
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Tjerand Aga Silde

Verifiable Random Secrets and
Subliminal-Free Digital Signatures

Master’s thesis in Mathematical Sciences

Supervisor: Kristian Gjøsteen

June 2020

Tjerand Aga Silde

Verifiable Random Secrets and
Subliminal-Free Digital Signatures

Master’s thesis in Mathematical Sciences
Supervisor: Kristian Gjøsteen
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

ABSTRACT

Subliminal signatures were introduced by Simmons (CRYPTO 1983), who
pointed out that a malicious signer can embed secret information into a
signature. Simmons also gave an interactive protocol for subliminal-free
signatures based on the discrete logarithm problem.

We propose two protocols for subliminal-free signatures, and these are the
first constructions to achieve subliminal-free channels in the post-quantum
setting. The core of our protocols is a verifiable random secrets (VRS)
scheme, which is of independent interest. Combining the VRS with a
signature scheme gives us subliminal-free signatures.

Our first construction is a scheme combining a lattice-based VRS with
lattice-based signatures. The VRS uses the commitment scheme from
Baum et al. (SCN 2018) and the zero-knowledge proof of shuffle of known
content by Silde et al. (IN SUBMISSION) to generate verifiable randomness.
The VRS can be combined with the lattice-based signature framework by
Lyubashevsky (EUROCRYPT 2012) to achieve subliminal-free signatures.
The concrete instantiation can be made non-interactive and it takes ≈ 10
seconds to create a subliminal-free signature of total size ≈ 13 MB.

Our second VRS construction is inspired by the ”cut-and-choose” techniques
used by Katz et al. (CCS 2018) and Beullens (EUROCRYPT 2020). It
is based purely on one-way functions, and can be combined with any
”hash-then-sign” signature scheme. Our most practical instantiation only
takes 1 s to generate a subliminal-free signature of size 3.3 KB, where a
malicious signer has probability 2−10 to embed subliminal information into
the signature.

Subliminal digital signatures can e.g. be a threat against two-factor authen-
tication systems when the second device is malicious. Boneh et al. (IEEE
S&P 2019) gave a solution to this problem for signatures based on the
hardness of computing discrete logarithms over elliptic curves. Our protocol
can be an alternative solution for lattice-based signatures.

i

ii

ACKNOWLEDGMENTS

You are now reading my master thesis in cryptography, which is a part of
my integrated Ph.D.-program in mathematical sciences at NTNU. I’m very
grateful to my supervisor Kristian Gjøsteen, our discussions have been the
most enlightening moments of my academic career. I also want to thank
Herman Galteland, in which parts of this thesis was co-authored. This also
concludes all coursework and teaching in my Ph.D., and although interesting
and valuable, I’m excited to focus purely on research going forward.

Thanks to my collaborators Diego Aranha, Carsten Baum, Thor Tunge
and Kristian for fruitful work on lattice-based zero-knowledge protocols, in
which this thesis builds upon. Especially thanks to Carsten for hosting me
for one week in Aarhus November 2019, and for inviting me back for the
full upcoming fall semester. I would also like to thank Colin Boyd, Bor de
Kock and Thomas Haines for very exciting ongoing collaboration within the
area of lattice-based cryptography.

I’m very grateful to be a member of the NTNU Applied Cryptology Lab,
and I consider you both colleagues and friends. I’ve also had the honor of
teaching linear algebra the past three semesters together with Aslak Buan,
Gereon Quick and Morten Nome, and it’s been a pleasure working with you.

I spent the academic year 2017-2018 at UC Berkeley, USA. In addition to all
the interesting classes, projects and seminars, I want to acknowledge Roger
Antonsen and all the new friends I made for making my time in California
an amazing experience.

Last, but not least, I want to thank my family, my friends and my partner
for always supporting my work, my interests and my path in life. I also want
to thank them for all the non-cryptographic stuff we do together, making
sure that my day to day life is (somewhat) balanced. Special thanks to
Dahlia for being patient with me, and for proofreading my thesis.

Thank you!

iii

iv

PREFACE

This thesis builds on joint work with Herman Galteland. We co-authored a
paper titled Verifiable Random Secrets and Subliminal-Free Digital Signa-
tures, which is included in his Ph.D.-thesis [Gal20, VI]. Our paper defines a
new concept called Verifiable Random Secrets (VRS), and gives two VRS-
constructions: one based on the hardness of discrete logarithms, and another
based on hard problems on lattices. We combine our VRS-constructions
with Schnorr-like signatures to achieve subliminal-free signatures (SFS).

This thesis contains some, but not all, of the sections in [Gal20, VI]. Herman’s
main contribution was the schemes based on discrete logarithms, and my
main contribution was the schemes based on lattices. The focus in this
thesis is a slightly improved version of the lattice-based VRS- and SFS-
schemes given in [Gal20, VI], in addition to a new, more generic and flexible
VRS-construction based only on one-way functions. The new VRS offers
smaller proofs but requires linear work in the security parameter, which we
overcome by adjusting the soundness of the subliminal-free signatures.

Sections §1, §4 and §5 are co-authored with Herman Galteland [Gal20, VI].
Sections §2 and §3 are background material, where the shuffle-protocol in
§3.2 is joint work with Diego Aranha, Carsten Baum, Kristian Gjøsteen and
Thor Tunge [ABG+, BGS]. Section §6 is my own contribution. Sections §4,
§5 and §6 are the main new contributions in this work. We conclude in §7.

This thesis is available at ntnuopen.ntnu.no and tjerandsilde.no.

Tjerand Aga Silde
Trondheim, 30/06-2020

v

vi

Contents

Abstract i

Acknowledgements iii

Preface v

1 Introduction 1

1.1 Warden Model . 1

1.2 Subliminal-Free Digital Signatures 2

1.3 Related Work . 4

2 Preliminaries 5

2.1 Notation . 5

2.2 Polynomial Rings and Norms 5

2.3 Short elements in Rp . 6

2.4 Discrete Gaussian Distribution 6

2.5 The k-SUM Problem . 8

2.6 Subliminal-Free with Proof Signature Scheme 8

2.7 Commitment Schemes . 9

2.8 Hash Functions and Quantum Security 10

2.9 Digital Signature Schemes 11

2.10 Zero-Knowledge Proofs . 12

2.11 Verifiable Random Functions 13

3 Lattice-Based Cryptography 14

3.1 Hard Problems on Lattices 14

3.2 Commitments . 15

3.3 Zero-Knowledge Proofs . 16

3.4 Signatures . 18

4 Verifiable Random Secrets 20

5 Subliminal-Free Digital Signatures 25

vii

5.1 How to Achieve a Subliminal-Free Channel? 25
5.2 Subliminal and Subliminal-Free Digital Signatures 26
5.3 Subliminal-Free Digital Signature Scheme 27
5.4 Subliminal-Free Digital Signatures with Pre-Processing . . . 29
5.5 Non-Interactive Subliminal-Free Digital Signatures 30
5.6 Security of Subliminal-Free Digital Signatures 30

6 Our Schemes 31
6.1 A Lattice-Based VRS from Shuffled Randomness 32
6.2 A Schnorr-Like SFS from the Lattice-Based VRS 35
6.3 Generic VRS Framework Based on One-Way Functions . . . 37
6.4 A Hash-Then-Sign SFS from One-Way Functions 41
6.5 Efficiency and Size . 43

7 Conclusion 47

References 48

viii

1 Introduction

A subliminal channel is a solution to Simmons’s Prisoners’ Problem [Sim84],
where two prisoners want to communicate covertly over an overt channel
controlled by a warden. The prisoners are allowed to send signed messages,
to authenticate the sender of the message, but the messages themselves
have to be sent in the clear. To communicate covertly the prisoners can
create a subliminal channel, where the subliminal messages are encoded into
the signatures. Only the prisoners, which may have some pre-shared secret
knowledge, can recover the subliminal messages, while all signatures appear
normal to everyone else.

The goal of the prisoners as subliminal sender and receiver is to communicate
covertly, and the goal of the warden is to prevent any subliminal channel. In
this thesis we will focus on achieving warden’s goal of creating a subliminal-
free signature scheme.

Constructing subliminal-free digital signature schemes for classical adver-
saries is solved [BS05, BGVS07, DX10, ZLLZ13]. Constructing subliminal-
free digital signature schemes that are secure against a quantum adversary
has been an open problem until now – designing such schemes is the main
contribution in this thesis.

1.1 Warden Model

The subliminal sender S and receiver R want to reliably communicate dis-
creetly over a communication channel controlled by a warden W. Before a
signature is generated, S and W may interact to jointly produce a random
value known to S but secret to W, which will be used to create a signature.
S creates a proof that the random value was used in the signature. Then, S
sends the message-signature-proof tuple to W, which verifies the signature
and checks the proof. If, and only if, both are valid, then W forwards the
message-signature pair to R. The proofs are only sent to W and cannot be
used to send subliminal information.

1

The sender will be able to choose his own public and private signing keys,
however, S will not be able to update any keys during the signing process.
Warden will abort if any signature is invalid with respect to the public key
of S, and then close the channel. Also, if S aborts during the signing process,
e.g. if the signature does not include the subliminal bits and he wants to
re-try, Warden closes the channel.

We assume that S and R may have shared secret information before they start
communicating: e.g. a secret key for a suitable symmetric cryptosystem,
in addition to the signing key. The secret key can be used to encrypt the
subliminal messages to make them indistinguishable from random values,
and the signing key can be used to recover subliminal messages. The sender
is allowed to cheat during key generation.

We are not interested in hiding information in the messages themselves,
called steganography. We will assume that S is given a message to sign, and
that the goal of S is to encode the subliminal messages into the signatures.

1.2 Subliminal-Free Digital Signatures

Our work builds upon the subliminal-free digital signature scheme with proof
definition of Bohli et al. [BGVS07], where they constructed a subliminal-free
variant of ECDSA. We give a similar definition of a subliminal-free digital
signature scheme and construct two post-quantum subliminal-free digital
signature schemes: one based on lattices, and a more generic construction
based only on one-way functions.

We get a subliminal-free digital signature scheme if S is unable to choose
any of the random values used to generate a signature. If S can choose
the randomness, then he can easily replace the random values with the
encryption of a subliminal message. Hence, we need a procedure for creating
random values that is not controlled by S. We define a verifiable random
secrets (VRS) scheme, and use the VRS together with Schnorr-like digital
signature schemes to create a subliminal-free digital signature scheme. The

2

VRS is used by S and W to jointly generate a verifiable random number,
which will be used to produce a signature. The sender also needs to include
a proof showing that the random number generated in the VRS scheme was
used to produce the signature.

A VRS is an interactive protocol between a prover and a verifier that
produces verifiable random numbers known only to the prover and unpre-
dictable for everyone else, along with proofs to convince the verifier that
the randomness was generated honestly. VRSs are inspired by verifiable
random functions (VRFs) by Micali et al. [MVR99]. The main difference
between a VRF and a VRS is that the random number produced is secret
to the verifier in a VRS but public in a VRF.

Schnorr-like digital signature schemes follow the same structure as zero-
knowledge proofs of knowledge of opening of a commitment. The prover
sends a new commitment of a random value to the verifier, the verifier replies
with a challenge, and the sender generates a response using the challenge
and the secret opening. This protocol can be made non-interactive using
the Fiat-Shamir heuristic [FS87], where the challenge is generated by a hash
function. If the message is a part of the input to the hash function, we get
a digital signature scheme.

The lattice-based signature scheme of Lyubashevsky [Lyu09, Lyu12] follows
the same pattern as Schnorr’s digital signature scheme: commit, challenge,
and response. The signer samples a random lattice-vector, computes the
challenge using a hash function, and the response is generated using the
random value, challenge, and secret signing key. Lyubashevsky’s scheme
uses rejection sampling to discard certain signatures, where a signature is
sometimes rejected to make the signature distribution independent of the
secret key.

3

1.3 Related Work

Simmons introduced the notion of subliminal channels as a solution to his
prisoners’ problem [Sim84]. Two partners in crime are arrested and put
into separate parts of a jail. The prisoners wish to communicate with each
other, to plan their escape, and the warden allows them to send messages
if he can read the content of the messages sent, hoping to learn about any
potential escape plan. The prisoners are allowed to sign their messages and
can verify that they are sent from a prisoner and not from the warden. This
is an authentication without secrecy communication channel controlled by
the warden. The problem of the prisoners is to make a subliminal channel
that stays undetected by the warden, and the problem of the warden is to
prevent any subliminal channels. Simmons showed that subliminal channels
in digital signature schemes exist [Sim85, Sim86, Sim94] and since more
have been found [AVPN96, BS05, ZL08, LWZG10, HAZ17, GG19].

Desmedt was the first to construct and locate subliminal-free digital signature
schemes [Des88], which since has been continued [Sim93, Sim94, Sim98,
BS05, BGVS07, DX10, ZLLZ13]. Bohli et al. introduced the notion of a
subliminal-free with proof signature scheme, where the sender of a signature
sends a proof to the warden, and only to the warden, that proves the
signature sent is subliminal-free [BGVS07]. In divertible protocols [OO90,
BD91, BBS98, BDI+99] a third party can be inserted between the two
communicators, where the third party can remove or detect subliminal
messages. A cryptographic reverse firewall [MSD14, CMY+16] sits around
a user’s computer and modifies messages to maintain the usability of the
computer; preserve security of the protocol generating the message, and
prevent information from leaking to the outside world.

NIST’s post-quantum standardization project has asked for digital signature
schemes [NIST17], and not all digital signature schemes accepted to the
second round are subliminal free [GG19]. The CRYSTAL-Dilithium [DKL+]
and qTesla [ABB+20] submissions are similar to Schnorr signatures and can
become subliminal-free using our techniques.

4

2 Preliminaries

2.1 Notation

Let S be a set and Alg(·) an algorithm. Then, by s← Alg(·) we mean that

s is assigned the output of Alg(·), by s
$← S we mean that s is assigned an

uniformly random element of S (unless a specific distribution is specified),
and by s← s′ we mean that s is assigned the value s′. Let λ be the security
parameter, then ε(λ) is a negligible function in the security parameter.

2.2 Polynomial Rings and Norms

Let p, r ∈ N+ and N = 2r. Then we define the rings R = Z[X]/〈XN + 1〉
and Rp = R/〈p〉, that is, Rp is the ring of polynomials modulo XN + 1 with
integer coefficients modulo p. We define the norms of elements

f(X) =
∑

αiX
i ∈ R

to be the norms of the coefficient vector as a vector in ZN :

||f ||1 =
∑
|αi| ||f ||2 =

(∑
α2
i

)1/2
||f ||∞ = max

i∈{1,...,n}
{|αi|}.

For an element f̄ ∈ Rp we choose coefficients as the representatives in[
−p−1

2 , p−1
2

]
, and then compute the norms as if f̄ is an element in R. For

vectors a = (a1, . . . , ak) ∈ Rk we define the 2-norm to be

‖a‖2 =
√∑

‖ai‖22,

and analogously for the ∞-norm. We omit the subscript for the 2-norm.

5

2.3 Short elements in Rp

It can be seen from Corollary 1.2 in [LS18] that sufficiently short elements
in Rp are invertible. In the following, we assume for simplicity that the
parameters are set such that all non-zero elements of ∞-norm at most 2 are
invertible in Rp. We furthermore define

C = {c ∈ Rp | ‖c‖∞ = 1, ‖c‖1 = ν} ,

which consists of all elements in Rp that have trinary coefficients and are
non-zero in exactly ν positions. This means that for any two distinct
c, c′ ∈ C, the difference c− c′ is invertible as well. For convenience, denote
by

C̄ =
{
c− c′ | c 6= c′ ∈ C

}
the set of such differences.

2.4 Discrete Gaussian Distribution

The continuous normal distribution over Rk centered at v ∈ Rk with
standard deviation σ is given by

ρ(x)Nv,σ =
1√
2πσ

exp

(
−||x− v||2

2σ2

)
.

When sampling randomness for our lattice-based commitment scheme, we’ll
need samples from the discrete Gaussian distribution. This distribution is
achieved by normalizing the continuous distribution over Rk by letting

N k
v,σ(x) =

ρkNv,σ(x)

ρkNσ (Rk)
,

where x ∈ Rk and ρkNσ (Rk) =
∑

x∈Rk ρ
kN
σ (x). When σ = 1 or v = 0, they

are omitted.

6

The most efficient way to sample elements from a discrete Gaussian distribu-
tion is using rejection sampling. Rejection sampling is a technique used to
sample from a distribution Φ0, using samples from a similar distribution Φ1.
Let Φ0 and Φ1 be two distributions defined over the same domain S, whose
probability mass functions are efficiently computable. Let M be a constant
such that Φ0(x) ≤M · Φ1(x) for all x ∈ S. Then the distribution generated
by the algorithm in Figure 1 will output samples distributed according
to Φ0 while only using samples from Φ1 and a uniform distribution. The
performance of the algorithm depends strongly on how similar Φ0 and Φ1

are, in particular, how small the scaling factor M is.

Rejection Sampling

Input: distributions Φ0,Φ1 and constant M s.t. Φ0(x) ≤M · Φ1(x)∀x
Output: x from the distribution Φ0

1 : x
$← Φ1

2 : u
$← [0, 1]

3 : if u ≤ Φ0(x)

M · Φ1(x)
then goto 1

4 : Return: x

Figure 1: Rejection sampling algorithm.

However, rejection sampling can still be very expensive, and it’s a random-
ized procedure. If we do some pre-computations, we can use the algorithm
given in the qTelsa-scheme [ABB+20] to generate the discrete Gaussians
deterministically from a uniformly random seed. This is specified in Al-
gorithm 11 in the NIST-submission of qTelsa [AAB+19]. We will use the
rejection sampling when sampling Gaussians for the commitments, but use
the deterministic algorithm to sample Gaussians used in the lattice-based
VRS.

7

2.5 The k-SUM Problem

The k-sum problem (k-SUM) is a variant of the subset sum problem (SSP).
SSP is a NP-complete decision problem where given a set of n integers
a1, a2, . . . , an and a number s; is there a non-empty subset of a1, a2, . . . , an
whose sum is s? This decision problem is as hard as its search-equivalent.

The k-SUM problem is the problem of deciding if there is a subset of size k
of a1, a2, . . . , an whose sum is s. It can easily be shown that SSP reduces to
k-SUM, as a polynomial time k-SUM-solver easily could be used to solve
SSP by trying k = 1, 2, . . . , n until it finds a solution. Further, the decision
variant of k-SUM is as hard as the search variant of k-SUM, as one could
find the subset of size k by removing elements individually and checking
if there is a solution or not for the new set. Given n and k, the fastest
algorithm for solving k-SUM runs in O(nk/2) [Eri95].

2.6 Subliminal-Free with Proof Signature Scheme

We include the following definition of Bohli et al. [BGVS07] for comparison,
where we give our own definition of a subliminal-free signature scheme in
Section 5.3 followed by a note on the differences between the definitions.

Definition 1 (Subliminal-Free with Proof Signature Scheme [BGVS07]).
A subliminal-free with proof signature scheme is a quintuple of algorithms
(K,KSF ,S,V, C), where

- The key generation algorithm K takes the security parameter λ as
input and returns a pair of verification and signing keys (vk, sk).

- The subliminal-free key generation algorithm KSF takes vk and sk as
input and generates the information ci that the warden needs to check
the signature computation.

- The signing algorithm S takes a message m and the signing key sk
as input and produces a signature σ of m under vk and a proof t.

8

- The verification algorithm V takes a message m, a signature σ and
the public verification key vk as input and returns 1 if σ is a valid
signature for m with respect to vk, and 0 otherwise.

- The checking algorithm C takes a message m, a signature σ, a verifi-
cation key vk, the checking information ci and a proof t as input, and
returns 1 if V(m,σ, vk) = 1 and (σ, t) is a valid output of S(m, sk).

Moreover, for any algorithm A taking the security parameter λ as input,
the probability of giving as output values vk, sk, ci,m, σ1, σ2, t1, t2 such that
(vk, sk), ci are computationally indistinguishable from the output of K and
KSF , respectively, σ1 6= σ2 and C(m,σ1, vk, ci, t1) = C(m,σ2, vk, ci, t2) = 1
is negligible in the security parameter λ.

2.7 Commitment Schemes

Commitment schemes were first introduced by Blum [Blu83], and have since
become an essential component in many advanced cryptography protocols.

Definition 2 (Commitment Scheme). A commitment scheme consists of
three algorithms: key generation (KeyGen), commitment (Com) and opening
(Open), where

- KeyGen, on input security parameter 1λ, outputs public parameters pp,

- Com, on input message m, outputs commitment c and randomness r,

- Open, on input m, c and r, outputs either 0 or 1,

and the public parameters pp are implicit inputs to Com and Open.

Definition 3 (Completeness). We say that the commitment scheme is
complete if an honestly generated commitment is accepted by the opening
algorithm. Hence, we want that

Pr

[
Open(m, c, r) = 1 :

pp← KeyGen(1λ)
(c, r)← Com(m)

]
= 1.

Definition 4 (Hiding). We say that a commitment scheme is hiding if
an adversary A, after giving two messages m1 and m2 to a commitment

9

oracle Ocom and receiving the commitment c to either m1 or m2 (chosen at
random), cannot distinguish which message c is a commitment to. Hence,
we want that

2 · |Pr

b = b′ :

pp← KeyGen(1λ)
(m1,m2)← A(pp)

b
$← {0, 1}, c← Ocom(mb)

b′ ← A(c)

− 1

2
| ≤ ε(λ).

Definition 5 (Binding). We say that a commitment scheme is binding if
an adversary A, after creating a commitment c to a messages m, cannot find
a valid opening of c to a different message m̂. Hence, we want that

Pr

 m 6= m̂
Open(m, c, r) = 1
Open(m̂, c, r̂) = 1

:

pp← KeyGen(1λ)
m← A(pp)

(c, r)← A(m)
(m̂, r̂)← A(m, c, r)

 ≤ ε(λ).

Definition 6 (Unconditional and Computational Adversaries). We say that
a commitment scheme is unconditionally hiding (unconditionally binding) if
the scheme is hiding (binding) against an unbounded adversary, and we say
that it is computationally hiding (computationally binding) if the scheme
is hiding (binding) against a bounded probabilistic time adversary.

2.8 Hash Functions and Quantum Security

Cryptographic hash functions are deterministic one-way functions that are
fast to compute, with the following three properties: collision resistance, pre-
image resistance, and second pre-image resistance. Given security parameter
λ, we need the output to be of length 2λ bits to be collision resistant against
attacks from classical computers (it’s enough with λ bits to be secure against
pre-image attacks). However, Brassard et al. [BHT98] show how Groover’s
algorithm reduce the security by the cube root of the output length using
quantum computers. Hence, for λ bits post-quantum security, we need the
output length to be at least 3λ bits.

Furthermore, we need the hash functions of choice to be secure in the
quantum random oracle model when using the Fiat-Shamir transform to

10

convert interactive proof systems into non-interactive protocols. Recent
work [DFMS19, LZ19] shows that this can be done securely.

2.9 Digital Signature Schemes

Definition 7 (Digital Signature Schemes). A digital signature scheme
consists of three algorithms: key generation (KeyGen), signing (Sign) and
verification (Verify), where

- KeyGen, on input the security parameter 1λ, outputs public parameters
pp, a signing key sk, and a verification key vk,

- Sign, on input a message m and sk, outputs a signature σ,

- Verify, on input m, σ and vk, outputs either 0 or 1,

and the public parameters pp are implicit inputs to Sign and Verify.

We require the digital signature scheme to be complete (sometimes also
referred to as correct), and to be secure against existential forgery under an
adaptive chosen message attack, following the definitions from Goldwasser
et al. [GMR88].

Definition 8 (Completeness). We say that the digital signature scheme is
complete if honestly generated signatures are accepted by the verification
algorithm. Hence, we want that

Pr

[
Verify(m,σ, vk) = 1 :

(pp, sk, vk)← KeyGen(1λ)
(σ)← Sign(m, sk)

]
= 1.

Definition 9 (Existential Forgeability). We say that the digital signature
scheme is secure against existential forgeability if an adversary A, after given
valid signatures σi of messages mi of A’s choice from a signing oracle Osign,
cannot forge a signature on any new message under the same public-private
key pair. Hence, we want that

Pr

[
m̂ 6∈ {mi}

Verify(m̂, σ̂, vk) = 1
:

(pp, vk)← KeyGen(1λ)
(m̂, σ̂)← AOsign (pp, vk, {mi})

]
≤ ε(λ).

Here {mi} is the set of messages signed by the signing oracle Osign.

11

2.10 Zero-Knowledge Proofs

These definitions are based on Goldwasser et al. [GMR85]. Let L be a
language, and let R be a relation on L. Then, x is an element in L, if there
exists a witness w such that (x,w) ∈ R.

Definition 10 (Zero-Knowledge Proofs). An interactive zero-knowledge
proof protocol Π consists of two parties: a prover P and a verifier V, and a
setup algorithm (Setup), where Setup, on input the security parameter 1λ,
outputs public setup parameters sp. The protocol consists of a transcript T of
the communication between P and V, with respect to sp, and the conversation
terminates with V outputting either 1 or 0. Let 〈P(sp, x, w), V(sp, x)〉 denote
the output of V on input x after its interaction with P, who has witness w.

Definition 11 (Completeness). We say that a zero-knowledge proof protocol
Π is complete if V outputs 1 when P knows a witness w. Hence, for any
sampling algorithm P0 we want that

Pr

〈P(sp, x, w), V(sp, x)〉 = 1 :
sp← Setup(1λ)
(x,w)← P0(sp)

(x,w) ∈ R

 = 1.

Definition 12 (Soundness). We say that a zero-knowledge proof protocol
Π is sound if a cheating prover P∗ that does not know a witness cannot
convince V. Hence, for any x not in the language L

Pr

[
〈P∗(sp, x, ·), V(sp, x)〉 = 1 :

sp← Setup(1λ)
∀x 6∈ L

]
≤

1

2
.

Definition 13 (Honest-Verifier Zero-Knowledge). We say that a zero-
knowledge proof protocol Π is honest-verifier zero-knowledge if a honest
but curious verifier V∗ that follows the protocol cannot learn anything be-
yond the fact that x ∈ L. Hence, we want for real accepting transcripts
T〈P(sp,x,w),V(sp,x)〉 between a prover P and a verifier V, and a accepting tran-
script S〈P(sp,x,·),V(sp,x)〉 generated by simulator S that only knows x, that

2 · |Pr

b = b′ :

sp← Setup(1λ)
T1 = T〈P(sp,x,w),V(sp,x)〉 ← Π(sp, x, w)
T2 = S〈P(sp,x,·),V(sp,x)〉 ← S(sp, x)

b
$← {0, 1}, T′ ← Tb
b′ ← V∗(T′, sp, x)

− 1

2
| ≤ ε(λ).

12

2.11 Verifiable Random Functions

We give the definition of a verifiable random function based on the work by
Micali et al. [MVR99].

Definition 14 (Verifiable Random Functions). A verifiable random function
scheme consists of three algorithms: key generation (KeyGen), function
evaluation (Eval) and verification (Verify), where

- KeyGen, on input the security parameter 1λ, outputs a public function
f, an evaluation key sk, and a verification key vk,

- Eval, on input an element x and sk, outputs an evaluation y = f(sk, x)
and a proof π,

- Verify, on input x, y, π and vk, outputs either 0 or 1,

and the public function f is an implicit input to Eval and Verify.

Definition 15 (Completeness). We say that a verifiable random function
scheme is complete if the verification algorithm always accepts the result of
a honest evaluation of the function. Hence, we want that

Pr

[
Verify(x, y, π, vk) = 1 :

(f, sk, vk)← KeyGen(1λ)
(y, π)← Eval(x, sk)

]
= 1.

Definition 16 (Uniqueness). We say that a verifiable random function
scheme is uniquely provable if an adversary A, after creating an evaluation
y of x together with a proof π, cannot find another valid evaluation ŷ and
proof π̂ to x. Hence, we want that

Pr

 y 6= ŷ
Verify(x, y, π, vk) = 1
Verify(x, ŷ, c, π̂, vk) = 1

:
(f, sk, vk)← KeyGen(1λ)

(x, y, π, ŷ, π̂)← A(f, sk, vk)

 ≤ ε(λ).

Definition 17 (Pseudorandomness). We say that a verifiable random func-
tion scheme is pseudorandom if an adversary A, after given valid evaluations
yi with proofs πi of inputs xi of A’s choice from an evaluation oracle Oeval,
for a known f, cannot distinguish if a value y is a valid evaluation of a x
of A’s choice with respect to f, or if y is a random string. Hence, we want

13

that

2 · |Pr

x 6∈ {xi}
b = b′

:

(f, sk, vk)← KeyGen(1λ)
{(yi, πi)} ← AOeval (f, vk, {xi})
x← A(f, vk, {(xi, yi, πi)}),

(y′, π)← Eval(x, sk), ŷ
$← {0, 1}len(y′)

b
$← {0, 1}, y ← by′ + (1− b)ŷ

b′ ← A(f, x, y)

−

1

2
| ≤ ε(λ).

3 Lattice-Based Cryptography

First, we present the lattice-problems Ring Learning With Errors (R-LWE)
and Ring Short Integer Solutions (R-SIS). Then we introduce the building
blocks of our lattice-based verifiable random secret scheme and subliminal-
free signature scheme, upon which hardness relies on R-LWE and R-SIS.

3.1 Hard Problems on Lattices

The security of the following schemes is based on the hardness of the
Ring Learning With Errors (R-LWE) problem and the Ring Short Integer
Solutions (R-SIS) problem.

Definition 18 (R-LWE). The Ring Learning with Errors problem over Rp
is the following:

1. Draw uniform a
$← Rp

2. Draw discrete Gaussians s, e← Nσ

3. Compute b = as+ e and publish (a, b)

The decisional problem is to distinguish b from uniformly random, and the
computational problem is to find s and e where both are short.

Definition 19 (R-SIS). The Ring Short Integer Solutions problem over
Rp, given some bound B, is the following:

14

1. Draw uniform a
$← Rp

2. Draw short e
$← Rp s.t. ||e||∞ ≤ B

3. Compute b = ae and publish (a, b)

The decisional problem is to distinguish b from uniformly random, and the
computational problem is to find e where e is bounded by B.

3.2 Commitments

We briefly present the lattice-based commitment scheme by Baum et
al. [BDL+18], which offers an efficient zero-knowledge proof of linear rela-
tions that will be useful when combining the VRS and the signature schemes
to achieve subliminal-free signatures.

Definition 20 (Lattice-Based Commitments [BDL+18]). Let Rp be the
ring of polynomials modulo XN + 1 with integer coefficients modulo p. The
lattice-based commitment scheme consists of three algorithms: key generation
(KeyGen), commitment (Com) and opening (Open), where

- KeyGen, on input the security parameter 1λ, outputs a public matrix
A such that

A =

[
a
a′

]
=

[
1 a1 a2

0 1 a3

]
,where a1, a2, a3

$← Rp,

- Com, on input a message m ∈ Rp, samples an r
$← R3

p where ‖r‖∞ = 1,
and computes

c = Com(m; r) = A · r +

[
0
m

]
=

[
c1

c2

]
,

and returns c and d = (m; r, 1),

15

- Open, on input (m, r, f) with f ∈ C̄, verifies the opening by checking if

f ·
[
c1

c2

]
?
= A · r + f ·

[
0
m

]
,

and that ‖ri‖ ≤ 4σ
√
N for r = (r0, r1, r2) with σ = 11 · ν ·

√
3N . It

outputs 1 if all these conditions hold, and 0 otherwise.

3.3 Zero-Knowledge Proofs

We present two zero-knowledge protocols that our lattice-based verifiable
random secret scheme depends on to preserve privacy and soundness.

Zero-Knowledge Proof of Linear Relations Define the following
three commitments:

[x1] = Com(x1; r) =

[
c1

c2

]
,

[x2] = Com(x2; r′) =

[
c′1
c′2

]
,

[x3] = Com(x3; r′′) =

[
c′′1
c′′2

]
.

Let [x1] , [x2] and [x3] be such that x3 = α1x1 +α2x2 for some public values
α1, α2 ∈ Rp. Then the ΠLin-protocol in Figure 2 is a zero-knowledge proof
of knowledge (ZKPoK) of this relation (an adapted version of the linearity
proof in [BDL+18]), and the ΠLinV-protocol in Figure 3 is the verification
algorithm for the proof. This protocol can easily be extended to prove linear
relations between an arbitrary number of commitments.

Further, let πL ← ΠLin(([x1] , [x2]), [x3] , (α1, α2)) denote the run of the
ΠLin-protocol to prove the relation x3 = α1x1 + α2x2 producing a proof
πL = ((t, t′, t′′), β, (z, z′, z′′)). If α1 = α2 = 1, then the scalars are omitted
from the input. Let 0 ∨ 1← ΠLinV(([x1] , [x2]), [x3] , (α1, α2), πL) denote the
verification of this proof.

16

ΠLin

Prover Verifier

y,y′,y′′ ← N 3
σ

t← 〈a,y〉
t′ ← 〈a,y′〉
t′′ ← 〈a,y′′〉

u← α1〈a′,y〉+ α2〈a′,y′〉 − 〈a′,y′′〉 t, t′, t′′, u

β β ← C

z ← y + βr

z′ ← y′ + βr′

z′′ ← y′′ + βr′′

Abort with probability:

1−min

(
1,

N 9
σ (z||z′||z′′)

1
3 · N

9
β(r||r′||r′′),σ

(z||z′||z′′)

)
z, z′, z′′

ΠLinV

Figure 2: Zero-knowledge proof of knowledge protocol ΠLin for the relation
x3 = α1x1 + α2x2, given commitments [x1] , [x2] , [x3] and scalars α1, α2.

ΠLinV

Verifier

return Accept iff

1 : ‖zi‖ , ‖z′i‖ , ‖z′′i ‖
?
≤ 2σ

√
N

2 : 〈a, z〉 ?
= t+ βc1

3 : 〈a, z′〉 ?
= t′ + βc′1

4 : 〈a, z′′〉 ?
= t′′ + βc′′1

5 : α1〈a′, z〉+ α2〈a′, z′〉 − 〈a′, z′′〉
?
= (α1c2 + α2c

′
2 − c′′2)β + u

Figure 3: Verification protocol ΠLinV for the ΠLin-protocol.

17

Zero-Knowledge Proof of Correct Shuffle In the work by Silde et
al. [ABG+, BGS] they give an efficient protocol ΠShuffle for a Neff-like [Nef01]
shuffle of known values for the lattice-based commitments by Baum et
al. [BDL+18]. Given a list of elements (M̂1, M̂2, . . . , M̂τ) from Rp and
commitments ([M]1, [M]2, . . . , [M]τ), we can prove that the [M]i’s are com-
mitments to the M̂γ(i)’s, for some secret permutation γ of the indices.

Let πS ← ΠShuffle({[M]i}, {M̂i}, γ) denote the run of the shuffle-protocol,
with proof πS . Let 0∨1← ΠShuffleV({[M]i}, {M̂i}, πS) denote the verification
of this proof. Note that we can think of {M̂i} as commitments with
randomness zero. Note that since {M̂i} are known values, we can give
a simpler proof for each linear relation. Each equation is of the form
x3 = α1x1 + α2, which reduces the proof size by one element for both the
commit and the response phase of the scheme.

3.4 Signatures

The most efficient lattice based signature schemes are based on the Schnorr-
like [Sch89] signatures by Lyubashevsky [Lyu09, Lyu12]. Furthermore, the
zero-knowledge proof of opening given by Baum et al. [BDL+18] follows
this exact structure. Let Rp be the message space, let H be a hash function
H : Rp × Rp → C and let vk = c be the public verification key, where
c = Com(0; r) is a commitment to 0 with randomness r, and let the secret
key be sk = r. Then the protocol ΠOpen in Figure 5 can be turned
into a signature scheme by applying the Fiat-Shamir transform where
d = H(t,m), for a message m ∈ Rp. Let (t, z) ← Sign(m, sk) denote
the running of the signature algorithm with signature σ; furthermore, let
0 ∨ 1← Verify(pk,m, σ) denote the verification of this signature.

18

Zero-Knowledge Proof of Correct Shuffle

Prover Verifier

ρ ρ
$← Rp

M̂i = m̂i − ρ M̂i = m̂i − ρ
Mi = mi − ρ [Mi] = [mi]− ρ

θi
$← Rp, θ0 = θτ = 0

Di = [θi−1Mi + θiM̂i]
{Di}τi=1

s0 = β β
$← Rp

s1 = θ1 − β
M1

M̂1

si = θi + θi−1
Mi

M̂i

− si−1
Mi

M̂i

sτ−1 = θτ−1
Mτ

Mτ−1
+ (−1)τ−1β

M̂τ

Mτ−1

πLi ← ΠLin(([M]i, M̂i), Di, (si−1, si)) {si}
τ−1
i=1 , {πLi

}τ−1i=1 ΠLinV

Figure 4: The zero-knowledge protocol of correct shuffle.

19

ΠOpen

Prover Verifier

y ← N 3
σ

t← 〈a,y〉 t

d d← C

z ← y + dr

Abort with probability:

1−min

(
1,

N k
σ (z)

M · N k
dr,σ(z)

)
z

‖zi‖ ≤ 2σ
√
N

〈a, z〉 ?
= t+ dc1

Figure 5: Zero-Knowledge Proof of Knowledge of Opening of c = Com(x; r).

4 Verifiable Random Secrets

To create a subliminal-free digital signature scheme, we need a procedure
to output verifiable random numbers. A verifiable random function (VRF)
has a lot of useful properties; however, the constructions require making the
output public for anyone to verify. This means it is inapplicable to digital
signature schemes, which require the randomness to be secret to create
secure signatures. On the other hand, the verifier must be able to verify that
the random value is generated in some certain unpredictable way, to prevent
the prover intentionally choosing randomness to their advantage. One could
imagine this being done in a zero-knowledge protocol. The challenge in this
case is that we want to generate some random element that can be used
later, and hence, we cannot just prove that we have generated a random
element – we also have to provide information that can be included in the
subsequent application.

A verifiable random secret (VRS) scheme is an interactive protocol where the

20

prover wants to produce a secret random value, and publish a commitment of
that value together with a proof to convince the verifier that the committed
value is randomly generated. This can be done in the following way: first
the prover commits to a random value and sends the commitment to the
verifier. The verifier then returns a random challenge to the prover, which he
in turn uses to generate a final commitment and a proof. The commitment
contains a random value which was unpredictable for the prover until he
got the challenge, and is secret to the verifier even after the protocol is
completed. Anyone with access to the final commitment and the proof can
check that the commitment was generated in a proper way, and hence, will
be convinced that the content is random.

We want the VRS to have similar security properties as the VRF and the
ZKP. Therefore, we adapt some of the security notions from VRFs and
ZKPs, but change them slightly to fit the new setting.

Definition 21 (Verifiable Random Secrets). A Verifiable Random Secret-
scheme (VRS) consists of a function r(·, ·), an interactive protocol seed
(ΠSeed) and five algorithms: setup (Setup), commit (Com), challenge
(Challenge), generation (Generate) and check (Check), where

- Setup, on input security parameter 1λ, outputs public parameters sp,

- ΠSeed, on input sp, outputs a random seed s,

- Com, on input seed s, outputs commitment c̃ of s and opening d̃,

- Challenge, on no input, outputs a random challenge t,

- Generate, on input commitment c̃, opening d̃ and challenge t, outputs
commitment c, opening d of c (containing r = r(s, t)) and proof π,

- Check, on input c̃ and c, challenge t, and proof π, outputs 0 or 1,

and the public parameters sp are implicit inputs to all algorithms following
Setup.

Remark 1. In the interactive protocol ΠSeed there may be one or more
participants. Any participant of the protocol may be dishonest during the

21

seed generation. The output seed may be given to some or all participants.

The first thing we require from a VRS is that it is complete.

Definition 22 (Completeness). We say that the VRS is complete if a
prover P always can convince a honest verifier V that a honestly generated
proof is valid. Hence, we want that

Pr

Check(c̃, t, c, π) = 1 :

sp← Setup(1λ)
s← ΠSeed(sp)

(c̃, d̃)← Com(s)
t← Challenge(·)

(c, d, π)← Generate(c̃, d̃, t)

 = 1.

The interactive VRS is visualized in Figure 6. Further, we use games to
define the security of the scheme, and continue by defining Binding, Prover
bit-Unpredictability, Verifier Secrecy and Honest-Verifier Secrecy for a VRS.

VRS

Prover sp← Setup(1λ) Verifier

s← ΠSeed(sp)

(c̃, d̃)← Com(s) c̃

t t← Challenge(·)

(c, d, π)← Generate(c̃, d̃, t) (c, π)

0 ∨ 1← Check(c̃, t, c, π)

Figure 6: Our abstract verifiable random secret scheme.

Definition 23 (Binding). We say that the VRS is binding, if a cheating

prover P∗ cannot find a new opening d̂ 6= d and a new commitment ĉ 6= c
accepted together with the proof π, where (c, d, π) was generated in a honest
run of the protocol, depending on the commitment c̃ and the challenge t. We

22

define the binding advantage AdvB of the cheating prover P∗ to be:

AdvB(P∗) = Pr

c 6= ĉ, d 6= d̂

Check(c̃, t, c, π) = 1
Check(c̃, t, ĉ, π) = 1

:

s← ΠSeed(sp)

(c̃, d̃)← P∗(·)
t← Challenge(·)

(c, d, π)← Generate(c̃, d̃, t)

(ĉ, d̂)← P∗(s, c̃, d̃, t, c, d, π)

 .

Definition 24 (Prover bit-Unpredictability). We say that the VRS has
prover bit-unpredictability if, given a balanced predicate function f of a
cheating prover P∗’s choice, the predicate f(r) of the value r, where r is a
function of the seed s and the challenge t, is unpredictable for P∗. We let P∗

choose a bit b̂, and define the prover bit-unpredictability advantage AdvPbU
f

of a cheating prover P∗, with respect to f , to be:

AdvPbU
f (P∗) = 2 · |Pr

Check(c̃, t, c, π) = 1 ∧ f(r) = b̂

∨
Check(c̃, t, c, π) = 0 ∧ b̃ = 1

:

s← ΠSeed(sp)

(c̃, d̃, f, b̂)← P∗(·)
t← Challenge(·)

(c, d, r, π)← P∗(c̃, d̃, t, s)

b̃
$← {0, 1}

− 1

2
|.

Definition 25 (Verifier Secrecy). We say that the VRS has verifier secrecy,
if a cheating verifier V∗ is unable to distinguish between a honestly generated
value r and a random r sampled from the set R = {r(s, t) : s← ΠSeed, t←
Challenge}, where r is a function of the seed s and the challenge t. We

define the verifier secrecy advantage Adv(s)VS of a cheating verifier V∗ as:

Adv(s)VS(V∗) = 2 · |Pr

b = b̂ :

b
$←− {0, 1}

s← ΠSeed(sp)

(c̃, d̃)← Com(s)
t← V∗(c̃)

(c, d, π)← Generate(c̃, d̃, t)

r0 ← r(s, t), r1
$←−R

b̂← V∗(c̃, t, c, π, rb)

−

1

2
|.

Definition 26 (Honest-Verifier Secrecy). We say that the VRS has honest-
verifier secrecy, if a honest but curious verifier V∗ is unable to distinguish
between a honestly generated value r and a random r sampled from the set
R = {r(s, t) : s ← ΠSeed, t ← Challenge}, where r is a function of the
seed s and the challenge t. We define the honest-verifier secrecy advantage

23

Adv(s)HVS of a honest verifier V∗ as:

Adv(s)HVS(V∗) = 2 · |Pr

b = b̂ :

b
$←− {0, 1}

s← ΠSeed(sp)

(c̃, d̃)← Com(s)
t← Challenge(·)

(c, d, π)← Generate(c̃, d̃, t)

r0 ← r(s, t), r1
$←−R

b̂← V∗(c̃, t, c, π, rb)

−

1

2
|.

Remark 2. We note a cheating verifier V∗ always can be turned into a
honest verifier if V∗ has to commit to their challenge before receiving the
seed commitment. This would increase the communication complexity of the
protocol, but at the same time make it easier to prove security.

Definition 27 (ε-Security). A VRS is said to be ε-secure, for an ε negligible
in the security parameter λ, if each of the advantages is less than ε. That
is, we have ε-security if

AdvS(P∗) ≤ ε(λ), AdvPbU
f (P∗) ≤ ε(λ), AdvHVS

f (V∗) ≤ ε(λ).

Remark 3. We note that the only contribution of the verifier (before
verifying the proof) is to provide some randomness, and hence, the protocol
is public coin. It follows that we can use the Fiat-Shamir heuristics to make
the protocol non-interactive by letting t = H(sp, c̃) (also including s if it
is public), for a hash-function H. In this scenario, the prover sends the
transcript (c̃, c, π) to the verifier, and stores c, d himself. The verifier then
runs the Check algorithm as usual to make sure that everything is correct.
However, note that in this case we lose Prover bit-Unpredictability, where
P∗ can try as many times as desired before sending the proof, and hence
able to control a few bits of r. This may or may not be important for the
subsequent application.

24

5 Subliminal-Free Digital Signatures

5.1 How to Achieve a Subliminal-Free Channel?

Let S be the sender, R be the receiver and W the warden. We consider S,
R and W to all be probabilistic polynomial time algorithms. Let C be an
information channel controlled by W, allowing S to send information to R.
We want to define what it means for C to be a subliminal-free channel, and
in particular, what it means for C to be a subliminal-free channel when C is
a message authentication without secrecy channel. That is, C is a covert-free
channel where messages from S are sent in the clear to R together with a
signature, so that R can be sure that the message indeed is from S. Further,
W wants to be sure that there is no extra hidden information being sent.
There are many ways to encode information into a message-signature pair,
where we only are interested in preventing methods that encode information
into the signature – see the Warden Model in Section 1.1.

In our model S can hide a subliminal message in the signature, in which
R later can extract using some pre-shared information. Signatures can
be either deterministic or probabilistic. If the signature scheme has been
made deterministic by derandomization, W could require S to prove in zero-
knowledge that the randomness used in the signature is deterministically
generated. If the signature scheme does not use any randomness and is
deterministic, S is not required to prove anything. In the case of probabilistic
signatures, a subliminal signer could easily choose a subliminal message (or
an encryption of a subliminal message) to be the randomness used in the
signature, independent of the message being sent. Hence, if probabilistic
signature schemes are allowed, we must be able to restrict S’s control over
the choice of randomness used in the signatures—we are able to do this by
using a VRS. We additionally require a proof stating that the signature is
honestly generated.

Lastly, we require C to be a reliable channel. In some cases the honestly
generated randomness used in the signature is equal to the subliminal

25

message S wants to send. This could happen if the subliminal messages
are very short, or divided into small pieces of sizes down to only 1 bit per
signature. If S gets to decide if they want to send the authenticated message
or not, after given the message to send, or after interaction with W, or after
signature-generation, then this can be used to create a subliminal channel.
For every signature, S checks if their subliminal message is embedded or
not; if it is, then S sends the message, and otherwise aborts and tries again.
This channel was pointed out by Desmedt [Des96]. It follows that the
warden cannot allow S to abort if he wants the channel to be subliminal-free.
However, if S is using a probabilistic signature scheme and is allowed to
generate the signatures in a verifiable but non-interactive manner, they will
be able to abort without W noticing, an aspect seemingly inherent to the
construction. We will thereby give two different definitions of subliminal-free
digital signatures, where the relaxed notion will allow a small subliminal
channel in the construction, given that S have to work exponentially hard
to achieve this.

5.2 Subliminal and Subliminal-Free Digital Signatures

We continue by more informally defining what we mean by subliminal and
subliminal-free digital signature schemes.

Definition 28 (Subliminal Digital Signatures). Let m be a fixed message,
S a signature scheme, m̂ a subliminal message chosen by S∗ and s some
secret pre-shared information between S∗ and R∗. Then we say that S is a
subliminal digital signature scheme if S∗ can encode m̂ into a signature σ
using an algorithm EncodeS∗ , where σ is a valid signature of m with respect
to S, that can be decoded by R∗ using an algorithm DecodeR∗ , but cannot be
decoded nor detected by W. That is,

- EncodeS∗ on input the message m, signing key sk, and subliminal
message m̂, outputs a signature σ of the message m and a proof π,

- DecodeR∗ on input a message m, a signature σ, and secret pre-shared
information s, outputs the subliminal message m̂.

26

Definition 29 (Subliminal-Free Digital Signatures). Let m be a fixed mes-
sage, S a signature scheme, m̂ a subliminal message chosen by S and s some
secret pre-shared information between S and R. Further, let σ be a valid
signature of m with respect to S and let π be a proof of correctness, both
potentially generated by interaction between S and W. Assume that W will
close the channel if S deviates from the protocol. Then we say that S is a
subliminal-free digital signature scheme if S cannot reliably both create a
proof π accepted by W and at the same time encode a subliminal message m̂
into σ that can be decoded by R but cannot be decoded nor detected by W.

However, as noted earlier, if S is a probabilistic signature scheme used in
the non-interactive setting, then S can undetectably abort the protocol after
generating a signature on m and restart the signing algorithm. We therefore
additionally include a relaxed notion of a subliminal-free digital signature
scheme, where we allow a small subliminal channel.

Definition 30 (Subliminal l-Free Digital Signatures). Let m be a fixed
message, S a signature scheme, m̂ a subliminal message chosen by S and
s some secret pre-shared information between S and R. Further, let σ be a
valid signature of m with respect to S and let π be a proof of correctness.
Assume that W will close the channel if S deviates from the protocol. Then
we say that S is a subliminal l-free digital signature scheme if S cannot
reliably both create a proof π accepted by W and at the same time encode a
subliminal message m̂ of size greater or equal to l into σ decodable by R, but
cannot be decoded nor detected by W unless S does work exponentially in l.

5.3 Subliminal-Free Digital Signature Scheme

Deterministic signatures seem to have an advantage over probabilistic sig-
natures as they can guarantee a subliminal-free digital signature scheme
in the non-interactive setting. However, they are usually harder to con-
struct and even harder to prove correctly evaluated. Probabilistic signatures
schemes are used more in practice, and we want to extend our definition of
subliminal-free digital signature schemes to allow interaction between S and

27

W to ensure that we can achieve the strongest security guarantees also for
these schemes.

Definition 31 (Subliminal-Free Digital Signature Scheme). A subliminal-
free digital signature scheme consists of an interactive signing protocol (ΠSign)
and five algorithms: key generation (KeyGen), setup (Setup), verification
(Verify), and checking (Check), where

- KeyGen, on input the security parameter 1λ, outputs public parameters
pp, a signing key sk, and a verification key vk,

- Setup, on input security parameter 1λ, outputs public parameters sp,

- ΠSign, on input message m and sk, outputs signature σ and proof π,

- Verify, on input m, σ and vk, outputs either 0 or 1,

- Check, on input m, σ, vk and π, outputs either 0 or 1,

and the public parameters pp are implicit inputs to all algorithms following
KeyGen and the public setup parameters sp are implicit inputs to Sign and
Check. We require that Check returns 1 if and only if Verify returns 1
and π is valid.

In our constructions (see Section 6) we use an interactive VRS as a part of
the signature protocol to ensure that the randomness is honestly generated,
and give a proof for this statement. The checking algorithm is then the
checking algorithm of the VRS combined with the verification algorithm of
the signature scheme.

Remark 4. Note that there are some small differences in how we define
subliminal-free digital signatures compared to how it is defined by Bohli
et al. [BGVS07]. They require it to be exponentially hard in the security
parameter to find two different pairs of signatures and proofs that are valid
for the same message. This is essentially the same as in our case when
the signature scheme is deterministic, but we also allow for a probabilistic
signature scheme. In addition, they have a SFKeyGen algorithm generating
the checking information for the warden. We have decided to include an

28

algorithm Setup. The setup algorithm generates publicly available informa-
tion used by the sender to give a proof of correct signing, and is used by
the warden to verify this proof. The proof itself should only be available to
the warden, as it can contain subliminal information that can be decoded
if shared with the receiver, but the setup parameters could be available to
anyone.

5.4 Subliminal-Free Digital Signatures with Pre-Processing

The subliminal-free digital signature scheme requires S and W to interact
every time S wants to sign a message. We can lower the communication
complexity of our scheme by allowing some pre-processing between S and W.
In this case we make the Setup algorithm into an interactive protocol ΠSetup,
where S and W use the interactive VRS to generate lots of commitments
to randomness to be used in the signatures, together with proofs that
the randomness is honestly generated. Then the commitments and the
randomness are inputs to the non-interactive signature scheme. As the
randomness is independent of the message to be signed, this allows us to
move all communication from the signature procedure to the setup procedure,
which can be executed before any messages need to be sent over the channel.

Note that in this case we get a stateful digital signature scheme, as the
warden must ensure that the randomness is used in the correct order.
Otherwise, this would open a subliminal channel where the signer can
choose the randomness from a set of values dependent on the subliminal
messages to send.

Remark 5. Note that in this case the setup parameters sp are still public,
while the output of the VRS is not.

29

5.5 Non-Interactive Subliminal-Free Digital Signatures

We can make a trade-off between communication and soundness by changing
the interactive subliminal-free digital signature scheme into a non-interactive
scheme by letting all the parts of the scheme be non-interactive algorithms.
This would also enforce the VRS to be a non-interactive algorithm, as a
part of the signing algorithm. We know from earlier that a non-interactive
VRS is not bit-unpredictable. In this case we get a l-subliminal channel, as
the sender can run the non-interactive VRS until they get a l-bit subliminal
message encoded into the randomness used in the signature, and hence, we
have a l-subliminal signature scheme.

5.6 Security of Subliminal-Free Digital Signatures

We require that the subliminal-free digital signature scheme has the same
security as a normal signature scheme, plus the additional requirement that
a cheating prover cannot decide the randomness used in the signature, and
that a cheating verifier can’t use the proof of correctness to forge signatures.
Hence, we want the subliminal-free digital signature scheme to be complete,
sound and secure against existential forgery.

Definition 32 (Completeness). We say that a subliminal-free digital signa-
ture scheme is complete if honestly generated pairs of signatures and proofs
are accepted by both the verification and checking algorithms. Hence, we
want that

Pr

 Verify(m,σ, vk) = 1
Check(m,σ, vk, π) = 1

:
(pp, sk, vk)← KeyGen(1λ)

sp← Setup(1λ)
(σ, π)← Sign(m, sk)

 = 1.

Definition 33 (Soundness). A subliminal-free signature scheme is sound
if the sender is unable to establish a subliminal bit channel with the receiver.
A subliminal bit channel is a channel where a subliminal signer S∗, given
a message m, can reliably encode a subliminal bit m̂ ∈ {0, 1} into a valid
signature σ of m that the subliminal receiver R∗ can decode. We also require
S∗ to produce a proof π of correctness accepted by the warden W. That is,

30

the subliminal-free signature scheme is sound if

∣∣Pr

DecodeR∗ (m,σ, s) = m̂
Verify(m,σ, vk) = 1
Check(m,σ, vk, π) = 1

:

m̂
$←− {0, 1}

(pp, sk, vk)← KeyGen(1λ)
sp← Setup(1λ)

(σ, π)← EncodeS∗ (m, sk, m̂)

− 1

2

∣∣ < ε(λ),

where the algorithms EncodeS∗ and DecodeR∗ are as in Definition 28.

A subliminal bit-channel is the simplest subliminal channel, where the sender
wants to send a signal, e.g., “escape tonight.” With 50 % probability, the
first bit of a signature is equal to the subliminal bit chosen by the sender,
that is, by chance they are able to send a subliminal bit. However, if
the received bit is the intended subliminal message with 50 % probability
then it cannot be trustworthy. The receiver cannot gamble and perform a
predetermined, possibly daring, action based on a random bit. This cannot
be a subliminal bit channel.

Definition 34 (Existential unforgeability). We say that a subliminal-free
digital signature scheme is existential unforgeable if an adversary A, after
given valid signatures σi and proofs πi of messages mi of A’s choice from a
signing oracle Osign, cannot forge a signature on any new message under
the same public-private key pair. We define the existential unforgeability
advantage AdvEUF of an adversary A to be:

AdvEUF(A) = Pr

 m̂ 6∈ {mi}
Verify(m̂, σ̂, vk) = 1

:

(pp, vk)← KeyGen(1λ)
sp← Setup(1λ)

{(σi, πi)} ← AOsign (pp, vk, {mi})
(m̂, σ̂)← A({(mi, σi, πi)}i)

 ≤ ε(λ).

6 Our Schemes

We present two VRS schemes: one based on lattices and one based purely
on one-way functions. Then we combine both of them with lattice-based
signatures, and we analyze the size and computation of both schemes.

31

6.1 A Lattice-Based VRS from Shuffled Randomness

Our lattice-based VRS scheme is built on top of the commitment scheme by
Baum et al. [BDL+18] combined with the verifiable shuffle of known content
by Silde et al. [ABG+, BGS]. Let P denote the prover and V the verifier.

The goal of the VRS is to produce elements from Rp, where the coefficients
are Gaussian distributed with standard deviation σ. We need three such
elements to produce a signature. The protocol works as follows:

1. Seed: V draws τ Gaussian distributed polynomials si from Rp with
standard deviation σ/

√
κ and sends them to P.

2. Commit: P shuffles the polynomials using a random permutation γ,
commits to them in the new order, and sends the commitments to V.

3. Challenge: V draws three random subset Tj , for 1 ≤ j ≤ 3, each of
size κ, of indices from 1 to τ and sends them to P.

4. Generate: P sums together the commitments for each set of indices,
and sends the sums to V together with the proof of shuffle.

5. Check: V verifies that the sums and the proof of shuffle are correct.

The VRS scheme is visualized in Figure 7. Note that we can sum together
the commitments as long as κ ≤ 4σ, which is the criteria for accepting
an opening of a commitment. If κ is too large, we can sum together 4σ
commitments at a time, and then give a proof of linearity in the end. We
proceed by proving Completeness, Binding, Prover bit-Unpredictability and
Honest-Verifier Secrecy for the lattice-based VRS.

Lemma 1 (Completeness). The Lattice-VRS in Figure 7 is complete.

Proof. Assuming that the prover is honest, he will commit to the given seed-
values in a permuted order. He will also be able to generate an accepting
zero-knowledge proof of correct shuffle, as the shuffle-protocol is complete.
Further, if κ ≤ 4σ, then we can sum together the commitments directly,
and if κ > 4σ we create a new commitment to the sum of the underlying

32

Lattice-Based Verifiable Random Secrets

Prover Verifier

Seed:

s = {si} si
$← Nσ/√κ, 1 ≤ i ≤ τ

Com:

γ
$← Sτ

(c̃i, d̃i)← Com(sγ(i))
c̃ = {c̃i}

Challenge:

πS ← ΠShuffle({c̃i}, {si}, γ) Tj
$
⊂ {1, . . . , τ},

t = {Tj} |Tj | = κ, 1 ≤ j ≤ 3

Generate:

(cj , dj)←
∑
l∈Tj

Com(sγ−1(l))
c = {cj}, πS

Check:

1
?
= ΠShuffleV({c̃i}, {si}, πS)

cj
?
=
∑
l∈Tj

Com(cl)

Figure 7: The lattice-based verifiable random secret scheme, using the
commitment scheme by Baum et al. [BDL+18] and the verifiable shuffle of
known content by Silde et al. [ABG+, BGS].

33

messages and give a zero-knowledge proof of the correct sum. Either way
the sum is correct, as the sum-protocol is complete. We conclude that the
VRS is complete.

Lemma 2 (Binding). The Lattice-VRS in Figure 7 is binding.

Proof. Assuming that a cheating prover P∗ has advantage ε of breaking the
binding property of the VRS, then P∗ also has the advantage ε of breaking
the binding property of the commitment scheme. The binding property
of the commitment scheme is based on the R-SIS-problem, and hence, an
attacker A can then turn P∗ into a R-SIS-solver with success probability ε.
We conclude that the VRS is binding.

Lemma 3 (Prover bit-Unpredictability). The Lattice-VRS in Figure 7 is
prover bit-unpredictable.

Proof. The cheating prover P∗ wants to predict a bit b̂ of rj = r({sl}κl=1,

{ĉl}κl=1, Tj), for 0 ≤ j ≤ 3, that is, a bit b̂ of the values rj =
∑

l∈Tj sγ−1(l)

for the permutation γ of the underlying messages of the set of commitments.
All values si are drawn from a Gaussian distribution. P∗ is allowed to guess
after they know all si’s, but before receiving the sets Tj of indices. As each
Tj are sets of indices drawn uniformly at random, then rj is a random sum
of κ random elements, and hence, rj is random. The probability of guessing
any bits if rj correctly is 1/2, and hence, the prover bit-unpredictability
advantage AdvPbU

f (P∗) is negligible. We conclude that the VRS is prover
bit-unpredictable.

Lemma 4 (Honest-Verifier Secrecy). The Lattice-VRS in Figure 7 has
honest-verifier secrecy.

Proof. Assume that the commitments are hiding. Further, assume that
a honest but curious verifier V∗ is given the value rb at the end of the
protocol. Their task is to decide if rb is a sum of κ elements among the
values s1, . . . , sτ or not. This reduces to the k-SUM problem, for a subset
of size κ out of τ elements. If V∗ can break the honest-verifier secrecy of

34

the VRS with a probability ε, then an attacker A can then turn V∗ into a
k-SUM solver with success probability ε. We conclude that the VRS has
honest-verifier secrecy.

Theorem 1. The lattice-based VRS detailed in Figure 7 is complete and
ε-Secure.

Proof. This follows from combining Lemma 1, 2, 3 and 4.

6.2 A Schnorr-Like SFS from the Lattice-Based VRS

The lattice-based VRS in the previous section give us three commitments
c1, c2, c3 that are known to the warden W, and valid openings, (y1, r1), (y2, r2),
(y3, r3) known to the sender S. All the yi’s are Gaussian distributed ele-
ments from Rp with standard deviation σ. Finally, S computes 〈y,a〉 =
y1 + y2a1 + y3a2 = t′, where t′ is the committed randomness used in the
signature. S attach a proof of linearity for this statement, and complete
the signature given a message m. Finally, S sends the message m and the
signature (t′, z) together with the output of the VRS to W, which then verifies
that the proofs and signature are correct. If, and only if, both the Check-
and Verify algorithms outputs 1, W forwards the message and signature
to the receiver R. The full subliminal-free signature scheme is presented in
Figure 8.

Theorem 2. The Lattice-SFS scheme in Figure 8 is complete, sound and
secure against existential forgeability.

Proof. Assume that the lattice-based VRS is complete and ε-secure and that
the signature scheme is complete and secure against existential forgability.

Completeness: Follows directly from the fact that the VRS and the
signature schemes are complete.

Soundness: The VRS ensures that the randomness is honestly generated,
and because of the prover bit-unpredictability of the VRS, a cheating

35

Lattice-Based Subliminal-Free Signature Scheme

Prover Verifier

Seed:

s = {si} si
$← Nσ/√κ, 1 ≤ i ≤ τ

Com:

γ
$← Sτ

(c̃i, d̃i)← Com(sγ(i))
c̃ = {c̃i}

Challenge:

πS ← ΠShuffle({c̃i}, {si}, γ) Tj
$
⊂ {1, . . . , τ},

t = {Tj} |Tj | = κ, 1 ≤ j ≤ 3

Generate:

(cj , dj)←
∑
l∈Tj

Com(sγ−1(l))

πL ← ΠLin({cj}, t′, (1, a1, a2))

(t′, z)← Sign(m, sk)
(m, (t′, z)),

({cj}, (πS , πL))

Check:

1
?
= ΠShuffleV({c̃i}, {si}, πS)

1
?
= ΠLinV({cj}, t′, (1, a1, a2), πL)

Verify:

1
?
= Verify(vk,m, (t′, z)))

If all algorithms output 1:

Send (m, (t′, z)) to the receiver.

Figure 8: The lattice-based subliminal-free digital signature scheme, using
the lattice-based VRS and a lattice signature scheme based on Lyuba-
shevsky [Lyu09, Lyu12].

36

prover P∗ has a negligible probability of embedding any information into the
randomness used in the signature. It follows that a cheating prover doesn’t
have a reliable subliminal channel.

Existential forgeability: A honest but curious verifier V∗ learns Ar for
some public uniformly random matrix A and short randomness r, where r is
the output of the VRS. By multiplying all possible κ-subsets sj of s1, . . . , sτ
by A, this reduces to solving the k-SUM problem for k = κ. This search
problem is equivalent to the decision problem with the same input. The
VRS ensures that the randomness is honestly generated, and because of the
honest verifier secrecy of the VRS, V∗ has a negligible probability of learning
any information about the secret signing key used to generate the signature.
Furthermore, both zero-knowledge proofs in the VRS can be simulated, and
hence, this additional information does not provide any information that V∗

can use to win the forgeability-game.

We conclude that the lattice-based SFS detailed in Figure 8 is complete,
sound and secure against existential forgeability.

6.3 Generic VRS Framework Based on One-Way Functions

Let H be a cryptographic hash-function with output length 3λ, and let OWF
a one-way function used in any ”hash-then-sign” signature scheme. We
will now build a VRS using only H and OWF. The VRS is using a ”cut-and-
choose” technique similar to what is used in the preprocessing phase from
the MPC scheme by Katz et al. [KKW18] and in the zero-knowledge proofs
and signature schemes by Beullens [Beu20].

Let s be a binary seed of length 3λ, chosen by the prover. The value s will
be the root of a binary tree. The two children h0 and h1 of s will have the
values h0 = H(s, 1) and h1 = H(s, 2). Further, the children of h0 will have
the values h00 = H(h0, 1), h01 = H(h0, 2) and the children of h1 will have
the values h10 = H(h1, 1), h11 = H(h1, 2), and so on. This is illustrated in
Figure 9. For a predefined height h, the tree will have M = 2h leaf nodes,

37

s

h0

h00

u000 u001

h01

u010 u011

h1

h10

u100 u101

h11

u110 u111

Figure 9: The binary tree generated by seed s using hash function H.

denoted u0, ..., uM−1. As each node is the output of the hash function, each
value ui will be a uniformly random string of length 3λ.

In the case that the subsequent application, e.g. a subliminal-free ”hash-
then-sign” signature scheme, needs uniformly distributed randomness, then
no further steps are needed. If we need some special distribution, then we use
the nodes u0, ..., uM−1 as input to a deterministic algorithm that produces
the correct distribution. To produce similar lattice-based signatures as in
the previous construction, we can evaluate the algorithm GaussSamplerσ
on the leaf nodes to produce the desired outcome. Let’s denote the new
values by v0, ..., vM−1, independent of whether they changed or not.

Then we apply the one-way function OWF on the values on v0, ..., vM−1 to
produce w0, ..., wM−1, where wi = OWF(vi) for 0 ≤ i ≤ M − 1. For the
lattice-based signatures we would have wi = OWF(vi) = Avi, where vi is a
vector of Gaussian distributed elements from Rp and A is a public matrix.

Then we compute a Merkle-tree, from the bottom up. The hash H(w0, w1)
gives the parent of w0 and w1, and so on. Denote the root node of the
Merkle-tree by c̃s. Then c̃s is a commitment to the full tree, computed
deterministically from s. The prover sends c̃s to the verifier. Then the

38

verifier responds with a single index t = I, where 0 ≤ I ≤ M − 1 is
chosen uniformly at random. The output of the VRS in then the secret
value vI , only known to the prover, together with the public commitment
c = wI = OWF(vI) and a proof πI of correctness.

The proof πI is generated in the following way. We want to prove that the
full tree is generated correctly and that the commitment wI is the Ith leaf
node, but at the same time preserve the privacy of vI . If we give away
s, the verifier can re-compute the full tree to verify that c̃ is correct, but
will also learn vI . This means that s must stay private. However, we can
publish all intermediate values in the tree that is not on the path from s
to uI , and to minimize communication, it is enough to send the roots of
the subtrees not in that path. Then the verifier can compute the remaining
values themselves.

As an example, assume that h = 3 as in Figure 9, and let I = 011. Then
πI = (h1, h00, u010), and the verifier can compute the values u000 and u001

from h00 and u100, u101, u110 and u111 from h1. Given all the leaf nodes,
except u011, the verifier can compute the values v000, ..., v010, v100, ..., v111

and w000, ..., w010, w100, ..., w111. Finally, with the knowledge of w011, one
can re-compute the Merkle-tree and the root c̃, and check that it is the
same as that given in the commitment phase.

The full VRS protocol is illustrated in Figure 10 and it works as follows:

1. Seed: P chose a random bit string s of length 3λ and keeps this private.

2. Commit: P generates the full tree applying the algorithm BuildTree

on s, and sends the root c̃ to V as a commitment.

3. Challenge: V draws a random index t = I, where 0 ≤ I ≤ M − 1,
and sends t to P.

4. Generate: P publishes c = wI and the proof πI , generated by applying
the algorithm SubTrees on s and I, which contains the roots of the
subtrees not on the path between s and uI .

39

Hash-Based Verifiable Random Secrets

Prover Verifier

Seed:

s
$← {0, 1}3λ

Com:

(c̃, d̃)← BuildTree(s) c̃

Challenge:

t = I I
$← {0, ...,M − 1}

Generate:

(c, d)← (wI , vI)

πI ← SubTrees(s, I) c, πI

Check:

c̃
?
= CompleteTree(wI , πI)

Figure 10: The hash-based verifiable random secret scheme, using the
underlying cryptographic hash function H and the one-way function OWF.

5. Check: V verifies that wI and πI generates the tree by applying the
algorithm CompleteTree to wI and πI and comparing the root to c̃.

We note that the security properties of this VRS follows directly from the
properties of cryptographic hash functions and Merkle-trees.

Theorem 3. The hash-based VRS detailed in Figure 10 is complete and
ε-Secure.

Proof. Assume that H and OWF are cryptographically sound one-way func-
tions each ensuring λ bits of security and that M = exp(λ).

40

Completeness: Follows directly from the completeness of a Merkle-tree,
where the full tree is generated deterministically from the seed s.

Binding: Follows directly from the collision resistance of H and OWF.

Prover bit-Unpredictability: Assume that the outputs of H and OWF

are indistinguishable from uniformly random and that they are collision
resistant. Then, every bit of vI is unpredictable until I is published. Further,
the cheating prover has probability 1/M to guess the correct index I before
committing to c̃. If the guess is correct, they can interchange the correct
value wI with another value ŵI of their own choice when building the tree,
and the proof will go through. If the wrong index is guessed, the cheating
prover will be caught by the verifier, as the root node will be different.
Hence, the probability of guessing any bit of r is 1/2 + 1/M , which means
that the prover bit-unpredictability advantage is 1/M : negligible in λ.

Honest-Verifier Secrecy: Follows directly from the fact that the outputs
of H and OWF are indistinguishable from uniformly random.

We conclude that the hash-based VRS detailed in Figure 10 is complete and
ε-Secure.

6.4 A Hash-Then-Sign SFS from One-Way Functions

Let S be a ”hash-then-sign”-signature scheme producing signatures of the
form (w, z). Then, combining the hash-based VRS from the previous
subsection with S, we get a subliminal-free digital signature scheme. The
scheme is presented in Figure 11.

Theorem 4. The SFS scheme in Figure 11 is complete, sound and secure
against existential forgability.

Proof. Assume that the hash-based VRS is complete and ε-secure and that
the signature scheme is complete and secure against existential forgability.

41

Hash-Based Subliminal-Free Signature Scheme

Prover Verifier

Seed:

s
$← {0, 1}3λ

Com:

(c̃, d̃)← BuildTree(s) c̃

Challenge:

t = I I
$← {0, ...,M − 1}

Generate:

(c, d)← (wI , vI)

πI ← SubTrees(s, I)

(wI , z)← Sign(m, sk) (c, πI , (wI , z))

Check:

c̃
?
= CompleteTree(wI , πI)

Verify:

1
?
= Verify(vk,m, (wI , z)))

If all algorithms output 1:

Send (m, (wI , z)) to the receiver.

Figure 11: The hash-based subliminal-free digital signature scheme, using
the hash-based VRS and a ”hash-then-sign” signature scheme.

42

Completeness: Follows directly from the fact that the VRS and the
signature schemes are complete.

Soundness: The VRS ensures that the randomness is honestly generated,
and because of the prover bit-unpredictability of the VRS, a cheating
prover P∗ has a negligible probability of embedding any information into the
randomness used in the signature. It follows that a cheating prover doesn’t
have a reliable subliminal channel.

Existential forgeability: A honest but curious verifier V∗ learns wI =
OWF(vI) for some public one-way function OWF and secret randomness vI ; the
outputs from the VRS. The VRS ensures that the randomness is honestly
generated, and because of the honest verifier secrecy of the VRS, V∗ has a
negligible probability of learning any information about the secret signing key
used to generate the signature, and hence, this additional information does
not provide any information that V∗ can use to win the forgeability-game.

We conclude that the hash-based SFS detailed in Figure 11 is complete,
sound and secure against existential forgeability.

6.5 Efficiency and Size

The lattice-based SFS. Here we run the interactive VRS, generate
proofs and produce a signature. The sender sends τ commitments (assuming
that κ is small enough), a shuffle proof, a linearity proof, and a message-
signature pair. Warden sends τ Gaussian distributed values and three
challenge sets. The warden’s messages can be replaced with short seeds,
saving lots of communication. In addition, letting the sender choose their
own seeds gives us a non-interactive SFS with a l-bit subliminal channel,
with a large overhead for the sender. Set the security parameter λ = 128
bits.

To generate seeds {si}τi=1, we can use the deterministic Gaussian sampler
from Algorithm 11 in qTesla [AAB+19], denoted GaussSamplerσ. Choosing
a binary string ρ of length 3λ, the values si can be generated as si ←

43

GaussSamplerσ(ρ, i). Hence, we only have to send ρ, and the verifier can
check that all values were computed correctly when verifying the proof of
shuffle. Furthermore, the sets Tj can be generated as hashes H(j, ρ̂, {c̃i}τi=1, l)
for 1 ≤ j ≤ 3, 1 ≤ l ≤ κ, and a suitable hash function H. Here, ρ̂ = ρ in the
non-interactive case, while ρ̂ is a random string of size 3λ in the interactive
setting. Note that if we move to the pre-processing setting, all seeds (ρl, ρ̂l)
– where ρ̂l is independent of ρl – can be sent at once. Then the warden only
needs to receive a signature, verify, and then forward it for each message
being sent later on.

To achieve λ = 128 bit security, we need to decide on τ and κ such that τ
choose κ ≥ 2128 to prevent brute-force attacks, and τκ/2 ≥ 2128 to resist the
best algorithms to solve the k-SUM problem [Eri95]. Setting τ = 256 and
κ = 32, we satisfy both of these equations. We note that κ is small enough
to sum the commitments directly for all practical parameters σ.

We can represent πL as non-interactive proof (β,z, z′, z′′, z′′′) where β is
a hash of the t’s, which can later be recomputed by the verifier. Also, we
note that πS contains one commitment Di, one ring-value si and a proof of
linearity πLi for each 1 ≤ i ≤ τ , where each πLi is of the form (β,z, z′). A
message-signature pair contains five elements from Rp. A subliminal-free
signature requires an additional 2τ elements for {c̃i}τi=1, 13 elements for πLi
and 10τ elements for πS . This sums to 12τ + 13 elements in Rp.

Using the optimal parameters provided by Baum et al. [BDL+18] for the
commitment scheme we have p ≈ 232, N = 1024 and σ ≈ 27000. One element
in Rp is then of size N log p ≈ 4.1 KB, and hence, a normal signature is
≈ 16.4 KB and a subliminal-free signature is ≈ 12.65 MB. In [ABG+] they
estimate that it takes 1τ ms = 0.256 s to create the commitments, 35τ
ms ≈ 9 s to generate the shuffle proof and 1.9τ ms ≈ 0.5 s to verify a
shuffle proof. In summary, it takes approximately 10 seconds to generate
subliminal-free signatures, and each signature is of size 13 MB if we want
λ = 128 bit security. We can replace the signature scheme with more efficient
lattice-based signature schemes like Dilithium [DKL+] or qTesla [ABB+20],
where both schemes produce signatures of size 2.7 KB. This lowers the

44

amount of data sent to the receiver by roughly 14 KB per signature. This,
however, doesn’t really make a difference for the sender and warden due to
the large overhead from the VRS.

The hash-based SFS. This VRS construction works with any ”hash-
then-sign” signature scheme, but we’ll instantiate the signatures using the
lattice-based signature schemes Dilithium [DKL+] and qTesla [ABB+20] as
above. Then we achieve a post-quantum secure subliminal-free signature
scheme, and can more easily compare with the previous construction based
purely on lattices.

We start by observing that the computation required to prove and verify the
hash-based VRS is linear in the residue of the bit-unpredictability probability
of the prover, which is equivalent to the soundness of the subliminal-free
signature scheme. This means that if we want soundness 1/M for the
SFS scheme, then we need to compute O(M) hashes when generating
and verifying the VRS. However, we can allow the VRS to be ε(λ)-secure
when it comes to binding and honest-verifier secrecy to ensure security
for the underlying signature scheme – but allow for a higher prover bit-
unpredictability security (and hence larger soundness in the subliminal-free
signature scheme). This way we can construct a very efficient VRS for an
interactive protocol with soundness, say, one in a thousand or one in a million.
This construction is not necessarily secure in the non-interactive setting,
as a cheating prover can perform huge amounts of offline computations to
create VRS-outputs of his choice and re-trying whenever he fails, as the VRS
computations must be somewhat efficient to be used in practical situations.

To generate a binary tree of height h based on a seed s, we need to compute
roughly 2 · 2h = 2M hashes. We do this twice in our construction, but the
output nodes from the first tree are the input nodes for the second tree, and
hence, we compute roughly 3M hashes. Also, for each leaf node ui in the tree,
we might do a computation to sample specially distributed randomness vi,
and for each vi, we compute wi = OWF(vi). Let |H|, |Sample| and |OWF| denote
the cost it takes to compute a hash, the sampling and the one-way function,

45

respectively. The total computation is then T = 3M |H|+M(|Sample|+|OWF|).
The verification is somewhat cheaper.

The size of the communication is relatively small. The commitment c̃ is
the output of the hash function H of size 3λ, the commitment c is the
output from OWF, and the proof πI contains logM hash values of total size
3λ log2M = 3λh bits.

We chose λ = 128 bits of security for our signature scheme, but allow for
a soundness error 1/M where M1 = 210, M1 = 215 or M3 = 220 in our
SFS. We chose the SHA−384 hash function. By running the command
openssl speed sha512 in the terminal (openssl doesn’t offer timings for
SHA−384, but this should give us an accurate estimate), we estimate that
we can compute roughly 223 SHA−512-hashes per second with messages of
size 512 bits as input (most hashes are computed on short messages). We
also assume that we can compute the lattice-based commitments in roughly
1 ms, as above, which includes both OWF and Sample. qTelsa give the same
estimate for computing a signature. The prover and verifier time is:

T1 ≈ 3 · 210 1

223
+ 210 1

1000
≈ 1 s,

T2 ≈ 3 · 215 1

223
+ 215 1

1000
≈ 33 s,

T3 ≈ 3 · 220 1

223
+ 220 1

1000
≈ 18 min.

Next, ignoring the signature size, the total proof size is S = 3λ(1 + log2M):

S1 = 3 · 128 · 11 = 0.528 KB,

S2 = 3 · 128 · 16 = 0.768 KB,

S3 = 3 · 128 · 21 = 1.008 KB.

Using the signature schemes Dilithium or qTesla both give us subliminal-free
signatures a total size ≈ 3.3− 3.7 KB, only a factor 1.19− 1.37 times larger
than the subliminal versions of the signature schemes, depending on M .

46

7 Conclusion

We present the first constructions of subliminal-free digital signature schemes
that are secure in the post-quantum setting. The core of our construction
is based on the combination of verifiable random secrets schemes and the
lattice-based signature schemes Dilithium or qTesla.

The lattice-based VRS is of size 13 MB and takes 10 seconds to generate to
achieve λ = 128 bits security. This scheme can easily be made non-interactive
if allowing for a l-bit subliminal channel, to the cost of exponential amount
of work in l done by the malicious signer. The time it takes to generate
the signature is not ideal, but the main bottleneck of the construction
is the signature size. It is an open problem to construct a size-efficient
post-quantum secure VRS with negligible prover bit-unpredictability.

We relax the soundness of the subliminal-free signature scheme to 1/M
to achieve a more size-efficient VRS. The signature still provides λ = 128
bits of security, but the malicious signer has success probability 1/M of
embedding a subliminal message of the same size as the randomness used
in the signature. Both the computation performed in the generation and
verification of the VRS is linear in M , and hence, M must be small compared
to 2λ. For M = 210 the VRS can produce a subliminal-free signature of
size less than 3.5 KB in 1 second, which should be reasonable in most
applications that require a subliminal-free channel.

Subliminal digital signatures can be a threat against two-factor authentica-
tion systems when the second device is malicious. Boneh et al. [BDC+19]
gave a solution to this problem for signatures based on the hardness of
computing discrete logarithms over elliptic curves, and our interactive hash-
based VRS scheme can be a substitutable replacement for lattice-based
signatures.

47

References

[AAB+19] Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Nina
Bindel, Johannes Buchmann, Edward Eaton, Gus Gutoski, Ju-
liane Krämer, Patrick Longa, Harun Polat, Jefferson E. Ricar-
dini, and Gustavo Zanon. TSubmission to NIST’s post-quantum
project (2nd round): lattice-based digital signature scheme
qTESLA. https://qtesla.org/wp-content/uploads/2020/

04/qTESLA_round2_14.04.2020.pdf, 2019.

[ABB+20] Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Juliane
Kramer, Patrick Longa, and Jefferson E. Ricardini. The Lattice-
Based Digital Signature Scheme qTESLA, 2020.

[ABG+] Diego Aranha, Carsten Baum, Kristian Gjøsteen, Tjerand Silde,
and Thor Tunge. Electronic Voting using Lattice-Based Com-
mitments and Verifiable Encryption. Unpublished.

[AVPN96] Ross Anderson, Serge Vaudenay, Bart Preneel, and Kaisa Ny-
berg. The Newton channel. In Ross Anderson, editor, Informa-
tion Hiding, pages 151–156, Berlin, Heidelberg, 1996. Springer
Berlin Heidelberg.

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible
protocols and atomic proxy cryptography. In Kaisa Nyberg,
editor, Advances in Cryptology — EUROCRYPT’98, pages 127–
144, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[BD91] Mike Burmester and Yvo Desmedt. All Languages in NP Have
Divertible Zero-Knowledge Proofs and Arguments Under Crypto-
graphic Assumptions. In Ivan Bjerre Damg̊ard, editor, Advances
in Cryptology — EUROCRYPT ’90, pages 1–10, Berlin, Heidel-
berg, 1991. Springer Berlin Heidelberg.

[BDC+19] D. Boneh, E. Dauterman, H. Corrigan-Gibbs, D. Mazières, and
D. Rizzo. True2F: Backdoor-Resistant Authentication Tokens.

48

https://qtesla.org/wp-content/uploads/2020/04/qTESLA_round2_14.04.2020.pdf
https://qtesla.org/wp-content/uploads/2020/04/qTESLA_round2_14.04.2020.pdf

In 2019 IEEE Symposium on Security and Privacy (SP), pages
398–416, May 2019.

[BDI+99] Mike Burmester, Yvo G. Desmedt, Toshiya Itoh, Kouichi Saku-
rai, and Hiroki Shizuya. Divertible and subliminal-free zero-
knowledge proofs for languages. J. Cryptol., 12(3):197–223, June
1999.

[BDL+18] Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine
Oechsner, and Chris Peikert. More efficient commitments from
structured lattice assumptions. In Dario Catalano and Roberto
De Prisco, editors, Security and Cryptography for Networks,
pages 368–385, Cham, 2018. Springer International Publishing.

[Beu20] Ward Beullens. Sigma protocols for mq, pkp and sis, and fishy
signature schemes. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology – EUROCRYPT 2020, pages 183–211,
Cham, 2020. Springer International Publishing.

[BGS] Carsten Baum, Kristian Gjøsteen, and Tjerand Silde. Lattice-
Based Verifiable Mix-Net. Unpublished.

[BGVS07] Jens-Matthias Bohli, Maŕıa Isabel González Vasco, and Rainer
Steinwandt. A Subliminal-Free Variant of ECDSA. In Jan L. Ca-
menisch, Christian S. Collberg, Neil F. Johnson, and Phil Sallee,
editors, Information Hiding, pages 375–387, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

[BHT98] Gilles Brassard, Peter HØyer, and Alain Tapp. Quantum crypt-
analysis of hash and claw-free functions. In Cláudio L. Lucchesi
and Arnaldo V. Moura, editors, LATIN’98: Theoretical Infor-
matics, pages 163–169, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg.

[Blu83] Manuel Blum. Coin flipping by telephone a protocol for solving
impossible problems. SIGACT News, 15(1):23–27, January 1983.

[BS05] Jens-Matthias Bohli and Rainer Steinwandt. On subliminal

49

channels in deterministic signature schemes. In Choon-sik Park
and Seongtaek Chee, editors, Information Security and Cryp-
tology – ICISC 2004, pages 182–194, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[CMY+16] Rongmao Chen, Yi Mu, Guomin Yang, Willy Susilo, Fuchun
Guo, and Mingwu Zhang. Cryptographic Reverse Firewall via
Malleable Smooth Projective Hash Functions. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology
– ASIACRYPT 2016, pages 844–876, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[Des88] Yvo Desmedt. Subliminal-free authentication and signature. In
D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D. Luck-
ham, C. Moler, A. Pnueli, G. Seegmüller, J. Stoer, N. Wirth, and
Christoph G. Günther, editors, Advances in Cryptology — EU-
ROCRYPT ’88, pages 23–33, Berlin, Heidelberg, 1988. Springer
Berlin Heidelberg.

[Des96] Yvo Desmedt. Simmons’ protocol is not free of subliminal
channels. Proceedings 9th IEEE Computer Security Foundations
Workshop, pages 170–175, 1996.

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
Security of the fiat-shamir transformation in the quantum
random-oracle model. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology – CRYPTO 2019,
pages 356–383, Cham, 2019. Springer International Publishing.

[DKL+] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTAL-Dilithium. https://pq-crystals.org/dilithium/
data/dilithium-specification-round2.pdf. Submission to
the NIST Post-Quantum Standardization Project, round 2.

[DX10] Qingkuan Dong and Guozhen Xiao. A Subliminal-Free Variant
of ECDSA Using Interactive Protocol. In 2010 International

50

https://pq-crystals.org/dilithium/data/dilithium-specification-round2.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round2.pdf

Conference on E-Product E-Service and E-Entertainment, pages
1–3, Nov 2010.

[Eri95] Jeff Erickson. Lower bounds for linear satisfiability problems.
In Proceedings of the Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’95, pages 388–395, Philadelphia,
PA, USA, 1995. Society for Industrial and Applied Mathematics.

[FS87] Amos Fiat and Adi Shamir. How To Prove Yourself: Practical
Solutions to Identification and Signature Problems. In An-
drew M. Odlyzko, editor, Advances in Cryptology — CRYPTO’
86, pages 186–194, Berlin, Heidelberg, 1987. Springer Berlin
Heidelberg.

[Gal20] Herman Galteland. Malicious Cryptography. PhD thesis, Nor-
wegian University of Science and Technology, 2020. https:

//hdl.handle.net/11250/2649323.

[GG19] Herman Galteland and Kristian Gjøsteen. Subliminal channels
in post-quantum digital signature schemes. Cryptology ePrint
Archive, Report 2019/574, 2019. https://eprint.iacr.org/

2019/574.

[GMR85] S Goldwasser, S Micali, and C Rackoff. The knowledge complex-
ity of interactive proof-systems. In Proceedings of the Seven-
teenth Annual ACM Symposium on Theory of Computing, STOC
’85, page 291–304, New York, NY, USA, 1985. Association for
Computing Machinery.

[GMR88] Shafi. Goldwasser, Silvio. Micali, and Ronald L. Rivest. A
digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[HAZ17] Alexander Hartl, Robert Annessi, and Tanja Zseby. A Sublimi-
nal Channel in EdDSA: Information Leakage with High-Speed
Signatures. In Proceedings of the 2017 International Workshop

51

https://hdl.handle.net/11250/2649323
https://hdl.handle.net/11250/2649323
https://eprint.iacr.org/2019/574
https://eprint.iacr.org/2019/574

on Managing Insider Security Threats, MIST ’17, pages 67–78,
New York, NY, USA, 2017. ACM.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Im-
proved non-interactive zero knowledge with applications to post-
quantum signatures. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS
’18, page 525–537, New York, NY, USA, 2018. Association for
Computing Machinery.

[LS18] Vadim Lyubashevsky and Gregor Seiler. Short, invertible ele-
ments in partially splitting cyclotomic rings and applications
to lattice-based zero-knowledge proofs. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2018, pages 204–224, Cham, 2018. Springer Interna-
tional Publishing.

[LWZG10] Dai-Rui Lin, Chih-I Wang, Zhi-Kai Zhang, and D. J. Guan.
A digital signature with multiple subliminal channels and its
applications. Comput. Math. Appl., 60(2):276–284, July 2010.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with Aborts: Applications
to Lattice and Factoring-Based Signatures. In Mitsuru Matsui,
editor, Advances in Cryptology – ASIACRYPT 2009, pages
598–616, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In
David Pointcheval and Thomas Johansson, editors, Advances
in Cryptology – EUROCRYPT 2012, pages 738–755, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum fiat-
shamir. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology – CRYPTO 2019, pages 326–355, Cham,
2019. Springer International Publishing.

[MSD14] Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic

52

reverse firewalls. Cryptology ePrint Archive, Report 2014/758,
2014. https://eprint.iacr.org/2014/758.

[MVR99] Silvio Micali, Salil Vadhan, and Michael Rabin. Verifiable ran-
dom functions. In Proceedings of the 40th Annual Symposium
on Foundations of Computer Science, FOCS ’99, pages 120–,
Washington, DC, USA, 1999. IEEE Computer Society.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application
to e-voting. In Proceedings of the 8th ACM Conference on
Computer and Communications Security, CCS ’01, pages 116–
125, New York, NY, USA, 2001. ACM.

[NIST17] National Institute Standards and Technology. NIST Post-
Quantum Cryptography, Round 1 Submissions. https:

//csrc.nist.gov/Projects/Post-Quantum-Cryptography/

Round-1-Submissions, 2017.

[OO90] Tatsuaki Okamoto and Kazuo Ohta. Divertible zero knowledge
interactive proofs and commutative random self-reducibility. In
Jean-Jacques Quisquater and Joos Vandewalle, editors, Advances
in Cryptology — EUROCRYPT ’89, pages 134–149, Berlin,
Heidelberg, 1990. Springer Berlin Heidelberg.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for
smart cards. In CRYPTO, 1989.

[Sim84] Gustavus J. Simmons. The prisoners’ problem and the subliminal
channel. Advances in Cryptology: Proceedings of Crypto 83,
pages 51–67, 1984.

[Sim85] Gustavus J. Simmons. The subliminal channel and digital signa-
tures. In Thomas Beth, Norbert Cot, and Ingemar Ingemarsson,
editors, Advances in Cryptology, pages 364–378, Berlin, Heidel-
berg, 1985. Springer Berlin Heidelberg.

[Sim86] Gustavus J. Simmons. A secure subliminal channel (?). In
Hugh C. Williams, editor, Advances in Cryptology — CRYPTO

53

https://eprint.iacr.org/2014/758
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

’85 Proceedings, pages 33–41, Berlin, Heidelberg, 1986. Springer
Berlin Heidelberg.

[Sim93] G. J. Simmons. An introduction to the mathematics of trust
in security protocols. In [1993] Proceedings Computer Security
Foundations Workshop VI, pages 121–127, June 1993.

[Sim94] Gustavus J. Simmons. Subliminal Communication is Easy Using
the DSA. In Tor Helleseth, editor, Advances in Cryptology —
EUROCRYPT ’93, pages 218–232, Berlin, Heidelberg, 1994.
Springer Berlin Heidelberg.

[Sim98] Gustavus J. Simmons. Results concerning the bandwidth of
subliminal channels. IEEE Journal on Selected Areas in Com-
munications, 16(4):463–473, May 1998.

[ZL08] Xianfeng Zhao and Ning Li. Reversible watermarking with
subliminal channel. In Kaushal Solanki, Kenneth Sullivan, and
Upamanyu Madhow, editors, Information Hiding, pages 118–131,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[ZLLZ13] Yinghui Zhang, Hui Li, Xiaoqing Li, and Hui Zhu. Provably
Secure and Subliminal-Free Variant of Schnorr Signature. In
Khabib Mustofa, Erich J. Neuhold, A. Min Tjoa, Edgar Weippl,
and Ilsun You, editors, Information and Communication Tech-
nology, pages 383–391, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

54

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Tjerand Aga Silde

Verifiable Random Secrets and
Subliminal-Free Digital Signatures

Master’s thesis in Mathematical Sciences

Supervisor: Kristian Gjøsteen

June 2020

	Abstract
	Acknowledgements
	Preface
	Introduction
	Warden Model
	Subliminal-Free Digital Signatures
	Related Work

	Preliminaries
	Notation
	Polynomial Rings and Norms
	Short elements in Rp
	Discrete Gaussian Distribution
	The k-SUM Problem
	Subliminal-Free with Proof Signature Scheme
	Commitment Schemes
	Hash Functions and Quantum Security
	Digital Signature Schemes
	Zero-Knowledge Proofs
	Verifiable Random Functions

	Lattice-Based Cryptography
	Hard Problems on Lattices
	Commitments
	Zero-Knowledge Proofs
	Signatures

	Verifiable Random Secrets
	Subliminal-Free Digital Signatures
	How to Achieve a Subliminal-Free Channel?
	Subliminal and Subliminal-Free Digital Signatures
	Subliminal-Free Digital Signature Scheme
	Subliminal-Free Digital Signatures with Pre-Processing
	Non-Interactive Subliminal-Free Digital Signatures
	Security of Subliminal-Free Digital Signatures

	Our Schemes
	A Lattice-Based VRS from Shuffled Randomness
	A Schnorr-Like SFS from the Lattice-Based VRS
	Generic VRS Framework Based on One-Way Functions
	A Hash-Then-Sign SFS from One-Way Functions
	Efficiency and Size

	Conclusion
	References

