot eta \prod_{i=1}^j rac{M_i}{\hat{M}_i} + heta_j$$
 (3)

for all $j \in 1, ..., \tau - 1$ yields a valid assignment for Equation (2).

Proof of Shuffle - Protocol

Zero-Knowledge Proof Π _{Shuffle} of Correct Shuffle		
Prover, P		Verifier, V
	$\stackrel{\rho}{\longleftarrow}$	$\rho \stackrel{\$}{\leftarrow} R_q \setminus \{ \hat{m}_i \}_{i=1}^{\tau}$
$\hat{M}_i = \hat{m}_i - ho$		$\hat{M}_i = \hat{m}_i - ho$
$M_i = m_i - \rho$		$[M_i] = [m_i] - \rho$
$ \begin{split} \theta_i &\stackrel{\$}{\leftarrow} R_q, \forall i \in [\tau - 1] \\ \text{Compute} & [D_i] \text{ as in Eq. (1), i.e.} \\ & [D_1] = & [\theta_1 \hat{M}_1], [D_\tau] = [\theta_{\tau-1} M_\tau], \end{split} $		
$[D_i] = [heta_{i-1}M_i + heta_i \hat{M}_i] ext{ for } i \in [\tau - 1] \setminus \{1\}$	$\xrightarrow{\{[D_i]\}_{i=1}^{T}}$	
	$\xleftarrow{\beta}$	$\beta \stackrel{s}{\leftarrow} R_q$
Compute $s_i, \forall i \in [\tau - 1]$ as in (3).	$\xrightarrow{\{s_i\}_{i=1}^{\tau-1}}$	
		Use Π_{Lin} to prove that
		(1) $\beta[M_1] + s_1 \hat{M}_1 = [D_1]$
		(2) $\forall i \in [\tau - 1] \setminus \{1\}$: $s_{i-1}[M_i] + s_i \hat{M}_i = [D_i]$
		(3) $s_{\tau-1}[M_{\tau}] + (-1)^{\tau} \beta \hat{M}_{\tau} = [D_{\tau}]$ i.e. all equations from (2)

Proof of Shuffle - Performance

• Optimal parameters for the commitment scheme is $q \approx 2^{32}$ and $N = 2^{10}$.

- The proof of linearity use Gaussian noise of standard deviation $\sigma_{\rm C} \approx 2^{15}$.
- ▶ The prover sends 1 commitment, 1 ring-element and 1 proof per message.
- The shuffle proof is of total size $\approx 21\tau$ KB for τ messages.
- The shuffle proof takes $\approx 18\tau$ ms to compute for τ messages.

Mixing Network - Extending the Shuffle

- We extend the shuffle to ciphertexts instead of messages
- We create a mixing network that does the following:
 - 1. Randomize the ciphertexts
 - 2. Commit to the randomness
 - 3. Permute the ciphertexts
 - 4. Prove that shuffle is correct
 - 5. Prove that the randomness is short
- Integrity holds because of the proofs
- Privacy if at least one server is honest

Verifiable Key-Shifting - Protocol

- We're given a ciphertext (u, v) under key s_1 .
- We want the ciphertext (u', v') under key $s = s_1 + s_2$.
- The protocol works as following:
 - **1.** Compute $(u', v') = (u + ar' + pE_1, v + us_2 + br' + pE_2)$
 - **2.** We need s_1 and s_2 to be short to achieve correctness
 - **3.** We need E_1 and E_2 to be 2^{sec} larger than *s* for privacy
 - **4.** We use Π_{Lin} to prove correctness of each computation
 - **5.** We use Π_A to prove that E_1 and E_2 are bounded
- Distributed protocol for $s_2 = \sum_j \hat{s}_j$ where \hat{s}_j are random.

Verifiable Decryption - Distributed Decryption

Actively secure distributed decryption protocol from [DPSZ12]:

- On input key s_j and ciphertext (u, v), sample large noise E_j, output t_j = s_ju + pE_j.
- We use Π_{Lin} to prove correct computation.
- We use Π_A to prove that E_j is bounded.

We obtain the plaintext as $m \equiv (v - t \mod q) \mod p$, where $t = t_1 + t_2 + ... + t_{\xi}$.

Verifiable Decryption - MPC in the Head

- 1. Deal splits the key into two parts and prove correctness.
- Play compute a decryption share t_{i,j} based on key share s_i.
- **3.** P commits to the shares, and V challenges half of them.
- 4. V verifies all shares.
- 5. V reconstructs to check the message from the shares.

Norwegian University of Science and Technology

Verifiable Decryption - MPC in the Head

• Can run the protocol λ times for soundness $2^{-\lambda}$.

- Can choose security parameter κ such that $\kappa > \lambda$.
- Deal is dependent on λ , not the number of messages τ .
- The decryption proof is of total size $\approx 8\lambda\tau$ KB for τ messages.
- The decryption proof takes time $\approx 34\lambda\tau \ \mu s$ to compute for τ messages.

Verifiable Decryption - One-Party Decryption

New: We can decrypt directly as following:

- Public commitment [s] to secret key s.
- Compute $m_i \equiv (v_i su_i \mod q) \mod p$.

• Commit to
$$d_i = v_i - su_i - m_i$$
 as $[d_i]$.

- Use Π_{Lin} to prove correct computation.
- Use Π_A to prove that each d_i is bounded.

Electronic Voting - Setting

• We use a trusted printer to give users return codes.

- Each user have their own return-code-key \hat{k} .
- ▶ The return code server has a secret PRF-key *k*.
- We encrypt openings of commitments using verifiable encryption.
- Trusted election authorities EA verifies proofs and views.

Electronic Voting - Verifiable Shuffle-Decryption

- SD both shuffle and decrypt the votes.
- Integrity follows from the ZK-proof.
- Privacy if B and SD does not collude.

Electronic Voting - Verifiable Mix-Net

- S may consist of many shuffle-servers.
- D may consist of many decryption-servers, or many key-shifting servers and only one decryption server.
- Integrity follows from the ZK-proofs.
- Privacy holds if the following is true:
 - **1.** at least one shuffle-server is honest, and
 - **2.** at least one decryption-server is honest.

Thank you! Any questions?

D NTNU | Norwegian University of Science and Technology

Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth, and Vadim Lyubashevsky.

Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits. In Hovav Shacham and Alexandra Boldyreva, editors, *CRYPTO 2018, Part II*, volume 10992 of *LNCS*, pages 669–699. Springer, Heidelberg, August 2018.

- Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner, and Chris Peikert.
 More efficient commitments from structured lattice assumptions.
 In Dario Catalano and Roberto De Prisco, editors, *SCN 18*, volume 11035 of *LNCS*, pages 368–385. Springer, Heidelberg, September 2018.
- Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
 (Leveled) fully homomorphic encryption without bootstrapping.
 In Shafi Goldwasser, editor, *ITCS 2012*, pages 309–325. ACM, January 2012.
- lvan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.

Multiparty computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, *CRYPTO 2012*, volume 7417 of *LNCS*, pages 643–662. Springer, Heidelberg, August 2012.

C. Andrew Neff.

A verifiable secret shuffle and its application to e-voting. In Michael K. Reiter and Pierangela Samarati, editors, *ACM CCS 2001*, pages 116–125. ACM Press, November 2001.

