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Abstract
In contrast to traditional authentication methods such as passwords or cryptographic keys,
user authentication based on biometric characteristics has been shown to be feasible and
secure. However biometric data are a non-replenishable unique resource for the user and
present a persistent target for attacks. Therefore, biometric authentication protocols need
to be constructed using post-quantum secure cryptographic primitives.

This work presents a post-quantum secure implementation of a protocol for Biometric Re-
silient Authenticated Key Exchange (PQ-BRAKE). It is based on the previously proposed
classically secure BRAKE protocol which builds on the security of discrete logarithms. In
this thesis, the cryptographic primitives, namely the Oblivious Pseudo-Random Function
(OPRF) and the Key Encapsulation Mechanism (KEM), are replaced by lattice-based
constructions.

The work presents benchmarking results both for communication and computation cost of
the designed protocol and compares these results against the classically secure protocol.
The experimental evaluation shows that the computational overhead of PQ-BRAKE is
bound by 10% in the optimal parameter setting. However, the communication cost in-
crease is found to be more significant but can still be considered reasonable for real-time
applications.
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Chapter 1

Introduction

User authentication is an essential concept in today’s realm of digital communication.
It is most commonly accomplished through the use of passwords or cryptographic keys.
However, these methods have significant and thoroughly explored drawbacks. For instance,
such risks arise from the use of short passwords, passwords composed of common and easily
guessable words, reusing passwords across different services, passwords derived from the
user’s interests or publicly available information like the user’s favourite book or date
of their child’s birth. Therefore, passwords are often considered the weakest link in a
password-based authentication system [THB14].

Using cryptographic keys instead of passwords alleviates some of these challenges, but at
the cost of usability from the average user’s perspective. If the keys are stored as files,
the user needs to be actively aware and careful of where and how to store and use these
keys. Furthermore, it can be considered impossible for the average user to memorise even
a single key as they are usually significantly longer than a password and drawn from a
random distribution.

An alternative to these methods is to base authentication on the biometric characteris-
tics of the user. Immediately, it can be observed that this approach solves the issue of
remembering a password or cryptographic key, as biometric characteristics are inherent
to the user and always present. Additionaly, a significant advantage is that it can also
improve upon traditional key-based authentication by having the user’s secret key always
be derived from a fresh biometric capture and thus removes the need for it to be stored
and secured on the client’s machine.

However, using biometric characteristics presents its own set of challenges and potential
security risks. First among these is the importance and vulnerability of the biometric
data itself. They are a non-replenishable unique resource for the user, as a compromised
biometric template can identify a person for, potentially, the duration of their lifetime
[KHB21]. If a biometric template is compromised and the underlying biometric features
are deduced, a user cannot use that biometric instance anymore and is faced with the need
to revoke it. The European Union’s General Data Protection Regulation (GDPR) [Eur16]
recognizes this issue and classifies biometric data as sensitive personal data.

Additionally, standardised requirements for biometric systems have been introduced to
guard this sensitive data in the ISO/IEC 24745 International Standard on Biometric In-
formation Protection [ISO22]. This standard emphasizes three requirements that a secure
biometric system must fulfill in order to be compliant:
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1. For two or more biometric templates: unlinkability and renewability - meaning these
templates cannot be linked to each other or to the subjects from whom they were
derived [ISO22].

2. For every biometric template: irreversibility - meaning that no information can
be learned from a biometric sample about the protected biometric reference it was
generated from [ISO22].

3. For the system in general: performance preservation - meaning that the computa-
tional performance and recognition accuracy of the biometric system must not be
significantly affected by protecting the generative biometric data [ISO22; Bau+22].

An additional challenge that needs to be addressed is the low entropy of biometric data.
Any protocol that aims to construct cryptographic keys based on such data needs to
guarantee a reliable level of security.

As a solution to the aforementioned challenges, a protocol for cryptographic key exchange
based on successful biometric authentication which is in compliance with the ISO/IEC
24745 standard has been recently proposed by Bauspieß et al. [Bau+22]. It provides
biometric authentication with a key exchange mechanism in which the client does not
have to remember or handle any cryptographic key material or password and is built
on established and currently trusted cryptographic components. Yet, the key material
is not derived from the biometric features directly, but is truly random and only issued
to the user in the case of a positive comparison outcome with the stored reference. It
accomplishes this with real-time efficiency while preserving high biometric performance.

1.1 Contribution
The goal of this thesis is to adapt this protocol proposed in [Bau+22] and evaluate if it still
retains its performance and security features in a post-quantum computing setting. Such
an exploration is necessary due to the risk of attacks on the cryptographic components
of the classically secure communication protocol [Bau+22] when a large-scale quantum
computer becomes available. Due to the lifespan of biometric templates [KHB21], this
level of protection is required for biometric authentication systems as of today.

An outline of such potential modifications to the BRAKE protocol to achieve post-
quantum security has been suggested in the original work by [Bau+22] and the imple-
mentation in this thesis has largely followed these suggestions. Specifically, the adaption
consists of two main elements of the protocol whose security needs to be upgraded to
post-quantum security using lattice-based cryptography. These two components are the
Oblivious Pseudo-Random Function (OPRF) and Key Encapsulation Mechanism (KEM).

The role of the OPRF element is to provide key material in cooperation with another
entity while retaining the protection of the biometric data through the oblivious property
of an OPRF. At the same time, the client requesting this key material is not able to obtain
any information about the other entity’s secret evaluation key. The OPRF construction
applied in this thesis is based on a work by Albrecht et al. [Alb+21b], which is the only
lattice-based OPRF protocol known at the time of writing. An implementation of this
proposed construction does currently not exist due to the expected large communication
overhead. Therefore, this thesis presents a modification on the original protocol to improve
upon the communication and computation performance, while operating under a weaker
security assumption of passive instead of active security. This modification aims to bring
the communication performance to levels practical for use in an authentication protocol
such as the one in [Bau+22].
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The KEM aims to be a direct replacement for the classically secure Diffie-Hellman key
exchange which is implemented in [Bau+22]. Specifically used is the recently standardised
CRYSTALS-Kyber [Ava+21], for which a reference implementation already exists.

1.2 Related Work
Biometric verification is based on similarity scores, scores that quantify how similar one
biometric template is to another. This score can be used in biometric authentication
protocols in such a way that the correct key is only given if it the similarity score high
enough, i.e., if the biometric probe is similar enough to the biometric reference. This is
considered a successful biometric authentication.

Generally, in order to use biometric data in cryptographic schemes, a scheme which tol-
erates high variance due to outside factors (such as aging and variable image quality of
captured samples) must be used. Such a scheme was originally proposed in [JS06] which
introduced the idea of fuzzy vaults, based on a fuzzy commitment scheme previously
introduced in [JW99]. This idea is the basis of many protocols which require storage
of biometric reference data, including the BRAKE protocol [Bau+22] whose fuzzy vault
scheme is defined in [Tam16] and can be instantiated with fingerprint, face and iris fuzzy
vault schemes. This scheme specifically addresses a long-standing vulnerability of fuzzy
vaults, the insecurity against offline attacks between multiple obtained vaults.

Other works concerning key exchange protocols using biometric authentication exist, such
as the paper [Wan+21] where the authors considered a different approach, through an
existing proposal for a Fuzzy Asymmetric Password-Authenticated Key Exchange (fuzzy
aPAKE) [Erw+20]. They describe multiple issues when considering it for effective bio-
metric authentication in their considered use case of secure messaging applications. The
identified issues include low performance due to needing to run oblivious transfers on a
per-bit basis [Bau+22] and the requirement for the biometric representation to be rotation-
invariant. To resolve these issues, [Wan+21] propose their own mechanism. However, its
implementation has flaws in its biometric comparison systems and vulnerability of derived
public keys to offline-attacks as noted in [Bau+22].

The authors of [Bau+22] solve the biometric comparison issue by using more appropriate
and better tested algorithms and the offline-attack issue by replacing the hashing element
of fuzzy vaults as presented in [Tam16] with an interactive OPRF evaluation for each
guess attempt, followed by a Key Encapsulation Mechanism (KEM). Worth noting are
existing alternatives which aim to accomplish the same offline-attack resistance without
an interactive protocol [QCC18; SS20], mostly based on fuzzy extractors described in
[DRS04].

OPRFs have been extensively studied and many applications have been constructed using
them. Due to their recent relevance, their properties have been systematized and described
in the work by [CHL22]. In [Bau+22], the default instantiation of the protocol uses discrete
logarithms for security specifically in the form of a hashed Diffie-Hellman OPRF [FK00].
An alternative instantiation approach is to use lattice-based OPRFs which are assumed
to be post-quantum secure [Alb+21a]. The detailed constructions of these lattices have
been presented in [BPR12].

In the post-quantum domain, OPRF constructions have not been as widely explored.
Currently, the work by Albrecht et al. [Alb+21b] is the only construction that has not
been shown to be insecure.

A possible exception is the work by Boneh et al. [BKW20] in which a post-quantum

Benchmarking Post-Quantum Secure Biometric Resilient Authenticated Key Exchange 3



secure OPRF based on isogenies was proposed. Specifically, an attempt was made to
adapt a Diffie-Hellman OPRF to the setting of isogenies of supersingular elliptic curves
and provide active security. However, an attack was found by Basso et al. in their work
[Bas+21] that compromises the pseudorandomness after a few OPRF evaluations and some
offline computation. In a very recent development, a new construction was proposed by
Basso in [Bas23] that is based on the original construction by Boneh et al. [BKW20] and
provides countermeasures for the vulnerabilities found in [Bas+21].

1.3 Outline
This thesis will first introduce the theoretical principles of lattices and lattice-based cryp-
tography in Chapter 2, with a particular focus on the specific mathematical problems
which are the foundation of the security of the OPRF and KEM elements of the protocol.

Next, Chapter 3 will be dedicated to the modifications made to these structures and their
security properties. These modifications constitute the main contribution of this thesis,
along with the implementation.

A general overview of the implementation will be provided in Chapter 4, including and
justifying specific design decisions.

Following the implementation details, Chapter 5 is dedicated to the the performance eval-
uation of the modified protocol, a comparison with the classically secure version from
[Bau+22], and the exploration of the parameter choices which have a significant impact
on the performance and security of the post-quantum secure protocol components.

Lastly, a conclusion is presented in Chapter 6 which summarises the work and its perfor-
mance and gives indication for potential further improvements.
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Chapter 2

Background

In order to construct a post-quantum secure BRAKE protocol, it is necessary to introduce
the concept of lattice-based cryptography, as the mathematical problems used to secure
this modification of the BRAKE protocol are effectively lattice problems.

2.1 Lattices
We begin by introducing the mathematical objects the cryptographic problems used in
this thesis build upon, which are lattices.

Definition 1. [Pei16] A lattice is the set of all integer linear combinations of linearly
independent basis vectors B = {b1, b2, ..., bn} ⊂ Rn:

L = L(B) = {
n∑

i=1

xi · bi : xi ∈ Z} = {Bx : x ∈ Zn}. (2.1)

Furthermore, B is not unique, i.e., there is not only one basis that generates this lattice
L, there are others that exist as per the following theorem:

Theorem 1 (Multiple bases [MR09]). Let B and B’ be two bases of a lattice L. Then
L(B) = L(B′) if and only if there exists a unimodular matrix U (i.e., a square matrix
with integer entries and determinant ±1) such that B = B′U .

Each such basis forms a fundamental region, in the case of a two-dimensional lattice it is
called a fundamental parallelepiped. All of these regions share the same volume, which is
equal to the determinant of the lattice in question. The volume of the fundamental region
is defined as [MR09]:

P (B) = {
n∑

i=1

xi · bi : 0 ≤ xi < 1}. (2.2)

In geometric terms, the value of the determinant is the inverse of lattice point density
[MR09]. This determinant can be efficiently computed from any basis in polynomial time
[MR09].

An important notion is the minimum distance of a lattice (Λ = L(B)), which is the
smallest distance between any two lattice points:

λ(Λ) = inf{||x− y|| : x, y ∈ Λ, x ̸= y} (2.3)
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or equivalently, the length of the shortest non-zero lattice vector:

λ(Λ) = inf{||v|| : v ∈ Λ \ {0}}. (2.4)

Especially important in the context of cryptography are so-called q-ary lattices.

Definition 2 (q-ary lattices, [Lyu20]). A lattice Λ is considered q-ary if it fulfils the
condition qZn ⊆ Λ ⊆ Zn. If we take a matrix A ∈ Zn×m

q then the q-ary lattice Λ defined
by A is:

Λ = L⊥q (A) = {v ∈ Zm|Av ≡ 0(mod q)}. (2.5)

In this context, A can be a parity check matrix for a linear code.

Another term that needs to be introduced for the purposes of the ring variations of prob-
lems given later, are ideal lattices.

Definition 3 (Ideal lattice, [Pei16]). An ideal lattice is a lattice that corresponds to an
ideal (a specific subset of elements) in a ring R under a fixed choice of geometric embedding.

2.2 Lattice-Based Cryptography
Lattice-based cryptography builds upon the idea that there exist certain problems which
are considered hard on point lattices in Rn and can be used as the basis for designing
cryptographic systems [Pei16]. The idea that formed the foundation of this area of cryp-
tography is the work by Ajtai [Ajt96] where a reduction from worst-case to average case
instantiations of lattice problems are introduced. More concretely, the author of [Ajt96]
showed that if some related lattice problems are hard in the worst case, they will also be
hard for in the average case in cryptographically useful distributions, which is essential
for cryptography where average-case intractability is needed by definition [Pei16].

One of the problems used in [Ajt96] is the commonly studied Shortest Vector Problem
(SVP). It is defined as follows:

Definition 4. (Shortest Vector Problem - SVP), (Definition 2.1 in [Pei16]). Given
an arbitrary basis B of some lattice L = L(B), find a shortest non-zero lattice vector, i.e.,
a vector v ∈ L, for which ||v|| = λ(L).

A variant of this problem includes an approximation factor γ ≥ 1 and is called the Ap-
proximate Shortest Vector Problem (SVPγ)[Pei16]:

Definition 5. (Approximate Shortest Vector Problem - SVPγ), (Definition 2.2 in
[Pei16]). Given a basis B of an n-dimensional lattice L = L(B), find a non-zero vector
v ∈ L for which ||v|| ≤ γ(n) · λ(L).

This problem can be further extended to find n linearly independent shortest vectors
with some approximation (Approximate Shortest Independent Vectors Problem - SIVPγ)
or modified into a decisional problem of determining if the length of the shortest vector
λ(L) ≤ 1 or λ(L) > γ(n) (Decisional Approximate SVP - GapSVPγ).

However, in the context of this project, the most important problems are Short Integer
Solution (SIS) and Learning With Errors (LWE), which will be explained in more detail
in the following sections.
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2.2.1 Short Integer Solution (SIS) Problem
The Short Integer Solution (SIS) problem has its beginnings with Ajtai in the same work
as the worst-to-average case reduction [Ajt96], but it was officially introduced in [MR07].
Generally speaking, the goal of an attacker trying to solve this problem is to find a non-
trivial small integer combination of vectors z1, z2, ..., zm ∈ {0,±1} such that they result in
a zero vector.

(
.... A ....

)
︸ ︷︷ ︸

m

(
z

)
= 0 ∈ Zn

q (2.6)

Figure 2.1: The Short Integer Solution Problem visualized.

The full definition is given below and a visual representation is shown on Figure 2.1:

Definition 6. (Short Integer Solution Problem - SISn,q,β,m), (Definition 4.1 in
[Pei16]). Given m uniformly random vectors ai ∈ Zn

q , forming the columns of a matrix
A ∈ Zn×m

q , find a non-zero integer vector z ∈ Zm of norm ||z|| ≤ β such that

fA(z) := Az =
∑
i

ai · zi = 0 ∈ Zn
q . (2.7)

Here, the parameters n and q are positive integers, β a positive real number much smaller
than q, and lastly m, is the number of elements from Zn

q . These parameters are directly
related to the security of the SIS problem, specifically n which makes the problem more
difficult as it increases. Increasing m on the other hand makes the problem easier as any
solution calculated for the matrix A will also be a solution for the matrix [A|A′] due to
the fact that adding zeroes to it will also provide a valid solution to the expanded matrix
[Pei16].

From Definition 6, it can be seen that the SIS problem is not directly related to lattices.
However, it can be transformed to a lattice problem in the following way. Let us define a
matrix A ∈ Zn×m

q and let it define a q-ary lattice L⊥q (A).

To relate this with the Ajtai [Ajt96] worst-case-to-average-case reduction, if an attacker
is capable of finding a short (||z|| ≤ β ≪ q) non-zero vector z ∈ L⊥q (A) for a uniformly
random A ∈ Zn×m

q , they can then solve GapSVP and SIVP for any n-dimensional lattice
[Pei16].

Figure 2.2 shows a q-ary lattice and the circle (or sphere in higher dimensions) which
encompasses the solution(s) to the SIS problem.

To better showcase the LWE problem, one more lattice problem will be introduced, the
Bounded Distance Decoding (BDDγ) problem. It poses the question of finding a lattice
vector closest to a given target point t ∈ Rn which is guaranteed to be within a certain
distance to a lattice point [Pei16]. A formal definition is also given in:

Definition 7. (Bounded Distance Decoding Problem - BDDγ), (Definition 2.5 in
[Pei16]). Given a basis B of an n-dimensional lattice L = L(B) and a target point t ∈ Rn

with the guarantee that dist(t,L)< d = λ(L)/(2γ(n)), find the unique lattice vector v ∈ L
such that ||t− v|| < d.
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Figure 2.2: q-ary integer lattices in 2D geometric representation (illustration from lectures
based on [Pei16]).

2.2.2 Learning With Errors (LWE)
The lattice problem that is sometimes referred to as a dual problem to SIS [Reg10],
specifically the one whose variation this thesis is concerned with, is the Learning With
Errors (LWE) problem introduced by Regev in [Reg09].

A formal definition of the basic problem is given as follows:

Definition 8. (LWE Distribution), (Definition 4.2 in [Pei16]). For a vector s ∈ Zn
q

called the secret, the LWE distribution As,χ over Zn
q × Zq is sampled by choosing a ∈ Zn

q

uniformly at random, choosing e← χ, and outputting the pair (a, b = ⟨s, a⟩+ e mod q).

As seen in the definition, the problem has three important parameters: positive integers
n and q and an error distribution χ over Z [Pei16] which is often a discrete Gaussian
distribution. Relative to each other, they generally have the following relationships:

√
n ≤

error ≪ q [Pei16].

LWE can be split into two different versions, search and decision. From the perspective
of an attacker, the search-LWE problem is the problem when an attacker is given m
independent LWE samples (a, b) and are trying to find the secret s. Notice that if m = n,
this appears to be solvable in polynomial time by applying Gaussian elimination as it is
just a system of equations. However this is not the case as the errors in each equation
compound and thus hide the resulting information effectively [Reg10]. The decision-LWE
problem consists of the task to distinguish (a, b) from uniformly random (a, b). More
formal definitions of both problems are given in the following [Pei16].

Definition 9. (Search-LWEn,q,χ,m), (Definition 4.3 in [Pei16]). Given m independent
samples (ai, bi) ∈ Zn

q ×Zq drawn from As,χ for a uniformly random s ∈ Zn
q (which is fixed

for all samples), find s.

Definition 10. (Decision-LWEn,q,χ,m), (Definition 4.4 in [Pei16]). Given m independent
samples (ai, bi) ∈ Zn

q×Zq where every sample is distributed according to either: (1) As,χ for
a uniformly random s ∈ Zn

q (which is fixed for all samples), or (2) the uniform distribution,
distinguish which is the case (with non-negligible advantage).
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Since both of these variations use m independent LWE samples, a more convenient way to
display them is available by using matrices. This can be done in the following way: first
we combine the samples into the matrix A ∈ Zn×m

q where the columns are vectors ai ∈ Zn
q

then we combine bi ∈ Zq into a vector b ∈ Zm
q with the bi as entries. Then we can present

all the sample pairs with a simple statement [Pei16]:

bt = stA + et (mod q) , e← χm. (2.8)

To connect this problem with lattices, we can equate it with an average-case of the
BDDγ problem on a family of q-ary m-dimensional integer lattices [Pei16; Reg10].
Essentially, the vector b is relatively close to a single vector in the LWE lattice
L(A) := {Ats : s ∈ Zn

q }+ qZm [Pei16]. The goal is to find this vector as per the BDDγ

problem.

Briefly touching on the hardness of these problems and the reductions that establish these
statements, decision-LWE is at least as hard as search-LWE [Reg09] which is in turn at
least as hard as solving worst-case approximate lattice problems with approximation factor
γ = (n/α) (where α is the error rate, the width of the error relative to q).

2.2.3 Ring-LWE
Ring-LWE or R-LWE is a variant of the LWE problem that tries to improve upon its
computational efficiency. To illustrate the issue with regular LWE: each calculation of
a pseudorandom scalar bi ∈ Zq from an LWE sample requires an n-dimensional inner
product which is an amount of work on the order of O(n). This causes cryptographic
systems based on regular LWE to have large keys [Reg10] with relatively large values for
n on the order of hundreds to thousands.

The desired efficiency improvement is achieved through batching these calculations in such
a way that we only need to produce n such pseudorandom scalars in one calculation instead
of n2. First, we need to say that n is a power-of-two, then that vectors a are used in blocks
of n samples a1, a2, ..., an ∈ Zn

q where a1 = (a1, a2, ..., an) is chosen uniformly at random
and the remaining vectors are given by ai = (ai, ..., an,−a1, ...− ai−1) [Reg10].

This technique can be viewed as essentially replacing the group Zn
q with a cyclotomic

polynomial ring R = Zq[X]/⟨Xn + 1⟩ where q is an integer and n is a power of two
[Reg10]. Elements of this ring are polynomials of deg < n with q-mod integer coefficients.
So effectively, a single Ring-LWE sample replaces n standard LWE samples [Pei16].

This leads into the formal R-LWE distribution definition [Pei16]:

Definition 11. (Ring-LWE distribution)), (Definition 4.6 in [Pei16]). For an s ∈ Rq

called the secret, the Ring-LWE distribution As,χ over Rq × Rq is sampled by choosing
a ∈ Rq uniformly at random, choosing e← χ, and outputting (a, b = s · a + emod q).

From this, we can derive similar problems as standard LWE, therefore search-R-LWE
becomes the problem of finding the secret ring element s(X) ∈ Rq, given as:

ai ← Rq , bi = s · ai + ei ∈ Rq , i = 1, 2, ...,m. (2.9)

and decision-R-LWE the problem of distinguishing (ai, bi) from uniformly random (ai, bi) ∈
Rq ×Rq (with non-negligible advantage). Formally this is shown in [Pei16]:

Definition 12. (Decision-R-LWEq,χ,m), (Definition 4.7 in [Pei16]). Given m indepen-
dent samples (ai, bi) ∈ Rq ×Rq where every sample is distributed according to either: (1)
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As,χ for a uniformly random s ∈ Rq (fixed for all samples), or (2) the uniform distribution,
distinguish which is the case (with non-negligible advantage).

The hardness of this problem is also guaranteed. Given that the parameter choices (q,
error rate-α and error distribution-χ) are correct, then solving R-LWE is at least as hard as
quantumly solving SVPγ on arbitrary ideal lattices in R, for some γ = poly(n)/α [LPR10].

2.2.4 Module-LWE
One last LWE-based problem that is used within this thesis (in the Key Encapsulation
Mechanism) is Module-LWE or M-LWE. It combines features from both LWE and R-
LWE [AD17] with regards to efficiency and security. On a high level, M-LWE allows to
require calculation of n · d pseudorandom scalars to represent n LWE samples, so more
than R-LWE’s n but still less than regular LWE’s n2. The scalar d is a module rank, in
the context of an M-LWE sample b = a · s + e this simply means that the a coefficient
is a matrix with dimensions n × n · d. Considering this, we can also say that R-LWE is
essentially M-LWE with module rank 1.

More formally, the distribution used in M-LWE is as follows:

Definition 13. (Module-LWE Distribution). For an s ∈ Rd
q called the secret, the

M-LWE distribution Ad,s,χ over Rd
q × Rq is sampled by choosing a ∈ Rd

q uniformly at
random, choosing e← χ, and outputting (a, b = ⟨s · a⟩+ e mod q).

Once again, from the defined distribution we can derive the definition for the search and
decision problems:

Definition 14. (Decision and Search M-LWE). Given m independent samples (ai, bi) ∈
Rq ×Rq where every sample is distributed according to either: (1) Ad,s,χ for a uniformly
random s ∈ Rd

q (fixed for all samples), or (2) the uniform distribution, distinguish which
is the case (with non-negligible advantage). Search-M-LWE is then the problem of finding
the secret ring elements s(X) ∈ Rd

q , given as:

ai ← Rd
q , bi = ⟨s · ai⟩+ ei ∈ Rq , i = 1, 2, ...,m. (2.10)

The hardness guarantee for M-LWE is based on a different class of lattices when compared
with R-LWE. Specifically, M-LWE is based on module lattices (lattices that generalize arbi-
trary and ideal lattices [LS15]) unlike R-LWE’s ideal lattices. Furthermore, the guarantee
itself is stronger, as MLWE is equivalent to natural hard problems over module lattices
[AD17].

2.3 Oblivious Pseudo-Random Function (OPRF)
The idea of an Oblivious Pseudo-Random Function (OPRF) is built upon the foundations
laid with the introduction of pseudo-random functions (PRFs)[GGM86]. However, in order
to arrive at the definition of an OPRF, we need to combine the concept of PRFs with the
idea of an Oblivious Transfer (OT).

2.3.1 Pseudo-Random Functions (PRF)
Pseudo-random functions are efficiently constructed deterministic functions whose output
looks like it is chosen at random [CHL22]. More specifically a family of functions is pseudo-
random if an attacker with oracle access for a randomly chosen function from the family
cannot differentiate it from a uniformly random function [BPR12]. A formal definition is:

Definition 15 (Pseudo-Random Function, definition 6 in [CHL22]). A family of functions
fk : {0, 1}m → {0, 1}n with key k ∈ {0, 1}λ is called pseudorandom if the following holds:
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• fk(x) is efficiently computable from k and x.

• It is not efficiently decidable whether one has access to a computation oracle for
Fs(·) or to an oracle producing random bitstrings of length n.

2.3.2 Oblivious Transfer (OT)
The generic definition of Oblivious Transfer protocols is that they allow one party, a
sender, to send a part of its inputs to another party, the chooser, in such a way that the
sender is assured that the chooser does not receive more information than it is meant to
while the chooser is assured that the sender will not learn which part of the inputs it
sent to them[NP01]. Furthermore, the sender is not even necessarily aware if the chooser
received any information[Rab05].

In more practical terms this can be seen from the simplest basic form of OT, which is 1-
out-of-2 Oblivious Transfer (OT 2

1 ). It is defined as the sender having an input composed
from two strings (M0,M1) and the chooser having an input composed of one bit σ. The
chooser then only learns Mσ, without learning anything about M1−σ, while the sender gets
no information about σ[NP01]. This OT can then be generalised to 1-out-of-N oblivious
transfer where the sender has N messages instead of only two.

2.3.3 OPRF Definition and Application
Combining the concepts of pseudo-random functions and oblivious transfer, oblivious
pseudo-random functions (OPRFs) can be defined. This definition then describes an
OPRF as: a secure 2-party protocol with the functionality (k, x) → (⊥, fk(x)), where
fk(x) is the PRF and with ⊥ denoting empty output [CHL22; Fre+05].

A formal definition for an OPRF is given as:

Definition 16. (Strongly-private Oblivious Pseudo-Random Function), (Defini-
tion 5 in [Fre+05]). A 2-party protocol π between a client (chooser) and a server (sender)
is a strongly-private OPRF if there exists some PRF family fk, such that π privately
realizes the functionality:

• Client has input x; Server has key k.

• Client outputs fk(x); Server outputs nothing.

This definition specifically refers to a so-called Strongly-private OPRF, however Freedman
also defines a Relaxed-OPRF where the client (chooser in previous chapters) is allowed
to learn partial information about the key [CHL22; Fre+05]. This variant is sometimes
used in settings with slightly relaxed security requirements for which otherwise efficient
Relaxed-OPRFs are sufficient [CHL22].

A connection between OT (specifically 1-out-of-2 OT) with and an execution of a Strongly-
private OPRF is given in [CHL22] as:

Definition 17. (Connection between OT and OPRF), (Definition in [Pei16]). f -
PRF function, K - key space, k - key, domain 2k

• Alice, on input m0,m1 chooses k ← K, computes c0 ← m0⊕ fk(0), c1 ← m1⊕ fk(1)
and sends c0, c1 to Bob.

• Alice and Bob then engage in one execution of the OPRF protocol with Alice playing
the role of the server with input k, and Bob in the role of the client with input
b ∈ {0, 1}. Bob learns fk(b), Alice learns nothing.

• Bob decrypts mb ← cb ⊕ fk(b) and outputs mb.
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This statement can then be generalized to an m-out-of-n OT with m subsequent strongly-
private OPRF evaluations[JL09].

This leads into the topic of real-world applications of OPRFs. One relatively straightfor-
ward example is a simple keyword search operation on a database, as explored in [Fre+05].

In this scenario, there is a server that holds a database of records associated with some
keywords and a client who sends queries consisting of keywords and wants to receive the
records associated with those keywords. On first glance, this seems like a setting that is
appropriate for an extended form of 1-out-of-n Oblivious Transfer (for example a k-out-
of-n OT shown in [IK97]). However, this is not the case, as in this situation there is an
additional step that necessitates a stronger tool.

The client (chooser) sends a search-word and the server needs to check if that input
corresponds to any keyword it has stored, as opposed to the client needing to send input
from a limited set of possibilities (like the binary choice in a 1-out-of-2 OT). The server
then uses a PRF to assign random pseudo-identities to mask the real keywords and their
corresponding records (x̂i, p̂i) as (x′i, p

′
i) with x′i = x̂i and p′i = pi ⊕ p̂i. Then, the OPRF

protocol is invoked with the server providing the random key k for the PRF and the client
providing the search-word and a Secure Function Evaluation (SFE) fk(w) is performed.
Afterwards, the client receives an obscured search-word ŵ and a piece for unlocking the
record p̂. The search-word ŵ can then be used by the server to provide the client with
the record p′i which the client then uses to output p′i ⊕ p̂. If the search-word was found to
have a match, otherwise the client outputs ⊥ [Fre+05].

2.3.4 OPRF Constructions
OPRFs can be constructed in many ways. A recent survey by Casacuberta et al. [CHL22]
groups these constructions into categories based on the underlying PRF and method of
oblivious evaluation. One of these categories describes OPRFs based on the Hashed Diffie-
Hellman PRF and these are of particular interest for this thesis as the current classically-
secure implementation of the improved BRAKE protocol [Bau+22] uses such an OPRF.
Thus it will be the one used as an example to illustrate the construction of an OPRF.

2.3.5 Hashed Diffie-Hellman
To assert that the function fH

k (x) := H(x)k is a PRF an assumption that the hash function
H produces uniformly random elements from a group ⟨g⟩ [NPR99] is needed. This implies
that the group ⟨g⟩ must be cyclic and of prime order, meaning every element of the group
is a generator. Then, the protocol for evaluating the PRF function itself is shown in Figure
2.3.

C(x) S(k)
r ←R Zq

a← H(x)r a b← ak

Output b1/r b

Figure 2.3: Blinded exponentiation for evaluating the Hashed Diffie-Hellman PRF
[CHL22].

In this protocol, the client’s input x is hashed into being a group element, then exponen-
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tiated with a random r value, therefore mapping it to another group element and then
sending it to the server to be exponentiated again with the server’s key k. This is effec-
tively a standard Diffie-Hellman procedure, where the client can take the received value
from the server and exponentiate it with 1/r to obtain the H(x)k value which is equal to
the OPRF evaluation for his input x.

The result of this fulfils the stated goal of an OPRF, namely the client outputs the eval-
uated function without learning anything about the server’s key k and without the server
learning anything about the client’s original input x.

2.4 Biometric Resilient Authenticated Key Exchange
Finally, the power of the OPRF cryptographic concept can be harnessed in authentication
protocols. Such a protocol is considered in this thesis, the Biometric Resilient Authenti-
cated Key Exchange (BRAKE) protocol [Bau+22].

It has three participants, a Client, Server and Evaluator and two functionalities:

• Enrollment

• Verification

The improved fuzzy vault scheme, namely the one presented in [Tam16], is used to secure
biometric data. Following the given example of fingerprint data, the use of this scheme
in the context of the BRAKE protocol is to create two polynomials, a randomly sampled
one f and a corresponding vault polynomial V (X) = f(X) +

∏
a∈A(X−a) [Tam16] which

obscures the actual biometric fingerprint template by adding the randomly sampled f .

In the enrollment phase, the randomly sampled polynomial f is used as input to the
OPRF and the vault V (X) is stored at the server, alongside a unique identifier for the
Client and the public key produced by the OPRF. In the verification use case, the Client
requests the stored fuzzy vault corresponding to its identifier and creates a polynomial f ′

by interpolating a fresh biometric probe feature set as U = {(b, V (b))|b ∈ B}. Then the
f ′ is used in the OPRF in a similar way as in the enrollment.

The purpose of the OPRF mechanism is to produce key material for key pairs from the
random polynomials f and f ′, in the enrollment and verification functionalities respec-
tively, while the biometric features remain hidden. Also important to point out is that
the OPRF essentially ensures that an interaction between the participants is mandatory
for every attempt at verification, thus hindering brute-force attacks.

The final step is the Key Encapsulation Mechanism (KEM), as part of the verification
functionality. Here, the goal of which is to produce a session pre-key encapsulated by the
reference public key (previously stored during enrollment) that can only be recovered (de-
capsulated) by the Client if the public key produced from the freshly captured fingerprint
(through the OPRF mechanism) matches the one stored at the Server. In this way, The
formal workflow of this protocol will be detailed in Chapter 3.
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Chapter 3

Post-Quantum Secure Biometric
Resilient Authenticated Key
Exchange (PQ-BRAKE)

The goal of this work is to adapt the BRAKE [Bau+22] protocol in such a way that
post-quantum security is achieved. The existing implementation [Bau+22] mentioned in
Chapter 2 is based on discrete logarithms, which are not considered secure in a quantum
setting.

The primitives proposed here as a method of achieving post-quantum security are lattice
based primitives, namely those based on the Ring Learning-With-Errors (R-LWE) prob-
lem. First, this chapter will give an overview of the underlying structures of the primitives
followed by presenting the adapted PQ-BRAKE protocol founded on those primitives.
Thereby, this Chapter constitutes the main contribution of this thesis, alongside the im-
plementation described in Chapter 4.

We briefly reiterate the three main components of the classically secure BRAKE protocol
described in Chapter 2:

1. The improved fuzzy vault scheme [Tam16].

2. An Oblivious Pseudo Random Function (OPRF).

3. A Key Encapsulation Mechanism (KEM).

The adaptation performed in this work concerns the OPRF and the KEM mechanisms, as
implementing them with quantum-resistant primitives should result in the protocol being
post-quantum secure. No changes are required with regard to the improved fuzzy vault
scheme [Tam16].

Specifically, adapting the OPRF was the main focus of this thesis as no implementation
currently exists for the chosen OPRF construction, which is the only lattice-based OPRF
construction currently known. This is the previously introduced VOPRF by Albrecht et
al. [Alb+21b], which is based on the R-LWE problem.

The KEM adaptation consists of replacing the Diffie-Hellman key exchange used in the
classically secure implementation [Bau+22] with a lattice-based alternative. The one cho-
sen was the recently standardised algorithm CRYSTALS-Kyber [Ava+21], which is based
on the Module-LWE problem.
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3.1 Lattice-Based Oblivious Pseudo-Random Function
Constructions for OPRFs with lattice-based cryptographic primitives are a relatively new
development. Lattice-based PRF constructions have been previously proposed in [BPR12]
but a full lattice-based OPRF construction has only recently been shown in [Alb+21b].

This construction bases the OPRF on the hardness of the LWE problem and is as such
assumed to be post-quantum secure [Reg09]. Additionally this specific construction has
the additional property of being verifiable (making it a VOPRF), that is, it means the
client has a guarantee that the output received from the OPRF evaluation is truly correct
and calculated with the server’s publicly committed key k [Alb+21b; CHL22].

The specific PRF function implemented in [Alb+21b] is based on the hardness of the
Ring-LWE problem and is defined as:

Fk(x) =

⌊
p

q
· aF (x) · k

⌉
(3.1)

where aF : {0, 1}L → R1×ℓ
q , the ring used is Rq = Zq[X]/⟨Xn + 1⟩, k ∈ Rq is the key with

small coefficients in {−q/2, ..., q/2} representation and the ⌊·⌉ operation is rounding to
the nearest natural number [Alb+21b]. A note about the function aF , in [Alb+21b], this
function is intentionally constructed in such a way as to allow the guarantees necessary
for the aforementioned verifiability feature. This function will be replaced with a simpler
variant in the implementation part of the thesis but this will be expanded upon in a
following chapter.

The basic functionality of this VOPRF (with the original aF function) is as follows
[Alb+21b]:

1. The server publishes a commitment c := a ·k+e to a small key k ∈ Rq (c is a R-LWE
sample).

2. The client chooses a small s ∈ Rq, small e1 ∈ R1×ℓ
q , computes and sends cx =

a · s + e1 + aF (x), where x is the client’s input.

3. The server calculates and sends dx = cx · k + e′ for a small e′ ∈ R1×ℓ
q .

4. The client outputs y = ⌊pq · (dx − c · s)⌉.

A basic idea of security is given from both the perspective of the server and the client
[Alb+21b]:

• The server exposes to the client the value dx which can be expanded into the formu-
lation: dx = a ·s ·k+aF (x) ·k+e1 ·k+e′. If e′ is chosen in an appropriate distribution
it can hide the addition of e1 ·k, e · s and an ex value (from another narrow distribu-
tion). To the client, this value can then be dx = (a ·k+ e) · s+ e′ + (aF (x) ·k+ ex) =
c · s + (aF (x) · k + ex) + e′ which is essentially just a R-LWE sample if the client
cannot differentiate aF (x) · k + ex from uniform random (which he indeed cannot do
if ex is picked from a correct distribution).

• The client exposes to the server the value cx = a ·s+e1 +aF (x). By the definition of
the decisional-R-LWE (Definition 12) problem, this is indistinguishable from random
and the secret value s and aF (x) remain hidden from the server.

The guarantee that the client actually receives the correct OPRF evaluation y is given
through the fact that if the values e1 · k, e′ and e · s are correctly chosen, they are small
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enough so that the value of dx− c · s is essentially equal to aF (x) · k which corresponds to
the PRF.

In order to show the actual construction of the VOPRF, it is useful to first give a definition
of the discrete Gaussian distributions used.

First, the Gaussian function on Rn centred at c ∈ Rn with parameter σ is defined in
[Alb+21b] as:

ρσ,c(x) = e−π·||x−c||2/σ2
, ∀x ∈ Rn. (3.2)

Then the discrete Gaussian distribution over Z (denoted as χσ in the protocol) assigns
probability ρσ(i)/ρσ(Z) to each i ∈ Z and 0 to all non-integer points [Alb+21b]. The
discrete Gaussian distribution over R (denoted as R(χσ) in the protocol) is the distribution
over R where each coefficient is distributed according to χσ [Alb+21b].

Now the full VOPRF protocol construction as given in [Alb+21b] can be shown in a
protocol diagram on Figure 3.1.

This diagram includes the basic functionality described above but also the zero-knowledge
proof systems denoted by P0,P1,P2 and additional elements needed to facilitate them
(b and common random strings crsi, i = 0, 1, 2). In short, these systems serve to give
assurances to both the client and the server that their calculations are honest and truly
computed from legitimately known information.

The three proofs are as follows [Alb+21b]:

• The client proof P1(x, s, e1 : crs1, cx, a, a0, a1) proves that the client legitimately
knows x, s and e1 such that cx = a · s + e1 + ax mod q.

• The server proof P0(k, e : crs0, c) proves that the server has legitimate knowledge of
k and e such that c = a · k + e mod q, while crs0 contains a.

• The server proof P2(k, e
′, e : crs2, c, dx, cx, a) proves that the server legitimately

knows k, e and e′ such that c = a · k + e and dx = cx · k + e′ mod q.
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VOPRF construction by Albrecht et al. [Alb+21b]

Setup

a0, a1 ← R1×ℓ
q

a← R1×ℓ
q

sample string crs0

crs0 := (crs0, a)

sample string crs1, crs2

Client Server
k ← R(χσ)

e← R(χσ)1×ℓ

c := a · k + e

π0 := P0(k, e : crs0, c)

c, π0

b := V0(crs0, c, π0)

if(b == 0)⇒ abort output

store(c)

s← R(χσ)

e1 ← R(χσ)1×ℓ

ax := ax1
·G−1(...(axL−1

·G−1(axL
))...)

cx := a · s + e1 + ax

π1 := P1(x, s, e1 : crs1, cx, a, a0, a1)

cx, π1

b := V1(crs1, cx, a0, a1, π1)

if(b == 0)⇒ abort output

e′ ← R(χσ′)1×ℓ

dx := cx · k + e′

π2 := P2(k, e′, e : crs2, c, dx, cx, a)

dx, π2

output(⊥)

b := V2(crs0, crs2, c, dx, cx, π2)

if(b == 0)⇒ abort output

yx := ⌊dx − c · s⌉p
output(yx)

Figure 3.1: Lattice-Based Verifiable OPRF (VOPRF) as presented in [Alb+21b].
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3.2 Adaptation of the Lattice-based Oblivious
Pseudo-Random Function (OPRF)

The OPRF used in this work is an adaptation of the VOPRF construction by Albrecht et
al. [Alb+21b] for the purposes of a practical PQ-BRAKE protocol implementation.

Originally, as shown in Section 3.1., the presented OPRF has the property of being veri-
fiable (thus being a VOPRF). This property is accomplished by the aforementioned zero-
knowledge proofs, which guarantee that the participants of the protocol perform their
respective calculations correctly and honestly.

However, the use of these proofs presents a problem of practicality if we wish to implement
this exact construction. The amount of data generated by the proofs, which are then trans-
mitted between the participating parties of the protocol, is extremely large. The authors
of [Alb+21b] give a rough indication of the amounts in question at approximately 240 bits
or around 128 GB of communication data for realistic parameter choices of log2(q) ≈ 256
and N = 16, 384.

Due to this significant communication overhead, a modification to a non-verifiable OPRF
and only passive security was necessary. This is achieved by excluding the zero-knowledge
proofs and truncating the underlying PRF accordingly. Consequently, the PQ-BRAKE
protocol is then considered only in an honest-but-curious setting or semi-honest adversarial
model. Essentially, all participants are not allowed to deviate from the protocol but may
try to learn as much information as possible during this honest execution of the given
protocol [Tre+19].

3.2.1 Truncating the Pseudo-Random Function (PRF)
An option that is made possible by removing the zero-knowledge proofs is the ability to
heavily reduce the computation time and communication cost generated by the PRF.

Originally, the PRF is evaluated as Fk(x) := ⌊ax · k⌉p ∈ R1×ℓ
p ([Alb+21b]) where ax is a

lattice PRF. This evaluation can be replaced with the PRF F ′
k(x) := ⌊ax · k⌉p where ax is a

hash that is mapped to a ring element so that F ′ : R→ Rq holds. This truncation shrinks
the calculations from using a matrix of polynomials in Rp to just single polynomials in Rp.
Consequentially, other values in the OPRF are similarly reduced, including c, cx, ax, dx, yx.

In practical terms, the input ax we wish to evaluate the OPRF on, is the random polyno-
mial f generated by the fuzzy vault scheme. Therefore, the element f needs to be mapped
to a ring element in a deterministic fashion. The procedure is described in the following
steps:

1. Concatenate every coefficient of f into a string cf .

2. Create a hash h := H(cf) using a cryptographic hash function.

3. Produce N + 1 coefficients of the polynomial ax by creating a hash of the form hi :=
H(i∥h) for i = 0, ..., N − 1 using the same hash function as before and converting
the resulting hashes into integers. Here, ∥ denotes concatenation.

4. Reduce the coefficients of ax mod q.

This procedure results in a polynomial ax which is an element of the ring
Rq = Zq[X]/⟨Xn + 1⟩ and can subsequently be used to compute an R-LWE sample.

3.2.2 Modified Lattice-Based Oblivious Pseudo-Random Function
Using the truncated PRF described above, the lattice-based OPRF construction by Al-
brecht et al. [Alb+21b] can be modified as will be described in the following Section.
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Figure 3.2. shows the functioning of the modified OPRF, using the truncated PRF, in
more detail.

Modified OPRF protocol, based on [Alb+21b]

1 : Client Evaluator
2 : (public)

3 : a←$ Rq

4 : k ← Dσ(Rq)

5 : e← Dσ(Rq)

6 : c := a · k + e

7 : c

8 : store(c)
9 :

10 : s← Dσ(Rq)

11 : e′ ← Dσ(Rq)

12 : ax := H(x)

13 : cx := a · s + e′ + ax

14 : cx

15 : E ← Dσ′(Rq)

16 : dx := cx · k + E

17 : dx

18 : yx := ⌊dx − c · s⌉p
19 : output(yx)

Figure 3.2: Modified OPRF protocol using the truncated PRF.

First, to define the R-LWE setting, the ring used is Rq = Zq[X]/⟨XN+1⟩, where q is a large
positive prime and serves as modulus while N is a power-of-two integer and represents the
dimension of the polynomials in R-LWE computations. The quotient polynomial is the
cyclotomic polynomial ⟨XN + 1⟩, which has been widely studied and is most commonly
used due to its representation simplicity [CP16].

The distributions used for random sampling are:

• Uniform distribution Dσ over Rq which produces ternary values.

• Uniform distribution Dσ′ over Rq which produces values in a range [−B,B], where
B is a large power of two smaller than q.

In this setting, the modified OPRF is then executed as follows: first, a uniformly random
ring element a with integer coefficients is sampled uniformly from a distribution which
encompasses the entire ring Rq and published for all participants.

Then, the Evaluator samples a small ternary key k and a small ternary error polynomial
e uniformly from Dσ. Using these ring elements, the Evaluator commits to the key k by
constructing an R-LWE sample c = a · k + e. The sample c is then sent to the Client and
stored there, with the actual value of the key k being indistinguishable from a uniformly
random ring element to the Client by the search-LWE assumption (Definition 9).

The Client now blinds its input, the random polynomial f generated by the fuzzy vault
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scheme. To accomplish this, the Client hashes the input to a ring element as per the
truncated PRF computation outlined in section 3.2.1. Next, a small polynomial s and
small error polynomial e′ are sampled uniformly from Dσ. Then, an R-LWE sample
cx := a · s + e′ + ax is constructed by adding the ax value as another error polynomial.

The polynomial cx is then sent to the Evaluator, who evaluates it by multiplying it with its
key k and adding a large error polynomial E, uniformly sampled from Dσ′ . This large error
term drowns the value of the key k so that it remains hidden from the Client [Alb+21b].
The result is another R-LWE sample dx = cx · k + E. This part of the OPRF protocol is
also known as the blinding operation of the OPRF.

Now the evaluated polynomial ax is sent back to the Client in the form of the R-LWE
sample dx, with it being secured in transit by the decision-RLWE assumption.

On receiving dx, the Client computes a polynomial yx =
⌊
p
q · (dx − c · s)

⌉
by subtracting

the value of the product c · s and then performing a rounding procedure coefficient-wise
to obtain an evaluation of its input and fulfilling the OPRF functionality as defined in
Definition 16.

The conclusion of the protocol using this polynomial yx is described in more detail in the
following Section.

3.2.3 Rounding
The rounding in the final step produces the Client’s output, which is the polynomial yx.
If the rounding is implemented correctly and the protocol has been successfully executed,
this rounded value will be equal to the rounded value ⌊ax · k⌉p. This is known as the
unblinding operation, which allows the Client to receive the computation of ax · k without
learning the Evaluator’s key k, while the Evaluator does not learn the value of ax.

The principle behind the validity of the rounding mechanism is shown in the following
equations [Alb+21b], which depict the total amount of noise that is accrued through the
protocol. Firstly, we introduce the R-LWE samples c, dx and cx, which form the total
noise value. These are elements of the ring Rq = Zq[X]/⟨Xn + 1⟩ and are transmitted
between the Client and Evaluator during the execution of the protocol. We recall their
definitions as given in Figure 3.2:

c = a · k + e (3.3)

dx = cx · k + E (3.4)

cx = a · s + e′ + ax. (3.5)

Next, we recall the computation of the polynomial y on the Client’s side, which includes
the values dx, c and s before they are summed and rounded in yx:

y = dx − c · s (3.6)

= cx · k + E − (a · k + e) · s (3.7)

= (a · s + e′ + ax) · k + E − a · k · s + e · s (3.8)

= e′ · k + ax · k + E − e · s. (3.9)

Then, as the polynomial yx can be obtained from y as:

yx =

⌊
p

q
· (dx − c · s)

⌉
=

⌊
p

q
· ax · k

⌉
. (3.10)
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In the expanded equation for y, we notice that it contains the polynomial ax · k and
and a noise polynomial e′ · k − e · s + E. Therefore, the last equation, showing the
value of yx, is correct with all but a negligible probability negl(κ) if the noise polyno-

mial
∣∣∣pq · (e′ · k − e · s + E)

∣∣∣ for is small enough for each coefficient to achieve acceptable

correctness after rounding, in other words:∣∣∣∣pq · (e′ · k − e · s + E)

∣∣∣∣
∞
≪ Z +

1

2
. (3.11)

Additionally, before actually performing the rounding, it is necessary to represent the
values that are to be rounded in −q/2, ..., q/2 form [Alb+21b].

The negl(κ) probability is present due to the fact that there is always a chance, due to
the aforementioned addition of noise, that an overflow can occur where the noise value is
just large enough to cause rounding to the wrong integer.

3.3 Key Encapsulation Mechanism (KEM)
A simple definition of a KEM is that it is a mechanism which is used between two parties
to securely communicate symmetric key material by using public-key cryptography. In
the case of PQ-BRAKE this is used to generate ephemeral key pairs and an additional
element γ that participates in the derivation of the symmetric session key ρ, along with
the [Bau+22]: stored reference public key cpkt for the Client who wishes to authenticate,
Server’s ephemeral public key spke, Server’s pre-generated public key spk and client’s
ephemeral public key cpke.

A KEM is composed of three algorithms [Bau+22]:

• Key generation - for creating a key pair consisting of a public and a secret key.

• Encapsulation - taking as and input a public key and outputting a ciphertext, which
is an encapsulated value that contains within it the secret shared value (γ in BRAKE
and PQ-BRAKE) which can be used as key material.

• Decapsulation - taking as input the received ciphertext and a secret key, outputting
the secret shared value which can then be safely used by the decapsulating entity.

3.3.1 CRYSTALS-Kyber
The specific post-quantum-secure KEM used in this thesis is the recently standardised
CRYSTALS-Kyber [Ava+21], due to its high performance and existing reference imple-
mentation.

Kyber is based on the Module Learning With Errors (M-LWE) problem described in Sec-
tion 2.2.4 and provides IND-CCA2 security [Ava+21]. There exist three versions of Kyber:
Kyber512, Kyber768 and Kyber1024. The versions differ primarily in the key and cipher-
text sizes and error distributions. They all share some main parameters though, namely
N = 256 and q = 3329, which were specifically chosen for the ability to use the number-
theoretic-transform (NTT) providing a very efficient way to perform multiplications in Rq

[Ava+21].

In this thesis Kyber768 was chosen as it is recommended by the authors due to its optimal
performance while still providing more than 128 bits of security [Ava+21].
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3.4 Lattice-Based BRAKE
Having introduced all the necessary components, we can now assemble the full PQ-BRAKE
protocol. First, a description of the enrolment functionality’s most important elements,
as shown in the protocol Figure 3.3:

• (lines 2-4) - Pre-existing knowledge each party has access to, including the assump-
tion that the Evaluator has already committed to the evaluation key k by producing
the R-LWE sample c.

• (line 5) - The fuzzy vault scheme output, consists of the random polynomial f and
the locked vault V .

• (lines 6-10): The initial step of the OPRF, also known as blinding, where the poly-
nomial f ′ is secured by creating the R-LWE sample cx.

• (lines 11-13) - The evaluation step of the OPRF, where the blinded polynomial f in
the form of the R-LWE sample cx is evaluated with the evaluating key k and sent
to the Client.

• (line 14) - The rounding step of the OPRF, also known as unblinding that if suc-
cessful, outputs the evaluated polynomial f which can now be used as key material.

• (line 15) - Expansion of the key material into a suitable secret key.

• (line 16) - Generation of the public key from the secret key.

• (lines 17-19) - Storing the vault V , Client’s public key and client’s identification id

at the Server for future authentication.
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PQ-BRAKE Enrolment

1 : Client Server Evaluator
2 : t reference template ssk ∈ K c ∈ Rq

3 : id verified identity spk ∈ P k ∈ Rq

4 : c ∈ Rq

5 : (f, V )← lock(t)

6 : s← Dσ(Rq)

7 : e′ ← Dσ(Rq)

8 : ax := H(f)

9 : cx := a · s + e′ + ax

10 : cx cx

11 : E ← Dσ′(Rq)

12 : dx := cx · k + E

13 : dx dx

14 : yx := ⌊dx − c · s⌉p
15 : cskt ← ExpKDF(yx)

16 : cpkt ← pkGen(cskt)

17 : V, cpkt, id

18 : store

19 : (V, cpkt, id)

Figure 3.3: PQ-BRAKE enrolment protocol.
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Next, a description of the verification functionality, as shown in the protocol Figure 3.4:

• (lines 2-5) - Pre-existing knowledge each party has access to, with the same assump-
tion as in enrollment that the Evaluator has already commited to the evaluation key
k by producing the R-LWE sample c.

• (lines 6-8) - The biometric component, where the Client sends a biometric claim id to
the Server and receives a locked fuzzy vault V connected to that id on which he then
performs the fuzzy vault unlocking operation and generates the random polynomial
f .

• (line 9) - Beginning of the KEM, where the Client and the Server each generate an
ephemeral key pair in preparation for a key exchange.

• (lines 10-13) - The initial step of the OPRF, also known as blinding, where the
polynomial f ′ is secured by creating the R-LWE sample cx.

• (line 14) - The Client transmits the R-LWE sample cx along with its ephemeral
public key to the Server, who forwards cx to the Evaluator.

• (lines 15-17)

– The Server performs an encapsulation of the stored reference public key tied to
the client with the received id and derives the symmetric session key ρ from
the concatenated: client’s reference public key cpk t, both ephemeral public
keys cpk e,spk e, Server’s pre-existing public key spk and shared secret value
γ.

– The Evaluator performs the evaluation step and produces the R-LWE sample
dx.

• (line 18) - The Evaluator transmits dx to the Server who forwards it to the Client
along with a hash of the session key ρ, its ephemeral public key spk e and the
ciphertext generated by the encapsulation procedure.

• (line 19) - Unblinding the evaluation.

• (lines 20-21) - Expanding the key material yx into a usable secret key cskt′ and
constructing the corresponding public key cpkt′ with pkGen().

• (line 22) - The decapsulation step of the KEM, where the Client obtains a shared
secret value γ′ from the ciphertext ctx and the secret key cskt′ .

• (lines 23-24) - The Client produces a symmetric key ρ′ in the same way that the
Server produced ρ but the Client uses its own freshly generated key cpkt′ .

• (line 25) - The output of the protocol, comparing the hash of the Client’s computed
ρ′ with the previously received hash of ρ. If the result is true and the hashes are
identical, then the protocol execution was successful and the symmetric key ρ is
established (user is authenticated).
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PQ-BRAKE - Verification

1 : Client Server Evaluator
2 : t′ probe feature vector ssk ∈ K c ∈ Rq

3 : spk ∈ P spk ∈ P k ∈ Rq

4 : biometric claim id (V, cpkt, id)

5 : c ∈ Rq

6 : id

7 : V

8 : f ′ ← unlock(V, t′)

9 : (cske, cpke)← KeyGen() (sske, spke)← KeyGen()

10 : s← Dσ(Rq)

11 : e′ ← Dσ(Rq)

12 : ax := H(f ′)

13 : cx := a · s + e′ + ax

14 : cx, cpke cx

15 : (ctx, γ)← encap(cpkt) E ← Dσ′(Rq)

16 : ρ← KDF(cpkt, cpke, dx := cx · k + E

17 : spk, spke, γ)

18 :
dx, H(ρ)

spke, ctx
dx

19 : yx := ⌊dx − c · s⌉p
20 : cskt′ ← ExpKDF(yx)

21 : cpkt′ ← pkGen(cskt′)

22 : γ′ ← decap(ctx, cskt′)

23 : ρ′ ← KDF(cpkt′ , cpke,

24 : spk, spke, γ
′)

25 : return H(ρ′) = H(ρ)

Figure 3.4: PQ-BRAKE verification protocol.
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Chapter 4

Implementation

This chapter describes the specifics of how the PQ-BRAKE protocol was implemented,
including the system setup, simulation architecture, abstractions and the details of the
most important subroutines. The general idea for this implementation was to create a
benchmarkable proof-of-concept implementation suited for simulation on a commodity
notebook in order to prove correctness and feasibility of the theoretical concept.

4.1 System Setup

The implementation was done in the C++ programming language (version C++11).

Libraries that were used in the implementation are NTL [Sho+01], for number theory and
polynomial arithmetic and OpenSSL [Fou04] for generic cryptographic operations.

A file structure that simulates different participants in the protocol, namely the Client, the
Server and the Evaluator was used to represent a real world execution of the protocol. To
this end, the functionality is split into two categories: the common cryptographic functions
accessible to one or multiple protocol participants (files in the the operations folder) and
the dedicated functionality accessible/used only by that specific participant (files in the
participants folder). The latter category is organized in such a way that each protocol
participant (seen in Figure 3.4) is represented by a class named after it, for example the
Client and the functions it performs in the protocol are located in the Client.cpp file.

These objects are only a simulation and their functionality is still performed on one ma-
chine running a single executable that represents all communication between the protocol
participants. In a real-world scenario the Client would be run on one machine while the
Server and Evaluator would run on a different one, with the Evaluator separated on a
hardware level but still on the same machine.

The testing code is located in a dedicated folder called tests.

The specifications of the machine used for testing are:

• CPU: AMD Ryzen 9 4900HS (8 core, 16 thread, 3 - 4.3 GHz)

• RAM: 16 GB

• OS: Linux (kernel 6.x)
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4.2 NTL
The most frequently used library in the implementation is the aforementioned NTL [Sho+01]
library for doing number theory.

Specifically, it was used for 4 main purposes: working with large integers (much larger
than default data types like int or long allow), polynomials, rings and floating point
calculations (on very large integers). Especially important was the library’s support for
very fast polynomial arithmetic which is at the core of the OPRF functionality, which is
expanded upon in the following section.

First, to provide a brief explanation of the main NTL classes used in the implementation:

• ZZ - represents arbitrary length integers along with support for accompanying arith-
metic and conversions to and from standard data types and other NTL classes.

• ZZX - polynomials with coefficients of type ZZ and polynomial arithmetic, used for
storing polynomials outside of the ring setting.

• ZZ p - large integers modulo integer q.

• ZZ pX - polynomials with coefficients of type ZZ p with support for polynomial
arithmetic in the modulo q setting.

• ZZ pE - ring extension of polynomials with ZZ p coefficients, in simple terms it
represents a ZZ pX polynomial modulo another polynomial P (which is a cyclotomic
polynomial Xn + 1 in this case).

• RR - represents arbitrary-precision floating point numbers, the precision is set to
150 bits though the specific computations performed do not require such precision.

A very useful feature of NTL are the conversion routines for these types. Most of them
can be efficiently converted directly to/from standard data types, like string and long.

Some of the conversions between NTL’s classes require more than one step. For example
when retrieving a coefficient from a polynomial of type ZZ pE, first the polynomial needs
to be converted into ZZ pX form, then the coefficient can be accessed and it itself needs
to be turned into ZZ form and only then to a RR floating point number.

This could certainly be improved in an optimized implementation made for real-world use
(without using NTL), but it does not impact the performance of this implementation to
the degree that it would offset the practical benefit of using NTL’s built-in classes.

Apart from the data type classes mentioned above and the arithmetic using these, some
NTL-specific functions were used and they will be described in the following sections.

4.3 Lattice-OPRF
The largest piece of the implementation is the lattice-based OPRF. This constitutes the
main contribution to the implementation part of this thesis, as it was constructed based on
the theoretical design of the OPRF construction described in the original paper [Alb+21b]
and such an implementation is not readily available in a library or other code-base. It
features three main components:

• Random sampling (Section 4.3.1.)

• Hashing into the lattice (Section 4.3.2.)

• Rounding (Section 4.3.3.)
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These can be seen on the protocol shown on Figure 3.2., where the random sampling is
used multiple times to generate values of a, k, e, ..., the hashing to determine ax and the
rounding to calculate y. Each of these components will be expanded upon in the following
sections.

4.3.1 Random Sampling
The random sampling functionality is required specifically to generate the values of:

• a - publicly available uniformly random polynomial with coefficients from [0, q − 1].

• k - secret OPRF key, small polynomial with ternary ([−1, 0, 1]) coefficients, uniformly
sampled.

• e - RLWE error value for commitment to the OPRF key k, small polynomial with
ternary ([−1, 0, 1]) coefficients, uniformly sampled.

• s - client’s RLWE secret, small polynomial with ternary ([−1, 0, 1]) coefficients, uni-
formly sampled.

• e′ - client’s RLWE error value, small polynomial with ternary ([−1, 0, 1]) coefficients,
uniformly sampled.

• E - large error value that obscures k from the client, polynomial with large integers
from a different distribution ([−B,B]).

Everything is sampled uniformly, as discrete Gaussian sampling is not necessary in this im-
plementation, in [Alb+21b] it was used for the mathematical benefits when performing the
proofs. Note, in all of these instances, negative values are represented in the calculations
by q − value, as we are using a mod q setting.

The function used to sample the small polynomials (k, e, s, e′) is called sampleSmallUni-
formPolynomial and is located in operations/Crypto.cpp. The operations it performs are
the following:

1. Initializes a pseudo-random number generator object based on the Mersenne Twister
algorithm [MN98] which is implemented by default in C++.

2. Declares the random distribution to be uniform between two bounds which form the
input to the function.

3. Produces a pseudo-random number from the desired distribution using the generator
object.

The large noise value E is sampled uniformly from a different error distribution [Alb+21b].
It needs to be sufficiently large to drown the value of the OPRF key k from the RLWE
sample in dx but not large enough to introduce too much noise when combined with the
other errors already that are already present. This is done through an NTL provided
function, ZZ.RandomBnd to output a pseudorandom number between 0 and 2 ·B− 1 and
then substracted with B to achieve the desired range [−B,B], where B is a boundary for
which B << q is true. The upper limit for the value of B is ||E||∞ ≤ 2N · 240.

4.3.2 Hashing into the Lattice

As mentioned in Section 3.1., the original AF (x) function used in [Alb+21b] is replaced
with a SHA-256 hash of the input (the fuzzy vault opening candidate polynomial) which
is then placed into a ring element (a polynomial). This is done through the following steps
of the function compute a x in Client.cpp:
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1. The coefficients of the fuzzy vault opening candidate polynomial are concatenated
and a hash digest h is created from the resulting string using SHA-256 (specific
implementation of this is from the openssl library).

2. To create a polynomial that is in the ring we want, every coefficient ax[i], i =
0, ..., N − 1 is produced by concatenating its index with h and hashing the resulting
string with SHA-256 as SHA256(0 ∥ h), SHA256(1 ∥ h),...).

3. Those hash digests are then converted from their hexadecimal representations into
decimal integer representations through NTL’s ZZFromBytes() function. The mech-
anism of this conversion works by summing the unsigned char values of each hex
character multiplied by a power of 256 corresponding to the index of the character.
In short, x = sum(p[i] · 256i, i = 0..N − 1) where p[i] is a character from the input
string and n is the length of the hash digest. This produces at most a 2154 bit integer
which can still be represented by NTL’s big integer class ZZ.

4. Lastly, each coefficient is converted into ZZ p (integer values modulo q) which form
the coefficients of a polynomial from the ring/lattice (ZZ pE data type).

This procedure is deterministic and works only in one direction due to the use of hashing.
In this way, the value of the original fuzzy vault opening candidate polynomial is further
obscured from the Evaluator, even before the addition of RLWE values (blinding).

4.3.3 Rounding
In the final step of the OPRF, the Client needs to round the value received as an RLWE
sample from the Evaluator substracted by c · s in order to compute the evaluated input
⌊ax · k⌉. The formulas that describe the reasoning behind this are given in the section
3.2.3.

To achieve this in the implementation, first the coefficients y[i] for i = 0, ..., N − 1 of the
polynomial y that is to be rounded are represented in a balanced manner (shifted by q

2 to
be in the range [− q

2 ,
q
2 ]). After that, the following operation is performed on the shifted

values y[i] for i = 0, ..., N − 1, using division by q
p instead of multiplication with p

q for a
slight optimization due to minimizing the impact of floating point representation (since
p = 2):

yx[i] =

⌈
y[i]
q
p

− 0.5

⌉
for i = 0, ..., N − 1. (4.1)

In this way the values are consistently rounded down on ties, as generally the rounding
functions provided by NTL are round-to-even and as such that do not always provide
the desired behaviour. The rounding output is a ternary polynomial with coefficients
[0, 1, q − 1]. When checking if the OPRF was successfully executed, if ⌊y⌉ = ⌊ax · k⌉, a
modulo of 2 is applied to the values to remove the q−1 instances which results in a uniform
post-rounding output distribution, with equal chances of coefficients being rounded to 0
and 1.

4.3.4 Oblivious Pseudo-Random Function (OPRF)
The operations that are part of the OPRF procedure are done using polynomial arithmetic
in the ring context provided by NTL’s ZZ pE class. To do this, every value that is part
of these calculations is first converted to ZZ pE, if it was not already in that form. The
computations done by the Client are done in the methods of the Client class, same with
the Evaluator and the final value, the rounded input evaluated with the Evaluator’s key
k is given as the output of the OPRF () function.
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4.3.5 Parameters
The parameters relevant for the OPRF implementation are defined as constant variables
in the parameters.hpp header. They are the following:

• q - the ring modulus, is a large prime number, type ZZ.

• N - degree of polynomials, dimension for RLWE samples, type long.

• B - bound for the drowning value E, type ZZ.

• p - rounding modulus, type long.

The validity and performance of the parameters used was checked using the sagemath
[Theyy] module called lwe-estimator [APS15] which estimates the security of different
LWE instances based on parameter choices (N , bit-size of q and standard deviation). N
and q are varied but the standard deviation is set to

√
2/3 which emulates a uniform

distribution. The aimed-for level of security was to be as close to 2128 operations needed
to break security as possible, with values generaly above 2100 considered acceptable.

As per the requirements described in Section 4.3.3., the parameters which impact the noise
need to be carefully chosen in order for the system to work properly (to round correctly
reliably and consistently but still provide a good level of security). The upper bound for
this noise term can be determined by calculating the infinity-norm for the entire term and
assuring that it fulfills the following condition (for p = 2):∣∣e′ · k − e · s + E

∣∣
∞ ≪

q

4
. (4.2)

First, to define the norms used in these calculations [Bau+18]: ||f ||1 =
∑

i |fi|, ||f ||2 =
(
∑

i |fi|2)1/2, ||f ||∞ = max
i
|fi|.

The value of the infinity-norm for a polynomial f ∈ Rq is defined as ||f ||∞ = max
i
|fi|, for

E this is equal to B, as that is how the E polynomial is sampled.

The infinity-norm values for the two remaining products are calculated in a different way.
Since these values are all elements of the ring Rq = Zq[X]/⟨Xn + 1⟩, the following two
inequalities need to stand [Bau+18]:

||f ||1 ≤
√

(N) · ||f ||2 ≤ N · ||f ||∞ (4.3)

||f ||∞ ≤ ||f ||1. (4.4)

These do indeed stand for our choice of e, e′, s, k and B. Furthermore, due to the choice
of the specific ring polynomial XN + 1 [Mic07] we can have the following two bound
expressions [Bau+18]:

1. If ||f ||∞ ≤ β, ||g||1 ≤ γ then ||f · g||∞ ≤ β · γ.

2. If ||f ||2 ≤ β, ||g||2 ≤ γ then ||f · g||∞ ≤ β · γ.

So the resulting sum of infinity norms for the entire noise term is:

|e′ · k|∞ + |e · s|∞ + |E|∞ = N + N + B ≪ q

4
. (4.5)

If the value of B is 2N · 240, the values of N are mostly inconsequential since B ≪ q and
this condition is indeed fulfilled.
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4.4 Lattice-based KEM
The implementation of the key encapsulation mechanism uses the CRYSTALS-Kyber
KEM implementation provided by Open Quantum Safe (OQS) [SM16]. The original im-
plementation is coded in C, but OQS also provides a C++ wrapper which was used here.

As mentioned in Section 3.3, Kyber has three functionalities:

• Key generation

• Encapsulation

• Decapsulation

These functions have corresponding implementations in the liboqs library, which are
utilised in the Kyber() function located in Crypto.cpp.

The underlying cryptographic algorithms used in these functions are, as per the CRYSTALS-
Kyber specification [Ava+21]:

• SHA3-256 and SHA3-512 for producing hashes.

• SHAKE-128 for expandable output function.

• SHAKE-256 as the key derivation function.

• SHAKE-256 also as a PRF.

The Kyber() function in this implementation is used for benchmarking purposes and per-
forms one instance of a KEM using a randomly generated keypair.
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Chapter 5

Performance

This chapter describes the expected and experimentally evaluated security and perfor-
mance of the PQ-BRAKE protocol. The experimental evaluation was performed with
separate tests for two of the three main components: Lattice-OPRF (based on [Alb+21b])
and CRYSTALS Kyber KEM [Ava+21] while the performance of the improved fuzzy vault
scheme [Tam16] was not tested, since it is used in the protocol without modification. The
improved fuzzy vault performance details shown in the following sections originate in the
work that describes the classically secure BRAKE protocol [Bau+22].

Experiments were run on a consumer grade notebook with an AMD Ryzen 9 4900HS
CPU@3-4.3 GHz and 16 GB of RAM. Separate test files are provided in the code which
test the Lattice-OPRF and KEM functionalities respectively.

As described in Section 4.1., open-source libraries were used in the implementation of
cryptographic functions, namely the OpenSSL implementation of the SHA-256 hashing
algorithm, Open Quantum Safe’s liboqs C library [SM16] through its C++ wrapper,
liboqscpp, for the CRYSTALS Kyber implementation.

5.1 Passive Security
As in the context of this thesis, the implementation of the lattice-based OPRF leaves out
the guarantees of active security in pursuit of practicality, thus only passive security can
be evaluated. An example of a possible situation which could cause an issue and is not
handled in a passive security setting is a Client who sends an R-LWE sample with an error
composed entirely of zeroes. To reiterate, the zero-knowledge proofs which would provide
active security to the OPRF element of the PQ-BRAKE protocol are available and are
described in the work on which this implementation is based on [Alb+21b] but have large
space requirements which are incompatible with practical applications.

5.1.1 LWE Estimator
For the OPRF part of the protocol, parameter choice is crucial for both communication
and computation complexity along with security, and needs to be carefully evaluated. The
relevant parameters are:

• q - Modulus, large prime.

• N - Ring dimension, power-of-two.

• p - Rounding modulus, set to p = 2.
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Testing of the parameter validity was done through the program mentioned in Section
4.3.5., lwe-estimator [APS15]. Inputting the desired parameters into this program results
in an estimated number of ring operations required to break the security of R-LWE. The
tool supports the following attack algorithms:

• Meet-in-the-middle exhaustive search.

• Coded-BKW [GJS15].

• Dual-lattice attack and sparse secret variant [Alb17].

• Lattice-reduction and enumeration [LP11].

• Primal attack via uSVP [AFG14; BG14].

• Arora-Ge algorithm [AG11] using Gröbner bases [Alb+14].

The resulting number of ring operations (ROP ), directly corresponds to the bit security
for the given parameter choice as: log2(ROP ). In practical terms, this means that when
choosing parameters, the aim is to keep this security level above 100 bits, while having
the:

• Largest possible accumulated error rate - an increase in this corresponds to improved
worst-case hardness theorem conclusions [CP16].

• Smallest possible q - that supports the large accumulated error rate (fulfills the
condition laid out in Equation 4.5.

• Balanced N - increases security but also communication and computation complex-
ity.

The desired security level of over 100 bits is based on the lattice-sieving class of algorithms
[Bec+16] for solving the SVP.

Using these parameters, it is also possible to calculate a probability of the rounding step
failing, which would result in a decryption failure in practice, due to noise wrapping the
value around Z + 1/2 and causing a rounding to the wrong value. As demonstrated in
Equation 4.5, the upper bound on the noise is given as: 2N + B ≤ q

4 . We consider the
probability of one coefficient of the output polynomial yx being wrongly decrypted to be:
2N+B

q , and its complement situation, the probability of no error occurring as: 1− 2N+B
q .

With this in mind, we claim that the probability of at least one decryption error occurring
during the rounding of N polynomial coefficients and thus the protocol failing in the OPRF
step, to be:

1− (1− 2N + B

q
)N . (5.1)

Applying this formula, we set the parameters so that the failure rate is significantly smaller
than the false-accept security of the biometric component, i.e., the improved fuzzy vault
scheme. A success rate of 99.9% was chosen for this benchmark.

5.1.2 KEM
The KEM is evaluated independently of the OPRF functionality, as its performance is
effectively separate and not impacted by the amount of data or parameters used in the
OPRF. Since the KEM that is being used is the recently standardised CRYSTALS-Kyber,
its security level and communication requirements are given by the authors [Ava+21].
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Specifically, the variant used in this thesis was the Kyber768 variant with the estimated
security of at least 128 bits and the following sizes as shown in Table 5.1.:

Secret key 2400 bytes

Public key 1184 bytes

Ciphertext 1088 bytes

Table 5.1: Kyber768 Key Sizes.

In the two functionalities of the protocol, the following amounts of data are stored and
sent:

• Enrollment - shown in Figure 3.3, one key pair generated (Client’s), one public key
is sent (1184 B).

• Verification - shown in Figure 3.4, two key pairs generated, two public keys are
communicated to another participant (1184 bytes each), along with a ciphertext
(1088 B).

5.2 Benchmarking Results

5.2.1 Modified Lattice-OPRF

With the aforementioned conditions for parameter choices, the following representative
sets of parameters were benchmarked. All of them are parameterised in such a way that
they are as close as possible to the desired 99.9% decryption success rate.

1. Scenario A - an impractical but highly secure option - N = 8192, q ≈ log2(2
77),

B = 254 with estimated security 408 bits.

2. Scenario B - a faster but less secure option - N = 2048, q ≈ log2(2
73), B = 252 with

estimated security 95 bits.

3. Scenario C - a reasonable middle-ground option - N = 4096, q ≈ log2(2
75), B = 253

with estimated security 188 bits.

The following results were obtained by running the OPRF, for each set of parameters,
10,000 times and noting the average execution times for each part of the protocol. Each
test (for every parameter set) used the same randomly generated fuzzy vault polynomial
f in all 10,000 iterations, but every value besides f is randomly sampled in each iteration.
Strictly speaking, the publicly available polynomial a would not need to be freshly sampled
if a user were to try to authenticate multiple times in a row, but the experiment was set
up in this way for a better representation of the worst case performance.
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N = 8192 q ≈ log2(2
77) B = 254

Sampling a 1.96 ms
Sampling k 1.46 ms
Sampling e 1.46 ms
Compute c 5.6 ms
Sampling s 1.49 ms
Sampling e′ 1.46 ms
Compute ax 24.17 ms
Compute cx 5.71 ms
Sampling E 3.14 ms
Compute dx 5.47 ms
Compute y 5.47 ms
Rounding y 5.99 ms

Total OPRF runtime 63.64 ms
Security level 408 bits

Table 5.2: Computational Performance of PQ-BRAKE Scenario 1.

N = 2048 q ≈ log2(2
73) B = 252

Sampling a 0.52 ms
Sampling k 0.40 ms
Sampling e 0.39 ms
Compute c 1.13 ms
Sampling s 0.39 ms
Sampling e′ 0.39 ms
Compute ax 6.25 ms
Compute cx 1.15 ms
Sampling E 0.81 ms
Compute dx 1.09 ms
Compute y 1.09 ms
Rounding y 1.52 ms

Total OPRF runtime 15.24 ms
Security level 95 bits

Table 5.3: Computational Performance of PQ-BRAKE Scenario 2.

N = 4096 q ≈ log2(2
75) B = 253

Sampling a 1.01 ms
Sampling k 0.74 ms
Sampling e 0.73 ms
Compute c 2.75 ms
Sampling s 0.74 ms
Sampling e′ 0.73 ms
Compute ax 12.24 ms
Compute cx 2.78 ms
Sampling E 1.58 ms
Compute dx 2.66 ms
Compute y 2.65 ms
Rounding y 3.01 ms

Total OPRF runtime 31.81 ms
Security level 188 bits

Table 5.4: Computational Performance of PQ-BRAKE Scenario 3.
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As is visible from the results shown in Tables 5.2, 5.3 and 5.4, the computation of ax is the
single most time consuming step of the OPRF procedure in each scenario. We see that
the amount of time it takes is directly dependent on the ring dimension N , so the number
of coefficients that need to be hashed in order to hash the randomly generated fuzzy vault
opening candidate polynomial f into a ring element. In terms of implementation, this
depends on the hash rate which is 0.003 milliseconds per SHA256 hash operation on the
test machine. The degree of the f polynomial itself does not have a significant impact
as it only changes the length of the input for the first hash operation and thus can be
considered negligible in terms of performance.

Furthermore, as expected, the sampling generally slows down when using larger distribu-
tions, however an additional performance penalty is present when sampling the drown-
ing error E, due to the implementation invoking an additional arithmetical operation in
the sampling process to compute a value in the range [−B,B]. This could be optimized
through the use of a specifically adapted sampling function which supports sampling num-
bers centered around zero.

5.2.2 CRYSTALS-Kyber KEM

The KEM performance was benchmarked with a larger number of 1,000,000 iterations due
to the high efficiency of the OQS implementation [SM16].

Notably, the parameter set of Kyber768 is using much smaller parameters than the ones
used in the modified lattice-OPRF. Additionally, Kyber is based on a modification of the
R-LWE problem called Module-LWE. In short this turns the a value in an R-LWE sample
from a polynomial into a matrix over a constant-size polynomial ring and the s and e
variables in an R-LWE sample into vectors over the same ring [Ava+21]. Using such a
variation of R-LWE results in better scalability, reduced communication cost and possibly
performance on par with R-LWE (when encrypting messages of a fixed size of 256 bits)
[Ava+21].

The benchmark results and parameter set are shown in the following Table 5.5:

N = 256 q = 3329 p = 3

KeyGen 0.018 ms
Encap 0.021 ms
Decap 0.015 ms

Total KEM runtime 0.063 ms
Security level ∼ 128 bits

Table 5.5: Kyber768 Parameter Set [Ava+21].

5.2.3 PQ-BRAKE

Combining the results of the previous benchmarks we can show an estimate of the per-
formance of PQ-BRAKE’s verification functionality. Notably, this benchmark does not
include the generation, hashing and comparison of the symmetric session keys ρ and ρ′ as
these are not included in the performance evaluation of clasically secure BRAKE [Bau+22]
and are dependent on the choice of key derivation function and hashing algorithm. The
results are shown in the Table 5.6:
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Polynomial degree
6 8 10 12 14 16

Feature
extraction and
preprocessing

200.59

unlock 112.24 185.99 276.37 385.26 511.91 694.87
OPRF (1) 63.64
OPRF (2) 15.25
OPRF (3) 31.81

KeyGen Client
ephemeral

0.018

KeyGen Client
reference

0.018

KeyGen Server
ephemeral

0.018

encap 0.021
decap 0.015

verification (1) 376.56 451.31 542.69 652.58 780.23 964.19
verification (2) 328.17 402.92 494.30 604.19 731.84 915.80
verification (3) 344.73 419.48 510.86 620.75 748.40 932.36

FMR (%) 1.04% 0.04% 0.00% 0.00% 0.04% 0.09%

1-FNMR (%) (1) 92.88% 88.79% 81.97% 73.18% 60.45% 44.09%

Estimated
security in bits

17 23 29 36 44 -

Table 5.6: PQ-BRAKE Verification Performance in Milliseconds (Extending Upon
[Bau+22]).

In PQ-BRAKE, as in classically-secure BRAKE [Bau+22], the biometric feature extraction
and preprocessing along with the fuzzy vault unlocking have the largest impact on the
execution time. These elements are dependent on the polynomial degree τ −1 of the fuzzy
vault random polynomial f where τ is the threshold for a biometric decision, with higher
values indicating a lower tolerance for biometric template differences. Additionally, the
unlocking procedure run time scales with the degree of the random polynomial f but all
other procedures are independent of it.

5.3 Comparison With Classically Secure Implementation
In Table 5.7 the performance penalties are shown for the three different scenarios of PQ-
BRAKE’s verification functionality. The performance is represented relative to the verifi-
cation performance of classically-secure BRAKE [Bau+22].

For classically-secure BRAKE, the communication costs are calculated to be [Bau+22]:

• 99 bytes - for locked fuzzy vault of degree at most 43 and coefficients in F218

• 32 bytes per elliptic curve point - for keys and blinded and evaluated OPRF input

• 32 bytes - for the hash digest

In total, this brings the communication cost of the BRAKE verification to 0.3 KB.

For PQ-BRAKE the communication costs, differing for each scenario, are the following:
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Polynomial degree
6 8 10 12 14 16

Classical
security

verification 313.40 387.15 477.53 586.42 713.07 896.03

Post-quantum
security

verification (1) +20.15% +16.57% +13.65% +11.28% +9.42% +7.61%
verification (2) +4.71% +4.07% +3.51% +3.03% +2.63% +2.21%
verification (3) +10.00% +8.35% +6.98% +5.85% +4.95% +4.05%

Table 5.7: PQ-BRAKE Verification Performance Penalty in Milliseconds, Relative to
Classically Secure BRAKE [Bau+22].

Scenario (1) (2) (3)
Albrecht

et al.
[Alb+21b]

Locked fuzzy vault 99 B
OPRF (3 RLWE samples) 234 KB 55.5 KB 114 KB 1536 KB

Kyber keys 4672 B
Hash digest 32 B

Total communication cost
238.7

KB
60.2

KB
118.7

KB
1540.7

KB

Table 5.8: PQ-BRAKE Communication Costs.

Evident from Table 5.8 is the fact that PQ-BRAKE introduces a large communication cost
increase even in the optimistic, faster situation (2). This increase is dependent mostly on
the ring dimension N , as increasing q by one only increases the size of a R-LWE sample
by N bits.
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Chapter 6

Conclusion

This thesis presented a post-quantum secure modification of the Biometric Resilient Au-
thenticated Key Exchange (BRAKE) protocol [Bau+22] using lattice-based cryptographic
components. As the main contribution, this included the modification of an OPRF mech-
anism and the usage of the recently standardised CRYSTALS-Kyber KEM.

Furthermore, these components have been successfully implemented in the C++ pro-
gramming language using open-source cryptographic implementations and libraries and
performance tested on a commodity notebook.

An exploration of possible parameter choices for the OPRF has also been performed since
the choice of these directly and majorly impacts the computation and communication
performance of the protocol, along with the security itself. This is especially relevant as
the topic is currently an open problem and is widely discussed in the scientific community.

The obtained results of the performance testing suggest that the real-time efficiency of
the classically-secure BRAKE [Bau+22] is also accomplished by the PQ-BRAKE protocol
implemented in this thesis.

The biggest variable impacting the computational performance remains the biometric part
of the protocol. While the post-quantum-security-providing elements were found to be be
slower than their classically-secure counterparts as expected, relative to the biometric part,
they still contribute less than 10% to the overall execution time for the best parameter
choice.

The experiments also demonstrate the unavoidable communication cost increase, going
from requiring 0.3 KB in BRAKE to requiring 60.2 KB, 118.7 KB or 238.7 KB in PQ-
BRAKE, depending on the parameters chosen.

Further research can be directed at improving the security of the proposed PQ-BRAKE
protocol. For instance, a modification to the PRF was made in the name of practicality
which requires an honest-but-curious security model. The original work by Albrecht et al.
[Alb+21b] does give an active security guarantee. If an improvement to its OPRF imple-
mentation manages to retain this guarantee while achieving the performance comparable
to performance reported in this thesis, it would be a step closer to being ready to use in
practice.
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