
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t. 
of

 In
fo

rm
at

io
n 

Se
cu

rit
y 

an
d 

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Javier García

Threshold Signatures for FIDO
Authentication

Master’s thesis in Master’s thesis in Digital Infrastructure and Cyber
Security
Supervisor: Tjerand Silde
Co-supervisor: Andrés Marín, Trond Peder Hagen, and Magnus
Ringerud
July 2025





Javier García

Threshold Signatures for FIDO
Authentication

Master’s thesis in Master’s thesis in Digital Infrastructure and Cyber
Security
Supervisor: Tjerand Silde
Co-supervisor: Andrés Marín, Trond Peder Hagen, and Magnus Ringerud
July 2025

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology





Threshold Signatures for
FIDO Authentication

Javier García

Submission date: July 2025
Main supervisor: Tjerand Silde (NTNU)
Co-supervisors: Andrés Marín (ETSIT UPM),

Trond Peder Hagen (PONE Biometrics), and
Magnus Ringerud (PONE Biometrics)

Norwegian University of Science and Technology
Department of Information Security and Communication Technology





Problem description

Most online services require a username and password to authenticate users when
logging in. This is usually handled in the following way:

– The user creates a fresh TLS connection with the server.
– The user sends their password to the server over TLS.
– The server checks if it matches the password in the database.
This approach has several weaknesses, such as the server seeing all passwords

in plaintext sent from the user whenever someone tries to log in, and many users
are victims of phishing attacks, in which an attacker can learn the password. A
more secure mechanism is to use digital signatures for authentication, where a public
key is stored on the server together with the username, and the client needs to
cryptographically sign a fresh challenge message every time they want to log in. This
is what is done in the FIDO protocol.

To use the FIDO protocol, you must store the signing key on a trusted device, for
example, on your laptop or a specialised device, such as an OFFPAD. These devices
may then be protected with biometrics or a local password to protect the signing key,
however, it is possible to further improve the security and robustness of FIDO by
using threshold signatures. This means that the signing key is split into several pieces
that can be distributed to several devices, and then some of the devices collaborate
to produce a fresh signature every time the user wants to log in. This allows the user
to log in even if some of the devices are stolen or lost, and it puts a higher burden
on the attacker to steal more than one device to be able to impersonate the user.

The goal of this project is to analyse and implement threshold signatures for the
FIDO protocol using the OFFPAD.

Approved: 2025-02-18 – Tjerand Silde (NTNU) (Main supervisor)





Abstract

Our work aims to enhance the security of digital authentication through
implementing threshold signatures as a part of the OFFPAD authenti-
cation mechanisms. The OFFPAD is a high-security biometric authen-
tication gadget developed by PONE Biometrics that offers fingerprint
or PIN authentication while otherwise being offline to avoid exposure
to potential cyber threats. Currently, it supports the RSA and ECDSA
signature schemes under the FIDO2 standard, which enables services to
be used securely without depending on passwords.

In this project, we successfully integrate threshold cryptography into
the OFFPAD’s authentication process while maintaining its ease and
efficiency thanks to the use of the FROST (Flexible Round-Optimized
Schnorr Threshold Signatures) protocol, which uses Schnorr signatures.
Using threshold signature schemes, the signing key is split across different
devices so that no device has the whole key, avoiding single points of
failure. In this work we evaluate various schemes to find the best fit for the
OFFPAD’s hardware, balancing security and usability by implementing
a 2-out-of-3 threshold signature scheme.

Furthermore, a communication model is implemented to manage the
different devices involved in threshold signature generation in a highly
efficient way to retain its security without adding too much latency and
complexity. This model makes use of a coordinator to ease the com-
munication between participating devices in the implemented threshold
signature scheme.

To sum up, we showcase the security of the authentication protocol in
the OFFPAD using threshold cryptography while maintaining its strong
points: efficiency, simplicity, and ease of use.





Sammendrag

Målet med dette arbeidet er å forbedre sikkerheten ved digital au-
tentisering gjennom implementering av såkalte terskelsignaturer som en
del av OFFPAD sin autentiseringsmekanisme. OFFPAD er en autenti-
seringsenhet med høy sikkerhet utviklet av Pone Biometrics som tilbyr
autentisering ved hjelp av fingeravtrykk eller PIN, mens den resten av
tiden er frakoblet andre enheter for å unngå eksponering mot potensielle
cyberangrep. Foreløpig støtter den RSA- og ECDSA-signaturer som en
del av FIDO2-standarden, som gjør det mulig å bruke tjenester sikkert
uten passord.

I dette prosjektet integrerer vi terskelsignaturer som en del av OFFP-
AD sin autentiseringsprosess, samtidig som vi opprettholder dens effekti-
vitet ved å bruke FROST-rammeverket, som anvender Schnorr-signaturer.
Ved hjelp av terskelsignaturer er signeringsnøkkelen delt over forskjellige
enheter, slik at ingen enheter har hele nøkkelen, og vi unngår at nøkkelen
lekker dersom noen får tilgang til en enhet. I dette arbeidet evaluerer vi
forskjellige signaturer for å finne den som passer best for OFFPAD, og vi
balanserer sikkerhet og brukervennlighet ved å implementere en 2-av-3
terskelsignatur.

Videre implementerte vi en kommunikasjonsmodell for å administrere
de forskjellige enhetene som er involvert i terskelsignaturer på en effektiv
måte uten å legge til for mye forsinkelse eller kompleksitet. Denne modellen
benytter seg av en sentral koordinator for å forenkle kommunikasjonen
mellom deltakende enheter.

For å oppsummere, så viser vi hvordan sikkerheten til autentiserings-
protokollen i OFFPAD kan forbedres ved bruk av terskelsignaturer mens
vi opprettholder effektivitet, enkelhet, og brukervennlighet.
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Chapter1Introduction

In today’s world, the growing number of digital services requires users to manage many
passwords. This often leads to either choosing weak, easy-to-remember passwords or
struggling to remember stronger, complex ones, leaving users vulnerable to cyber
threats. To solve this, the FIDO Alliance introduced the FIDO Authentication
standards [FID22], allowing easy and secure login without using traditional passwords.

The OFFPAD [PON24], a biometric authentication device developed by PONE
Biometrics [PON18], provides fingerprint or PIN authentication while remaining
offline to avoid exposure to potential cyber threats. It implements FIDO2, the latest
standard developed by the FIDO Alliance, which provides seamless, secure, and easy
authentication across many services. The goal of the project is to reinforce this by
incorporating threshold signatures into its authentication mechanisms.

Distributing the authentication process across multiple devices provides better
security with only a slight trade-off in efficiency. By spreading the key across devices,
security is enhanced as an attacker is required to compromise multiple devices
rather than just one to generate valid signatures, significantly increasing the attack
complexity and cost. Additionally, with threshold signatures, there is no single
point of failure, making the system more robust, as users can still log in even if
a device is lost. However, efficiency may suffer since multiple devices need to be
online, increasing complexity compared to using a single device. Depending on the
threshold T , which defines how many devices out of the total N are required for
signing, different levels of security and efficiency can be achieved. More devices
increase security and robustness but decrease efficiency, and vice versa.

With all this in mind, we present in this thesis an implementation of threshold
signatures into the OFFPAD authentication framework. We established the mo-
tivation, objectives, research questions, and some of the related works covered for
this work in a previous project [Gar25b]. They remained the same throughout the
project, with only slight changes made during development.

1



2 1. INTRODUCTION

1.1 Objectives

Our main contribution in this project is integrating threshold signatures into the
OFFPAD’s authentication mechanism, enhancing security while maintaining com-
patibility with FIDO2 authenticators and settings. This involves incorporating
threshold cryptography within the FIDO2 protocol. The OFFPAD will ensure fast,
user-friendly authentication without imposing high computational or administrative
overhead. The challenge is to add security measures without compromising the
efficiency and simplicity that define the FIDO ecosystem.

Therefore, a key aspect of this work is selecting the most suitable threshold
signature scheme and implementation. This involves evaluating various cryptographic
schemes based on their security properties, computational efficiency, and compatibility
with the OFFPAD’s hardware and the FIDO framework. Since threshold signatures
require multiple devices or entities to participate in signing, we will work to identify
the optimal number of devices to balance security and usability.

Furthermore, in this project we will also design a communication model to
coordinate the devices involved in the threshold signature. The approach selected
considers a model where OFFPAD devices send their signature shares to a computer
acting as a combiner, without direct communication between devices. The challenge
lies in designing a secure communication model where most of the computational
work rests with the computer, ensuring efficient coordination while maintaining the
security properties of threshold signature schemes.

Finally, communication should balance security and efficiency by minimizing the
complexity and frequency of exchanges between devices.

1.2 Research questions

From the motivation and objectives explained, we can extract the following research
questions that we will try to answer during the project:

1. What is the best communication model for threshold signatures?

2. What is the total number of participants N , and the threshold T of devices that
should participate to achieve a good balance between security and efficiency
for the OFFPAD?

3. What is the best threshold signature scheme for the OFFPAD? And the best
FIDO2-compliant?

4. What are the challenges in implementing the selected threshold signature
scheme, and how can they be solved?
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1.3 Our contributions

In this thesis, we contribute practical implementation work that advances the inte-
gration of threshold signatures in authentication systems with embedded devices.
Our key contributions can be summarized as:

– Threshold signature integration for the OFFPAD: We present an imple-
mentation of threshold signatures working for the OFFPAD, where Schnorr
signatures [Sch91] are used to implement the FROST protocol [KG20] in the
authentication process, improving its security. With this implementation, we
successfully perform threshold signatures in embedded devices, enabling them
to execute cryptographic operations such as the computation of signature
shares.

– Communication model: We design and implement an efficient communi-
cation model where OFFPAD devices exchange data thanks to a computer
acting as a coordinator, which receives the data from all the devices and then
redistributes it to each corresponding device.

– Efficient threshold signing architecture: Based on the work from Connolly,
Komlo, Goldberg, and Wood [CKGW24], we implement an efficient way to
carry out a threshold signature scheme thanks to the use of a trusted dealer in
the key generation and a signature aggregator in the signing. These two roles
reduce the burden on the embedded devices, making the process more efficient.

1.4 Related work

To better understand this work and its contribution, in this section we review existing
research and implementations in the field of threshold signature schemes.

1.4.1 FROST: original protocol design

The Flexible Round-Optimized Schnorr Threshold Signatures (FROST) protocol was
originally designed by Komlo and Goldberg [KG20], a threshold signature scheme
based on Schnorr signatures [Sch91]. It allows a group of signers to jointly produce a
valid Schnorr signature, all without any signer revealing their secret share or the full
reconstruction of the secret key.

FROST maximizes the efficiency of rounds required for signing without sacrificing
security. It minimizes network overhead compared to other existing threshold
signature schemes and offers a new binding mechanism to prevent forgery attacks.
Its main advantage is its intentional trade-off of some robustness for higher round
efficiency.
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The protocol can be used in two different modes: a preprocessing-based single-
round signing protocol and a two-round signing protocol. In the preprocessing
mode, the participants preprocess the nonces and commitments required, enabling a
single-round signing. In contrast, the two-round mode eliminates this preprocessing
by requiring that the participants reveal commitments in the first round.

1.4.2 FROST: enhanced security framework

Expanding on the original FROST protocol described above (Section 1.4.1), Crites,
Komlo, and Maller present in their work a security framework for multi-party and
threshold signature schemes based on the discrete logarithm problem [CKM21].
They address the limitations of the original FROST protocol by incorporating new
techniques to ensure security in the random oracle model. Additionally, they introduce
a modular security framework, enabling the analysis of the complex interactions
that the threshold signature schemes normally face, hence avoiding possible security
weaknesses that could appear during signing operations.

One of the main contributions of this work is the introduction of a revised version
of the initial FROST protocol, with improved security and performance guarantees.
It demonstrates that Schnorr signatures are sufficient proofs of possession in the
algebraic group model without any tightness loss, strengthening the theoretical
foundation of threshold signatures. Moreover, the proof framework not only improves
the security analysis of FROST but also creates a reusable architecture that can be
applied to many threshold and multi-signature protocols.

1.4.3 FROST: IETF standardization

The FROST protocol was further improved and standardized by Connolly, Komlo,
Goldberg, and Wood [CKGW24], who present in their work an IETF (Internet
Engineering Task Force) [Int25] standard from the protocol originally designed by
Komlo and Goldberg (Section 1.4.1) and the security enhancements developed by
Crites, Komlo, and Maller (Section 1.4.2).

The implementation they present uses two rounds of communication and employs
Shamir’s secret sharing [Sha79] to distribute the key among participants. This
two-round communication implementation reduces network overhead compared to
multi-round protocols, enhancing the efficiency when generating signatures, and the
use of Shamir’s secret sharing provides security in the scheme, ensuring that the
secret key is never fully reconstructed at a single point.

The scheme in this case consists of, first, a key generation process, which depends
on a trusted dealer, who generates a secret key uniformly at random and uses
verifiable secret sharing to create secret shares of it, enabling participants to verify
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if their share is correct. With all participants holding a secret share, the signing
of a message is performed with two rounds of communication, where the second
round has a device with the role of coordinator, whose responsibility is to ease the
communication between participants and gather all the signature shares to compute
the final signature of the message.

Figure 1.1: FROST protocol overview [CKGW24].

1.4.4 Fast multiparty threshold ECDSA

Gennaro and Goldfeder presented a threshold signature scheme for ECDSA [JMV01],
which addresses important weaknesses in previous threshold ECDSA implementa-
tions [GG18]. This implementation is the first threshold ECDSA protocol allowing
multiparty signing for any T ≤ N with an efficient key generation scheme without
the use of a dealer. Unlike previous approaches that relied on a trusted dealer or the
use of expensive distributed RSA key generation, this protocol achieves a significant
improvement in both communication and computation efficiency. Moreover, the
scheme has been proven secure against a malicious adversary, and even against a
malicious majority.

The protocol covers two main phases: a distributed key generation phase and a
signature generation phase. In the key generation phase, Feldman’s verifiable secret
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sharing [Fel87] is used to generate shares of a private ECDSA key, avoiding the
role of a trusted dealer. Each participant has to generate their secret contribution
independently and use verifiable secret sharing to share it, and summing all the
contributions results in the full private key.

The signature phase incorporates a way of transforming multiplicative shares into
additive shares (MtA). This is done by first applying Shamir’s secret sharing [Sha79]
on the private key, and subsequently creating additive shares for all values required
for ECDSA signing. Using homomorphic encryption, in this case, Paillier encryption
[Pai99], enables the correlation between multiplicative and additive secret sharing
schemes, making possible the calculation of products of secret values required by
ECDSA.

1.4.5 Threshold ECDSA with identifiable abort

Gennaro and Goldfeder introduced a highly efficient scheme with identifiable abort
mechanisms to address critical limitations in existing threshold ECDSA protocols
[GG20]. Their work addresses two key defects in previous protocols: the absence of
a mechanism to detect faulty participants and abort, and the need for several rounds
of communication in the signing process.

The protocol introduced by them had the big innovation of incorporating a
non-interactive online phase, which optimizes the signing process to a single round
of communication, with each party performing one scalar multiplication. This is
possible thanks to an offline preprocessing phase that is independent of the message
to sign. These improvements enable asynchronous participation, which makes this
implementation especially useful for practical deployments in real-world scenarios.

1.4.6 Three-Round ECDSA threshold signatures scheme

In Doerner, Kondi, Lee, and Shelat’s work, they present a three-round threshold
ECDSA signing protocol that is secure even against a malicious majority [DKLsa24].
The protocol enables a group of signers to generate valid ECDSA signatures [JMV01]
while keeping each secret share confidential and without the full reconstruction of
the secret key.

The protocol requires only three rounds of communication and uses Vector
Oblivious Linear Evaluation (VOLE) [ADI+17] for secure multiplication, which
supposes a big improvement in round complexity compared to existing threshold
ECDSA protocols. It works by producing an intermediate representation of ECDSA
signatures, which was first proposed by Lindell and Nof [LN18], allowing some
nonlinear operations to be executed at the same time.
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The signing process is divided into three main stages. In the first stage, each
party submits a nonce contribution and starts VOLE instances with the other parties.
The second stage involves decommitting nonce values, inputting these into the
VOLE protocols, and performing tests to detect any misbehaviour. The third stage
completes the signature construction with the communication of the signature shares
and computing the final signature from them.

One significant improvement is the complete removal of zero-knowledge proofs
from the protocol. Instead of relying on proof systems, this approach uses simple
statistical consistency checks that are easily verifiable in the elliptic curve group.
This method provides security while improving previous threshold ECDSA protocols.

1.5 Outline

This thesis consists of the following six chapters:

Chapter 2: Background introduces the background knowledge that is required
for this thesis. It provides an overview of the OFFPAD, the FIDO2 standard and
ecosystem, and covers important mathematical and cryptographic concepts such as
elliptic curves, RSA, ECDSA and Schnorr signature schemes.

Chapter 3: Threshold signatures explains the core concept of this thesis,
threshold signature schemes. It includes descriptions of secret sharing techniques such
as Shamir’s and Feldman’s schemes and presents some implementations of threshold
signature schemes using Schnorr and ECDSA signatures.

Chapter 4: Proposed solution outlines the decisions made to integrate
threshold signatures into the OFFPAD’s authentication mechanism. It justifies the
choice of the selected threshold signature scheme and communication model, detailing
the communication strategies selected for the communication between devices, the
setup for key generation and distribution, and the process of share aggregation.

Chapter 5: Methodology describes the methodology followed in the different
phases carried out during the project and the implementation of the proposed solution.
This includes the full process of the selected threshold signatures schemes, tools,
libraries, and hardware used. The chapter includes code snippets to illustrate key
aspects of the implementation.

Chapter 6: Results and discussion summarizes the experimental results
obtained with the application of threshold signatures in the context of the OFF-
PAD’s infrastructure. It evaluates and discusses the obtained results using different
performance metrics, as well as discusses limitations during the implementation
stage.
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Chapter 7: Conclusions and future work offers a detailed overview of the
main contributions and results of this project, related to the research questions
discussed regarding the optimal threshold signature scheme, communication model
and threshold parameters for the OFFPAD. It also discusses the limitations of the
current implementation and future directions for research to improve it.



Chapter2Background

We reviewed the technical background to understand several key concepts in the
fields of authentication and cryptographic security in the project preceding this thesis
[Gar25b]. We include this background below with some additions in the fields of
authentication and cryptographic security.

2.1 The OFFPAD

First of all, PONE Biometrics [PON18] is a cybersecurity company which aims
to improve authentication on hardware authenticators with plans to use threshold
signatures in the future, focusing on secure, well-designed, and user-friendly solu-
tions. Their strategy provides scalable, advanced security for enterprises, public
sectors, healthcare, and defense. Their first product, the OFFPAD (Offline Personal
Authentication Device) [PON24], is a smart card-sized biometric authentication
device offering high security with easy deployment and integration into existing IT
infrastructures, being a biometric-based alternative to traditional passwords, using
fingerprint or PIN authentication. Designed to stay offline, it remains powered down
until activated by the user for authentication, significantly reducing its exposure to
online threats, minimizing the attack surface.

Fundamentally, it is more secure compared to smartphones, which are always on
and vulnerable due to third-party apps. The OFFPAD conforms to the authentication
standard FIDO2, further enhancing security and improving the way users sign in to
online services.

2.2 FIDO ecosystem

FIDO2 (Fast IDentity Online 2) is a group of protocols and standards [FID22],
such as Web Authentication (WebAuthn) and Client-to-Authenticator Protocol 2
(CTAP2), developed by the FIDO Alliance in collaboration with the World Wide

9
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Web Consortium (W3C). Its goal is to avoid security vulnerabilities and user experi-
ence challenges in traditional password-based authentication systems by offering a
passwordless authentication framework.

In the FIDO2 framework, users authenticate in a passwordless manner using
public key cryptography. The public key is shared with the service, while the private
key remains securely on the device. Authentication uses a challenge-response method;
the online service sends a challenge that the client answers by signing it with the
private key corresponding to the one owned by the server. To do this, the private
key will never be sent or stored on the server, sharply reducing the possibility of
phishing, password theft, and replay attacks.

2.2.1 Architecture

There are different parties involved in the FIDO2 ecosystem [W3C21]:
– Relying Party (RP): The online platform or service that users aim to access.

For authentication, users share their public key with the RP, which is stored
by it to later generate a challenge that users need to sign with their private
key to authenticate.

– Client: Party that serves as a bridge between the RP and the Authenticator,
handling the exchange of data and communication between both parties for
the authentication process. This can be, for example, a phone or a laptop.

– Authenticator: A device that validates a user’s identity by signing challenges
sent by an RP with the private key corresponding to the public key the RP
has stored. There are two different categories:

◦ Roaming Authenticators: Portable devices that can work across multiple
platforms. This is the case of the OFFPAD.

◦ Platform Authenticators: Embedded within a specific device permanently,
acting as a trusted component for authentication.

Figure 2.1: FIDO2 Ecosystem.
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2.2.2 Client to authenticator protocol

Client to Authenticator Protocol (CTAP) is a protocol that establishes a standardized
method for the interaction between a client and authenticator [W3C19a]. There are
two protocol versions, CTAP1 and a modification of it, CTAP2, but the term CTAP
may be used without clarifying whether it is referring to CTAP1 or CTAP2.

Before the protocol, the client and authenticator need to establish a confidential
and mutually authenticated data transport channel. Moreover, the authenticator
implementing this protocol requires to have a mechanism to obtain a user gesture,
such as a consent button, password, PIN, or biometric.

Structure

The protocol consists of three parts:

– Authenticator API: In this abstraction level, operations are defined similarly
to API calls, accepting input parameters and returning either an output or an
error code. This API is conceptual; each platform provides actual APIs.

– Message encoding: To invoke a method in the authenticator API, the host
needs to construct and encode a request and send it to the authenticator, which
then processes it and returns an encoded response.

– Transport-specific binding: For each transport technology, bindings are specified
for this protocol.

2.2.3 Web authentication

Web Authentication API, also known as WebAuth, is a specification by W3C and
FIDO. It allows servers to register and authenticate users by means of public key
cryptography instead of a password [W3C19b]. Instead of a password, a private-
public key pair, known as a credential, is created, with the private key safely stored
at the user’s device and the public key sent and stored at the server, which can then
use that public key to verify the user’s identity.

2.2.4 Registration

The FIDO registration process allows users to create and link a new passkey credential
to their account with a Relying Party. To do this, it is required to have the user,
the device equipped with a FIDO authenticator, and the RP’s server participate in
this process. This involves verifying the user’s identity through an authentication
method such as the use of a fingerprint or PIN code.

The registration flow is the following [W3C19b]:
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0. The user starts the registration on the RP’s website or application, providing a
username, after which the client sends a request to register an authenticator.

1. The RP’s server generates a PublicKeyCredentialCreationOptions object
containing information about the user’s account, the RP’s details, and the
properties of the new credential, and sends it to the client.

2. The client communicates with the available FIDO authenticator and forwards
relevant information from PublicKeyCredentialCreationOptions, and a hash
of the serialized client data clientDataHash, containing the challenge, to this
authenticator.

3. The authenticator prompts the user for authentication, and if it is successful,
then the authenticator is authorized to generate a new passkey, credential
ID, and attestation data, which proves the type and characteristics of the
authenticator.

4. The authenticator returns an attestationObject to the client, which is an
object that contains the generated public key, credential ID and attestation
data.

5. The client generates a ClientDataJSON object that contains the public key
and credential data, and this is sent together with the attestationObject to
the RP’s server.

6. The RP’s server receives the data and performs some validation steps. This
includes the verification of the signature of the attestation data and examining
the ClientDataJSON to ensure authenticity and integrity. If the validation is
successful, the RP securely stores the public key and associates it with the user’s
account and authenticator characteristics. This enables future authentication
using the corresponding secret key held by the authenticator.

Figure 2.2: Registration Flow.
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2.2.5 Authentication

The FIDO registration process allows users to prove their identity to a Relying Party
after they have performed the registration procedure. To do this, it is again required
to have the user, the device equipped with a FIDO authenticator, and the RP’s server
participate in this process. The user in this case needs to provide their username
and complete authentication on their authenticator to demonstrate possession of the
secret key associated with the registered public key.

The authentication flow is the following [W3C19b]:

0. The user starts the authentication on the RP’s website or application, providing
a username, after which the client sends a request to start the authentication
procedure.

1. The RP’s server generates a PublicKeyCredentialRequestOptions object
containing a challenge generated by the RP that will be signed and a list
allowCredentials of the registered credentials previously registered by the
user, and sends it to the client.

2. The client calculates a hash with the client data clientDataHash and together
with the RP’s identifier RP ID sends it to the user’s authenticator.

3. The authenticator finds the credential that matches the RP ID and prompts
the user to perform authentication. If it is successful, then the authentica-
tor creates an assertion by signing clientDataHash and authenticatorData,
which contains information about the authentication event, with the private
key associated with the credential.

4. The authenticator returns the authenticatorData and the generated digital
signature to the client.

5. The client forwards the authenticatorData and the signature back to the
RP’s server, together with the clientDataJSON, which contains the client data
that was originally passed to the authenticator, serialized in JSON format.

6. The RP’s server receives the data and performs some validation steps. This
includes the verification of the signature, the authenticatorData, and the
clientDataJSON, ensuring the challenge and all parameters are as expected.
If all these checks are correct, the RP confirms the user’s identity and grants
them access.
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Figure 2.3: Authentication Flow.

2.3 Mathematical background

Cryptography is based on mathematical concepts to provide secure communication.
A fundamental concept in many cryptographic techniques is the use of math problems
that are easy to solve in one direction but difficult to undo without any prior knowledge.
One example is the calculation of the product of two large prime numbers; it is easy
to obtain the product, but factoring it is a much harder task.

This asymmetry is key in many cryptographic techniques. In these structures,
Elliptic Curve Cryptography (ECC) has a key role; it takes advantage of the mathe-
matical properties of elliptic curves over finite fields to design cryptographic protocols
that provide security while maintaining relatively small key sizes.

2.3.1 Elliptic curves

For this project, we use elliptic curves over a finite field. A finite field Fp consists of
integers (0, 1, 2, ..., p − 1), where p is a prime, and operations are performed modulo p.
An elliptic curve over Fp is a set of points defined by the equation y2 = x3 + ax + b,
including a point at infinity O [Sil09, Chapter 3].

Ea,b = {(x, y) ∈ Fp | y2 = x3 + ax + b} ∪ {O}

Where the discriminant ∆ = 4A3 + 27B2 is nonzero. They form a structured
group where points can be added and scaled efficiently, with group operations using
algebraic rules adapted to finite fields.
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Point addition

Given two points P = (x1, y1) and Q = (x2, y2) on Ea,b, some important properties
to consider when adding points in elliptic curves are [Sil09, Chapter 3] [Och22]:

– Additive identity: P + O = P .
– Additive inverse: if x1 = x2 and y1 = −y2, then P + Q = O.
– Point addition:

P + Q = (x3, y3), where:

x3 = λ2 − x1 − x2, y3 = −y1 − λ (mod x3 − x1)

λ =
{

3x1
2+a

2y1
if P = Q

y1−y2
x1−x2

if P ̸= Q

Additionally, for scalar multiplication of points, it consists of repeated addition,
and it is denoted as Q = [x]P , where [2]P = P + P .

2.3.2 Elliptic curve cryptography

Elliptic Curve Cryptography (ECC) [Mil86] leverages the structure of elliptic curves
over finite fields to implement secure cryptographic protocols like Elliptic Curve
Diffie-Hellman (ECDH) or Elliptic Curve Digital Signatures (ECDSA) [JMV01]. Its
security relies on the Elliptic Curve Discrete Logarithm Problem (ECDLP), and
provides a series of advantages [Mag16]:

– Shorter key sizes: a typical ECC key size of 256 bits provides equivalent security
to a 3072-bit RSA key, and 2048-bit RSA only provides 112 bits of security.

– Performance: due to the smaller key sizes, ECC provides faster encryption and
decryption, as well as lower computational overhead when compared with RSA.

Elliptic curve discrete logarithm problem

The security of ECC is based on the Elliptic Curve Discrete Logarithm Problem
(ECDLP) [Sil09, Chapter 5] [Men08] [HM11]. Having two points P, Q ∈ E(Fp), where
E(Fp) is an elliptic curve over a finite field and p is a prime. The ECDLP consists of
finding an integer x that satisfies the equation [x]P = Q.

Even with the best algorithms to solve ECDLP, like Pollard’s ρ method [Pol78],
it requires O(√p) operations. This means it is not currently feasible to solve ECDLP
in E(Fp) if p is large enough.
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2.4 Digital signatures

To ensure the authenticity and integrity of exchanged information, digital signatures
are employed. A digital signature provides these characteristics through cryptography
to implement a way to verify the origin of exchanged information and to check that it
has not been altered [SY06]. It functions as the digital counterpart of a handwritten
signature or stamped seal, not only confirming the identity of the sender but also
ensuring that the content has not been modified during its transmission using public
key cryptography. In a digital signature, a key pair consisting of a secret key and
a public key is used; the secret key is used for signing, and the public key for
verification. They have a big span of possible applications, ranging from secure email
communication to electronic voting.

Figure 2.4: Digital signatures overview.

The OFFPAD supports FIDO2 with RSA and ECDSA schemes, and the Schnorr
signature scheme is also a scheme that could be interesting towards implementation
with the OFFPAD. All of them are digital signature schemes, where the security
relies on only the signer holding the private key being able to sign.

2.4.1 RSA

First, the Rivest-Shamir-Adleman signature scheme, commonly known as RSA
[RSA78], is based on the computational difficulty in finding the prime factorization
of large bi-primes, the product of two distinct prime numbers, since no computer has
been able to execute it in a feasible amount of time.

The process works as follows [LLM23]:
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Key generation:

1. Privately sample two large random prime numbers p and q.

2. Compute the product n as n = (p · q), and then compute ϕ(n) as
ϕ(n) = ϕ(p) · ϕ(q) = (p − 1) · (q − 1).

3. Choose an integer e with gcd(e, ϕ(n)) = 1, and compute d such that
e · d ≡ 1 (mod ϕ(n)).

4. The secret key sk is sk = (p, q, d) and the public key pk is pk = (n, e).

Signing:

1. Calculate a hash of message m as h = H(m′), where H is a hash function,
and m′ is the output of a suitable padding scheme applied to m such as
PKCS#1v1.5.

2. Calculate a signature s ≡ hd (mod n).

Verification:

The signature is valid if se ≡ h (mod n).

2.4.2 ECDSA

Second, the Elliptic Curve Digital Signature Algorithm, commonly known as ECDSA
[JMV01], uses elliptic curve cryptography to enable secure digital signatures. ECDSA
bases its security on the elliptic curve discrete logarithm problem since it is compu-
tationally challenging to solve.

The process works as follows [KKS10]:

Key generation:

A key pair is generated with the private key sk being a number selected uniformly at
random such that 1 ≤ sk ≤ (n − 1), where n is the order of the generator point G on
the curve, and the public key pk is computed as [sk]G.

Signing:

1. An integer k is chosen uniformly at random with 1 ≤ k ≤ (n − 1).

2. Compute a point on the curve R = [k]G = (x, y).
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3. Compute r ≡ x (mod n). If r = 0, then go back to the first step.

4. Compute k−1 (mod n).

5. Compute s ≡ k−1(H(pk, m) + sk · r) (mod n), where H is the Secure Hash
Algorithm SHA-2. If s = 0, then go back to the first step.

6. The signature on the message m is the pair (r, s).

Verification:

1. Calculate s′ ≡ s−1 (mod n).

2. Calculate R′ = [H(pk, m) · s′]G + [r · s′]pk = (x′, y′), and r′ ≡ x′ (mod n).

3. The signature is valid if r ≡ r′ (mod n).

2.4.3 Schnorr

Finally, the Schnorr signature scheme [Sch91] is also based on the discrete logarithm
problem in finite groups. This scheme is valued for its efficiency and security, as it
generates simpler and faster signatures compared to ECDSA.

The process works as follows [Won21]:

Key generation:

1. Sample the secret key sk uniformly at random from a finite field Zp.

2. Compute public key as pk = [sk]G, where G is the generator point.

Signing:

1. Sample a random value r from the finite field Zp and compute R = [r]G.

2. Compute challenge c = H(pk, R, m), where H is a hash function that behaves
as a random oracle and must be collision-resistant, which can be instantiated
with a Secure Hash Algorithm such as SHA-2.

3. Compute response z = r − c · sk.

4. The signature is σ = (c, z).
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Verification:

1. Calculate R′ = [z]G + [c]pk.

2. The signature is valid if c = H(pk, m, R′) is correct.





Chapter3Threshold signatures

In this chapter we present an analysis of threshold signatures we performed in the
project preceding this thesis [Gar25b], with some other findings discovered during
the project to better understand threshold signature schemes.

3.1 Threshold signature schemes

In a threshold signature scheme [BS15, Chapter 22], the secret signing key sk is
divided into N shares, each stored in a different server or device. These collaborate
in generating signatures, but the full key is never reconstructed at any single point
to avoid having a single point of failure and improve security. Only a subset of T

servers out of the total N are needed to produce a valid signature.

By doing this, even if T −1 servers are compromised, the attackers cannot retrieve
useful information about the signing key or produce valid signatures on their own,
making this scheme secure. These schemes also provide robustness, which we define
as the ability to generate valid signatures as long as T participants are still available,
even if the remaining N − T participants are not. This means that even if the honest
users lose their key, they can still sign if they have T shares left. Moreover, the
signature process is designed so that the shares do not leak the secret key.

A generic threshold signature scheme consists of (G, S, V, C), where G is a proba-
bilistic key generator to generate N key shares, S is a probabilistic signing algorithm,
V is a deterministic verification algorithm, and C is a combiner algorithm.

The process works as follows:

Shares generation:

1. G generates N key pairs (pk, ski) and gives ski to the corresponding device i.
The public verification key and the combiner key are the same pk = pkc.

21
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2. Each signing device i outputs a signature share σi = S(ski, m) where m is the
message to sign.

Share combination:

The combiner C(pkc, m, J , {σj}j∈J ) collects T signature shares and combines them
to obtain the full signature σ, where J is a subset of the participants.

Share verification:

Algorithm V (pk, m, σ) ensures the authenticity and integrity of the signature, out-
putting accept if |J | = T , meaning that the set contains exactly T participants, and
each partial signature σj is a valid signature on m.

3.2 Secret sharing

Secret sharing is a technique in cryptography used to split a secret into multiple
parts, called shares, in a way such that having a certain amount of those shares
makes it possible to recover the initial secret, but knowing less than that does not
leak any information about it.

One of the most well-known methods is that of Shamir’s secret sharing scheme
[Sha79]. In this scheme, we want to share a secret α among N different parties. To
do that we work in a finite field Zq = {0, 1, ..., q − 1} where q a prime number.

The scheme uses polynomial interpolation to do the sharing, as any polynomial of
degree T − 1 can be uniquely determined by T points, and for fewer than T points,
no useful information can be obtained about the secret. It consists of two different
processes, one for generating the shares of the secret, and the other to combine them
and recover the secret, and requires that q > N .

To share a secret α, the process works as follows [BS15, Chapter 22]:

Shares generation:

1. Choose T − 1 random coefficients (a1, a2, ..., aT −1) from Zq.

2. Define a polynomial of degree T − 1, such that fi(0) = α, where α is the secret
to share:

f(x) = aT −1xT −1 + aT −2xT −2 + ... + a1x + α.

3. Generate a share for each participant as αi = f(i).
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Share combination:

1. Collect T shares of a subset J of the participants.

2. Reconstruct the polynomial using Lagrange interpolation

f(x) =
T∑

j=1
αij

· λij
(x) (mod q), where λij

(x) =
T∏

k=1
k ̸=j

x − ik

ij − ik
(mod q).

3. Get the secret α by evaluating f(0) =
T∑

j=1
αij · λij (0) (mod q) = α.

While Shamir’s secret sharing ensures confidentiality, it does not guarantee that
the distributed shares are consistent or correctly generated. To ensure this, we rely
on verifiable secret sharing (VSS), a secret sharing scheme that splits a secret into
different verifiable shares, meaning that a party obtaining a share can verify its
validity [Sch05].

A well-known example of a verifiable secret sharing scheme is Feldman’s scheme
[Fel87]. This scheme uses commitments, which allow a party to commit to a value
while keeping it secret, with two main properties: hiding (the commitments do not
reveal information about the committed value) and binding (after committing to
a value, the commitment cannot be changed). This is employed to allow parties
to verify that the shares they receive are consistent with the polynomial without
revealing the coefficients.

In this scheme, a secret α is been chosen uniformly at random from a finite
field Zp, where p is a large prime number. It is split into different shares using a
polynomial f where deg(f) ≤ T such that f(x) = a0 +a1x+ . . .+aT xT , and the zero
degree term a0 = α is the secret that we want to distribute. A dealer sends shares
αi = f(i) for 1 ≤ i ≤ N privately to each party Pi, and broadcasts commitments
commit(aj) = cj = Gaj for 1 ≤ j ≤ T of all the coefficients in the polynomial f

except for the constant term. Each party can verify its share by checking if

Gαi =
T∏

j=0
cij

j .

3.3 FROST protocol

Flexible Round-Optimized Schnorr Threshold, or FROST, is a cryptographic protocol
using Schnorr [Sch91] for threshold signatures that optimizes the rounds required for
signing while maintaining security [KG20]. It minimizes the network overhead caused
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by producing Schnorr signatures in a threshold signature scheme while enabling
unrestricted parallelism of signing operations.

FROST trades off robustness in the protocol for improved round efficiency, as
in settings where misbehaviour of participants is rarely expected, protocols can be
more relaxed to be more efficient if all participants honestly follow the protocol. If a
participant misbehaves, honest participants can identify it and abort the protocol to
re-run it after excluding the misbehaving participant.

In the project’s implementation, which follows the work from Connolly, Komlo,
Goldberg, and Wood [CKGW24], the protocol can be carried out with each participant
simply performing a broadcast, but a device can also be the one in charge of acting as
the signature aggregator, a semi-trusted role that can be performed by any participant
or even an external party. In the implementation of this project, we use this approach
with a signature aggregator, who is in charge of reporting misbehaving participants
and publishing the group’s signature at the end of the protocol. Even if it deviates
from the protocol, it remains secure as this role cannot learn the private key or cause
improper messages to be signed.

3.3.1 Parameter setting

To perform this protocol, some parameters need to be first established:

– Let G be a cyclic group of group order q, where the operations take place.
This group must satisfy the DLP hardness, which means that it must not be
possible to compute x given Gx, where G is the generator.

– Let Zq be a finite field of prime order q, where q is a large prime number.
– Let G ∈ G be a public generator of the group. It should be chosen such that G

has prime order and no small subgroups.
– Let H1, H2 be two hash functions whose outputs are in Z∗

q .

3.3.2 Key generation

Distributed key generation

FROST uses Pedersen’s Distributed Key Generation (PDKG) [Ped91] for key gener-
ation. This consists of each participant executing Feldman’s verifiable secret sharing
[Fel87] to generate a share and send it to the other participants; the final secret share
is the result of adding all the shares received from other participants. Moreover,
each participant demonstrates knowledge of their secret by providing the rest of
the participants with a zero-knowledge proof [GMR85], a cryptographic technique
for demonstrating to another party that a statement is true without revealing any
meaningful information aside from the truth of the statement.
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Each participant performs the following steps:

1. Choose T − 1 random coefficients (ai1, ai2, ..., aiT −1) from Zq.

2. Define a polynomial of degree T − 1, such that fi(0) = ai0, where ai0 is the
secret to share:

f(x) = aiT −1xT −1 + aiT −2xT −2 + ... + ai1x + ai0.

3. Compute a proof of knowledge σi = (Ri, µi), where the values Ri and µi are
Ri = [k]G and µi = k + ai0 · hi, where hi = Hi(i, Φ, [ai0]G, Ri), k is a random
scalar sampled from Zq, and Φ is a context string to prevent replay attacks.

4. Create commitment commit(ai0) = ci = Gai0 and share it together with the
proof.

5. Verify all proofs from other participants checking Rj = [µj ]G · cj0
hj , and abort

if verification fails. If everything is correct, delete all proofs.

6. Send to each other participant a secret share fi(j), deleting them afterwards
and keeping (i, fi(i)) for themselves.

7. Verify the shares by calculating [fj(i)]G =
T −1∏
k=0

h
ik (mod q)
jk , aborting if the check

fails.

8. Calculate private signing share ski =
N∑

j=i

fj(i), storing it securely and deleting

each fj(i).

9. Calculate public verification share pki = [ski]G and group’s public key

pk =
N∏

j=1
hj0.

Trusted dealer

A different approach for key generation includes the use of a trusted dealer. With this
approach, one device is in charge of generating all the shares instead of each device
generating its own share. While this simplifies the implementation, it introduces a
potential security risk, as all the shares exist on a single device at some point in time.

In this process, the trusted dealer performs the following steps:
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1. Randomly samples a secret.

2. Choose T − 1 random coefficients (a1, a2, ..., aT −1) from Zq.

3. Generate a share for each participant as αi = f(i).

4. Send the share f(i) to each participant together with the commitments
commit(aj) = cj = Gaj for 1 ≤ j ≤ T .

Each participant then receives a share and verifies if it is correct by using the
commitments received following verifiable secret sharing (Section 3.2). If everything
is correct, then all participants are prepared for signing, and the dealer deletes all
information.

3.3.3 Signing

Before signing a message, a preprocessing stage is carried out to generate nonces and
commitments needed for the signing. But to not cache commitments, a two-round
signing protocol can be implemented instead, with participants publishing a single
commitment to each other in the first round.

Round 1: Nonce generation and commitments

For the preprocess, with an empty list Li and j being a counter for a specific
nonce/commitment share pair, and π the number of pairs generated at a time, each
participant performs these steps:

1. Sample single use nonces (dij , eij) from Z∗
q × Z∗

q .

2. Derive commitment shares (Dij , Eij) = ([dij ]G, [eij ]G).

3. Append (Dij , Eij) to Li and store (dij , Dij), (eij , Eij) for later use.

4. Publish (i, Li).

Round 2: Signature aggregation

Once this preparation stage is finished, a set of participants J signs a message m.
The process is the following:

1. Signature aggregator fetches the next available commitment share for each
participant Pi ∈ J from Li and constructs B = ⟨(i, Di, Ei)⟩i∈J .

2. Signature aggregator sends Pi the tuple (m, B).
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3. Each participant validates the message m, and then checks Dj , Ej ∈ G∗ for
each commitment in B, aborting if the check fails.

4. Each participant computes ρj = H1(j, m, B), derives the group commitment
R =

∏
j∈J

Dj · [ρj ]Ej and the challenge c = H2(R, pk, m).

5. Each participant computes their response using their ski by computing

si = di + (ei · ρi) + λi · ski · c.

6. Each participant securely deletes (dij , Dij), (eij , Eij) and returns si to the
signature aggregator.

7. The signature aggregator derives ρi = H1(j, m, B) and Ri = Dij · [ρi]Eij , and
subsequently R =

∏
i∈J

Ri and c = H2(R, pk, m).

8. The signature aggregator checks [si]G = Ri · pki
c·λi for each si and aborts the

process if the check fails.

9. The signature aggregator computes the group’s response s =
∑

si and publishes
σ = (R, s) along with m.

3.3.4 Advantages

By following this protocol for threshold signatures, it is possible to efficiently produce
a valid Schnorr signature on a message when having a subset of valid participants
collaborate in the process, without revealing their secrets and with efficient use of
rounds of communication. In conclusion, the use of this protocol achieves secure,
robust, efficient and flexible threshold signing suitable for real-world scenarios. Some
key achievements obtained from using this protocol are:

– Efficient threshold signing: Enabling a threshold number of participants to
produce a valid signature using a minimal number of communication rounds.
This reduces latency and network overhead.

– Security: The protocol guarantees that the secret key shares are never revealed
during the signing process, and the full secret key is never reconstructed, using
signature shares to compute the final signature. Moreover, it uses commitments,
zero-knowledge proofs and nonce-hiding techniques to ensure attackers cannot
interfere in the process.

– Support for trusted or trustless setup: The protocol is compatible with both
a DKG generation and a generation with a trusted dealer. This flexibility
allows one to choose the setup that best aligns with the trust assumptions and
deployment limitations that a user who wants to implement it can find.
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– Use of a signature aggregator: The use of a signature aggregator allows the
coordination of the signing process. Although semi-trusted, this device is not
capable of learning the secret key or generating signatures on its own, ensuring
the protocol remains secure even if it misbehaves.

3.4 ECDSA three-round protocol

Doerner, Kondi, Lee, and Shelat have designed a three-round threshold ECDSA
protocol [DKLsa24], which is a cryptographic protocol that generates distributed
ECDSA signatures without compromising the security of the private key. This
protocol is both secure and efficient, making it suitable for practical deployment in
real-world environments.

Compared to other threshold signature protocols that require numerous rounds
of communication or rely on expensive cryptographic primitives, this protocol allows
the implementation of threshold signatures with only three rounds of communication,
eliminating the need for zero-knowledge proofs thanks to the use of an enhanced
statistical consistency check mechanism, improving efficiency without compromising
security.

The main innovation of the protocol lies in the method for computing the ECDSA
signing equation; it uses an intermediate representation to enable the execution of
non-linear operations. This is complemented by an innovative consistency check that
uses the natural structure of the computation, eliminating the need for additional
cryptographic checks.

3.4.1 Parameter setting

To perform this protocol, several parameters need to be established:
– Let G be an elliptic curve of prime order q, where the operations take place. This

group must satisfy the discrete logarithm problem (DLP) hardness assumption.
– Let Zq be a finite field of prime order q, where q is a large prime number.
– Let G ∈ G be a public generator of the group, chosen such that G has prime

order.
– Let H1, H2 be two hash functions whose outputs are in Zq

∗.

3.4.2 Key generation

Relaxed distributed key generation

The protocol makes use of a "relaxed" key generation that does not require zero-
knowledge proofs. This relaxed approach is enough to ensure security for the signing
protocol while reducing computational overhead.
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Each participant performs the following steps:

1. Choose T − 1 random coefficients (ai1, ai2, ..., aiT −1) from Zq.

2. Define a polynomial of degree T − 1, such that fi(0) = ai0, where ai0 is the
secret to share:

f(x) = aiT −1xT −1 + aiT −2xT −2 + ... + ai1x + ai0.

3. Compute the polynomial Pi(x) = pi(x) · G in the elliptic curve group.

4. Commit to their polynomial in two ways:

a) Public polynomial commitment: Commit to the first T evaluation points of
the polynomial Pi(x) in the group G: Pi(0), Pi(1), ..., Pi(T −1). Broadcast
these commitments to all other parties.

b) Pairwise share commitment: Commit to the secret share pi(j) and privately
send it to participant j.

5. Verify that the received secret share is consistent with the public polynomial
commitment by computing P ′(i) =

∑
j∈N

pj(i) · G and verify that:

P ′(i) =


P (i) if i ∈ [T − 1]
P (0) −

∑
j∈[T −1]

lagrange([T − 1] ∪ {i}, j, 0) · P (j)

lagrange([T − 1] ∪ {i}, i, 0) otherwise

3.4.3 Signing

The protocol achieves efficiency by using a rewriting of the ECDSA signing equation.
It computes:

– R = [r]G, where r is the collective nonce.
– w = (a + sk · b) · φ, where a = H1(m), b = rx, rx is the x-coordinate of R, and

φ a masking value.
– u = r · φ.
– s = w/u, which yields the final signature component.
This formulation enables the computation of the three nonlinear relations defining

R, w, and u in parallel, resulting in a three-round complexity. Moreover, Vector
Oblivious Linear Evaluation (VOLE) [ADI+17], a cryptographic primitive that repre-
sents a vectorized form of oblivious linear evaluation, allowing multiple multiplication
operations to be performed efficiently in parallel, is employed to reduce round com-
plexity. Therefore, the signing protocol consists of three rounds of communication,
where each signing party performs the following steps:
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Round 1: Nonce commitment and VOLE setup

1. Generate random nonces ki, φi ∈ Zq and compute commitment ci = Commit[ki]G.

2. Initialize VOLE instances with all other participants j ̸= i to prepare for secure
multiplication operations.

3. Broadcast the nonce commitment ci to all other participants.

4. Store the nonce ki and the masking value φ.

Round 2: Decommitment and VOLE execution

1. Reveal the nonce ki to all other participants.

2. Verify that each received nonce kj satisfies cj = Commit[kj ]G.

3. Compute the collective nonce r =
∑
j∈J

kj , where J is the set of signers partici-

pating.

4. Execute the VOLE protocol to compute shares of w = (a + sk · b) · φ and
u = r · φ, where a = H1(m) and b = rx.

5. Perform consistency checks using the elliptic curve group structure to detect
any misbehaviour.

Round 3: Signature aggregation

1. Using the outputs from the VOLE protocol, compute the signature share
si = wi/ui and send it to a coordinator.

2. A coordinator receives the shares and verifies their consistency by using statis-
tical checks.

3. The coordinator combines the signature shares to compute s =
∑
i∈J

si, where

the final signature is σ = (rx, s).

3.4.4 Advantages

The implementation of this protocol for threshold ECDSA signatures makes it easier
to produce a valid ECDSA signature for a message using a group of signers that
cooperate with each other. This method protects the private information and involves
only three rounds of communication.
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To summarize, the protocol offers a secure, efficient, and effective threshold
signing mechanism, representing an improvement over previous implementations of
threshold ECDSA. Some of the most important advantages of this implementation
include:

– Optimization of communication rounds: The covered protocol requires only
three rounds of communication, which is a significant improvement over previous
threshold ECDSA implementations. This reduction leads to lower latency and
complexity.

– Elimination of zero-knowledge proofs: Unlike previous threshold ECDSA proto-
cols that relied on expensive zero-knowledge proof techniques, this implementa-
tion takes advantage of statistical consistency checks to lower the computational
requirements for a practical deployment.

– Security: The protocol is secure even if the majority of the participants are
dishonest. The secret key shares are protected, and the entire secret key is
never reconstructed during the signing process.

– Standardization: This implementation produces ECDSA signatures that comply
with widely accepted cryptographic standards, and what’s more important,
with the FIDO2 protocol. This standardization allows for strong support and
ensures interoperability among different systems and environments.





Chapter4Proposed solution

Following this project’s main objective to incorporate threshold signatures in the
OFFPAD’s ecosystem, we have made several decisions in this project: the use of the
Schnorr signatures over ECDSA as the signature scheme due to its simplicity and
need for fewer rounds, the use of USB communication to provide secure data exchange
between the involved devices, the use of a trusted dealer in the key generation to
lessen the computational burden of the used embedded devices, and the adoption of a
coordinator-based model together with the use of a signature aggregator to facilitate
the communication between devices and aggregation of signature shares. We further
explain these decisions in this chapter.

4.1 Signature scheme

With ECDSA (Section 2.4.2) and Schnorr (Section 2.4.3) signatures being the
principal options considered in the project, we finally opted to use Schnorr signatures
for the implementation. While both of them rely on the security of the Discrete
Logarithm Problem, Schnorr was selected due to the advantages it offers compared
to other protocols.

While ECDSA signatures offer the advantages of standardization and widespread
adoption, Schnorr signatures are increasingly being integrated into modern cryptogra-
phy protocols due to the benefits they offer. The mathematical structure of Schnorr
signatures is simpler, requiring computational operations that are less demanding,
and enabling the use of fewer rounds of communication. This made us decide to use
Schnorr signatures as a good fit for the OFFPAD’s embedded environment.

The implementation with Schnorr for the project is based on elliptic curve
cryptography (ECC), where all group operations are performed over an elliptic
curve group. Its security relies on the Elliptic Curve Discrete Logarithm Problem
(ECDLP), similar to ECDSA. It provides efficient key and signature sizes and faster
computations, offering strong security and good performance.

33
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Using Schnorr signatures, the implementation follows the FROST protocol, which
offers a series of advantages:

– Round efficiency: minimizing the rounds of communication required for signing,
allowing the implementation of a two-round or single-round signing protocol.

– Identification of misbehaviour: identifying faulty operations or participants,
enabling the abortion of the signing process in case something is not working
as intended.

– Improved privacy and efficiency: implementing the use of a threshold signature
scheme that aligns with modern cryptography standards and practices.

4.2 Communication between devices

Communication is key for this project, as the devices need to share information
like signature shares and commitments in a safe way. The communication must
prevent unauthorized parties from eavesdropping or injecting information. Taking
into account the hardware specifications of the boards used in the project, USB and
Bluetooth communication were considered.

USB communication

Using USB for communication provides a reliable and fast connection between devices,
while also providing security as a physical connection is required, reducing the risk
of remote attacks. However, it is not an optimal way of communication when using
several devices due to cable management and port availability, making it less practical
in scenarios with multiple devices.

The STM32 Nucleo-L476RG development board used in the implementation
supported only UART communication, while the OFFPAD development board
supported USB HID communication (Section 5.7). The difference in hardware
required implementing both types of communication. UART communication provides
a simple serial interface that is reliable and well-established, but requires specific
drivers and port management. On the other hand, USB HID communication provides
a more standardized approach, making it easier to integrate and enable device
detection and communication management.

Bluetooth communication

Bluetooth offers a wireless alternative for device communication, enabling a flexible
deployment of a multi-device environment. In fact, Bluetooth Low Energy (BLE)
optimizes power consumption. While wireless communication is more exposed than
USB, Bluetooth implements different features to provide security, such as pairing,
bonding, device authentication, encryption, and message integrity [Blu24]. Some
limitations are the higher latency compared to USB, with possible distance constraints
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when communicating between devices, being unable to be too far away, and a higher
complexity for implementation.

Selected communication

With the complexity involved in the development and integration of Bluetooth
communications and the time limits of the project, we selected USB communication
as the initial mode of communication for all phases of the protocol. In future works,
the use of Bluetooth should be considered a priority enhancement, considering its
potential to increase the scalability and practical deployment of the implementation.

In this project, we integrated both UART and USB HID communication protocols
to meet the hardware requirements of the different development boards. This was
accomplished using an interface that allows selection of which communication method
to use, depending on the desired board to communicate with.

4.3 Signing preparation

To compute a valid signature, a setup needs to be carried out beforehand. This setup
needs to provide all the participants with the needed resources to be able to correctly
sign a message. This can be performed by means of a distributed key generation or
a generation with a trusted dealer.

Distributed key generation

It is a cryptographic protocol that allows a group of devices to work together to
generate a secret key without any of them ever knowing the full key, while also
generating a public key known to all. To do this, each participant generates a share
of a secret key using Shamir’s secret sharing (Section 3.2), verifying that all shares
are valid using commitments in a protocol such as Feldman’s verifiable secret sharing
(Section 3.3.2).

Therefore, each participant holds at the end a share of the secret key that can later
be used to sign a message, computing a signature share of the message. Performing
Lagrange interpolation with these shares results in a valid signature.

This setup provides good security as the secret key is never computed at a single
point. This reduces the risk of getting the key stolen, with the attacker having to
obtain a certain amount of the shares to be able to compute the full secret key.
However, distributed key generation protocols need more complex algorithms that
can be difficult to implement, needing communication between all the devices during
the process to ensure the desired results.
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Trusted dealer

Same as in a distributed key generation, a setup using a trusted dealer aims to end
with each participant holding a share of a secret key, which is later used to compute
a valid signature for a message (Section 3.3.2). The difference resides in how these
shares are generated.

When using a trusted dealer, a device is responsible for generating all the shares
as well as the public key to then distribute them amongst all the participant devices.
As in the distributed key generation, this is performed using Shamir’s secret sharing
and verifiable secret sharing (Section 3.2).

This setup is less complex, as only one device is responsible for generating all the
shares. The downside is that in this case, there is a single point of failure, with the
device acting as the dealer holding all the shares needed to compute the full secret
key; consequently, an attacker could obtain the secret key if they corrupt the dealer.

Figure 4.1: Key generation with trusted dealer.

Selected setup

With the trusted dealer setup being less complex and easier to implement, this
approach was the one we used in the project. This is a less safe approach when
compared with the distributed key generation, but was chosen as a first approach
with the distributed key generation as a possibility for a future line of work.
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4.4 Signing communication

In the FROST protocol, devices need to exchange information during the signing
process, such as commitments or the message to sign. The communication model
determines how this information is exchanged between participants, which impacts
the complexity, security, and performance of the implementation. Two communication
models were considered for this project.

Direct device communication

One possibility involves establishing direct communication between all participating
devices, creating a fully connected network where each device can communicate
directly with every other device. This provides decentralization, as no single device
has access to all communications, reducing single points of failure. However, this
requires more complex coordination strategies and places higher computational and
communication burdens on the OFFPAD devices.

Coordinator

Another possibility is the use of a coordinator that facilitates all communication
between participants. In this model, devices do not communicate directly with each
other; instead, the messages are sent to a coordinator, which then redistributes the
information to the corresponding devices. This reduces the communication burden
for the OFFPAD devices but introduces a single point of failure and requires the
coordinator to be a trusted device.

Selected generation

Given the OFFPAD’s hardware limitations, we decided to make use of a coordinator,
reducing the communication burden from the OFFPAD devices. A computer is
designated with the role of the coordinator, being in charge of facilitating communi-
cation between all the participant devices while maintaining security, as no important
information can be obtained from the exchanged information in the signing process
for the selected signature scheme (Section 3.3).

4.5 Share aggregation

Once the signature shares have been computed, they must be aggregated to create
the final signature. This aggregation is necessary to complete the FROST protocol,
which needs to gather the signature shares from the participants involved in the
signing protocol to be able to compute a final valid signature (Section 3.3.3). We
considered two different methods to aggregate the signature shares for this project.
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Distributed aggregation

One of the considered solutions allowed any device that is part of the signing process
to perform the signature aggregation step. This involves any device that participates
to be able to collect signature shares from other participating devices, aggregating
them to generate the final signature, and then establishing a connection with the
server for authentication.

This approach provides greater decentralization, eliminating the threat of a single
point of failure in aggregation. However, this requires more computational capacity
from the devices.

Signature aggregator

The other approach that was discussed consisted of setting a computer to act as
a signature aggregator (Section 3.3), which includes the task of collecting all the
signature shares from the corresponding devices, combining them to generate the
final signature, and enabling direct communication with the server to authenticate.

This approach lessens the computational burden on the OFFPAD devices, as
they only need to compute their individual signature shares and send them to the
computer, without needing to communicate with the other participants. However,
this creates a single point of failure, as the final signature will always end in the
same device.

Selected aggregation

Due to the computational limits of the OFFPAD devices and the need for good
performance, the project follows an aggregation with the role of a signature aggregator,
taken by a computer. Moreover, due to the limitations of the OFFPAD to establish
a connection with a server to perform authentication, the final signature would be
required to be sent to a computer, as the OFFPAD devices would not be able to
perform the authentication; therefore, even without the computer taking the role of
a signature aggregator a single point of failure would still be created.

For this reason, we decided to have a computer carrying out the most computation-
ally intensive operations, taking the role of a signature aggregator. By doing this, the
computer is the one in charge of gathering the signature shares of all the participants,
aggregating all of them to compute the final signature, and communicating with a
server to complete the authentication.



Chapter5Methodology

In this chapter we outline the methodological approach used to achieve the goals
of the project, which aims to integrate threshold signatures into the OFFPAD’s
authentication mechanism. The methodology follows a structured strategy we
developed in the project preceding this thesis [Gar25b], as well as incorporating the
challenges and learnings that we encountered during the implementation.

5.1 Project overview

The project followed a four-phase approach, starting with acquiring a theoretical
background to finish designing a solution and implementing it, and finally testing
and evaluating the results. The methodology, although looking linear, followed some
iterative processes, where results in later phases were used to refine decisions made
in earlier stages.

– Research phase: The beginning of the project involved a thorough review of
literature to determine the current state of threshold signature schemes and
communication models. This step was critical to enable informed decision-
making and ensure the design of the project’s proposed solution was in line
with the OFFPAD’s limitations.

– Design phase: Building on the research background acquired, this phase
focused on the system design, including the decision of the threshold signature
scheme and communication model to use.

– Implementation phase: In this phase, design decisions were translated into
operational code using an iterative development process. Initial development
focused on setting up basic functionality, which was then complemented by
setting up the communication, and finally merging all together to obtain a
functioning threshold signature scheme.
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– Testing and evaluation phase: The final phase involved a comprehensive
evaluation of the results obtained from the implementation. Functional testing
was employed to determine the correct functionality of the protocol, and
performance testing was performed to analyse different parameters.

This approach made it possible to develop a functional threshold signature
scheme in an efficient and effective way. Each of the phases maintained flexibility
to revisit and refine earlier decisions based on implementation and testing results.
The methodology emphasised continuous validation and adaptation, ensuring that
theoretical knowledge could translate into practical functionality.

5.2 Research phase

The research phase consisted of a literature review of existing threshold signature
schemes, with a particular focus on those using Schnorr or ECDSA signatures. This
research was targeted to search for existing implementations that could overcome the
constraints of embedded systems while also being compatible with the OFFPAD’s
hardware. Not only were threshold signature schemes explored, but communication
models were also an important focus of the research, looking for models that could
fit into the project’s requirements.

The literature review followed standard academic rules to ensure the validity and
coherence of its theoretical foundations. Peer-reviewed publications from important
conferences and journals in the field of cryptography were prioritized, as well as
standardization documents by organizations like the FIDO Alliance. This approach
ensured that design decisions were made based on reliable sources.

5.3 Design phase

The design phase followed a decision-making process to take the findings from the
literature review and translate them into concrete technical decisions. The design
decisions were made to use the knowledge from the literature review, taking into
account the practical limitations, in particular, the limitation of being able to use
only two boards for the implementation phase.

Threshold signature scheme selection

Based on the results of the literature review, the suitability of different candidates for
the threshold signature schemes for the OFFPAD environment was evaluated. The
selection process involved a careful consideration of each of the candidate schemes
against the goals of the project.
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An extensive analysis of both Schnorr-based and ECDSA-based approaches was
carried out, taking into account security properties and their practical implementation
requirements. The decisions regarding the threshold signature scheme included
evaluating existing implementations and possible modifications that could be applied
to them to comply with the limitations of the project.

Communication model design

The choice of a communication model required the adaptation of multi-party protocols
to fit the constraints of the OFFPAD devices, all while maintaining the security
properties of threshold signatures. An analysis of the different communication
strategies presented in the literature was carried out, determining the adaptations
required for each strategy to be able to work with the OFFPAD devices. Special
attention was given to how a computer could be involved in the protocol without
compromising security.

5.4 Implementation phase

The implementation phase used an incremental development approach, where features
were developed separately so they could be evaluated before being integrated together.
This enabled constant validation of design decisions and early detection of problems
and errors when translating decisions into code.

The implementation followed a bottom-up approach, moving through different
phases, each based on the preceding ones. This incremental approach was followed
to identify and solve implementation problems early in the development.

1. Library selection: The implementation started with an evaluation and
selection of cryptographic libraries suitable for embedded threshold signatures.
The support for a Zephyr OS implementation was key when selecting a library, as
well as the programming language, which was decided to be the C programming
language. When choosing a library, the candidates needed to be able to perform
operations for Schnorr and ECDSA signatures, as well as being able to perform
operations for secret sharing, including Shamir’s secret sharing and verifiable
secret sharing. All cryptographic operations were performed using the secp256k1
elliptic curve, which was selected for its widespread adoption in cryptographic
applications and excellent support in embedded cryptographic implementations.

2. Hardware compatibility: After selecting the library, a thorough examination
was carried out to determine the ability to run all the necessary cryptographic
operations consistently on the specified hardware. This phase was required to
execute and test the performance of all the required operations in the boards
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used for the implementation, to make sure the operations took place within a
reasonable time for authentication scenarios.

3. Development of communication: The communication was developed taking
into consideration the limitations of the boards used. Communication between
a computer and each board was implemented using reliable USB communication
and message serialization. Both UART and USB HID communication methods
were developed as each board was compatible with only one of these methods.

4. Threshold signature scheme: With the communication configured and
working, the threshold signature algorithms were implemented in a set of
sequential steps.

a) The first step was key generation, which was an important step as all
subsequent operations depend on this one.

b) With the key generation verified to work correctly, the signing process
was implemented, making it compatible with both the already verified
communication methods and the cryptographic library employed.

c) Finally, both the key generation and signing were integrated to verify
if the threshold signature scheme could be completed with a valid final
signature being computed at the end.

Throughout implementation, logging and debugging were used to monitor the
correct execution of cryptographic operations and communication between devices.

5.5 Practical implementation

Following these decisions the practical implementation will now be covered. All
cryptographic operations were implemented using the secp256k1 library [Ban22], an
optimized C implementation designed for embedded systems that supports elliptic
curve operations on the secp256k1 curve, a 256-bit curve that is widely adopted in
Bitcoin and other cryptographic applications due to its strong security properties
and computational efficiency. In this section we cover the most important aspects of
the implementation, and the complete implementation is publicly available at PONE
Biometrics’ GitHub repository [Gar25a].

5.5.1 Key generation

Before the signing, the computer and the participant devices must carry out a key
generation process to set up all the required elements. To do that, the computer is
in charge of generating all the values needed for the signing and distributing them to
the participating devices, acting as a trusted dealer.
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It is important to note that participants must complete the key generation process
before proceeding to registration (Section 2.2.4) in an authentication system, which in
turn must be completed before any signing operations can be performed. This ensures
that all the required cryptographic material is properly generated and distributed
before any authentication attempt.

Computer side

To generate the required values, the secp256k1 library [Ban22] allows to create the con-
text and generate a secret using the function secp256k1_frost_keygen_with_dealer,
which then divides the secret into different shares based on a defined number of total
participants N and the threshold T of them needed to compute a valid signature.
Therefore, at the start of the code, some variables and structures are defined:

– N is the total number of participants, and T is the threshold of the needed
participants to perform the signing.

– sign_verify_ctx is the context to perform signing and verification operations.
– dealer_commitments are the commitments that the dealer generates so each

participant can verify the share they receive.
– keypairs is an array to hold the values:

◦ public_keys is an array to store the individual public keys of each
participant.

◦ shares_by_participant is an array to store the secret share assigned to
each participant.

1 #d e f i n e N 3 // Number o f p a r t i c i p a n t s
2 #d e f i n e T 2 // Threshold o f needed p a r t i c i p a n t s
3 secp256k1_context ∗ s ign_ver i fy_ctx ;
4 secp256k1_frost_vss_commitments ∗dealer_commitments ;
5 secp256k1_frost_keygen_secret_share shares_by_part ic ipant [N ] ;
6 secp256k1_frost_keypair keypa i r s [N ] ;
7 secp256k1_frost_pubkey publ ic_keys [N ] ;
8 secp256k1_frost_s ignature_share s ignature_share s [N ] ;
9

10 s ign_ver i fy_ctx = secp256k1_context_create (SECP256K1_CONTEXT_SIGN |
11 SECP256K1_CONTEXT_VERIFY) ;
12 dealer_commitments = secp256k1_frost_vss_commitments_create (T) ;
13 return_val = secp256k1_frost_keygen_with_dealer (
14 s ign_ver i fy_ctx ,
15 dealer_commitments ,
16 shares_by_part ic ipant ,
17 keypai r s ,
18 N,
19 T
20 ) ;

Listing 5.1: Key generation.
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The obtained values are then shared among the participants. This distribution
is performed using a communication interface that supports both UART Serial
communication (Universal Asynchronous Receiver-Transmitter) for basic serial data
exchange and USB HID communication (Human Interface Device protocol) for
structured USB data transfer, offering compatibility with the two different boards
used in the implementation. The data is split into different types of messages
for more efficient communication. Moreover, when transmitting these messages, a
number MSG_HEADER_MAGIC is defined to add more security, as to receive the data
the receiving end should define the same number to establish the connection.

Then, a structure for the messages to be sent is defined, with the header containing
information to help transmit the information more efficiently:

– magic being the number to secure the connection, with the receiving end having
to define the same number to be able to receive the data.

– msg_type being a number to inform about the type of message that is trans-
mitted, making it easier for the receiving end to know the message they are
receiving and process it accordingly. The possible types are:

◦ A secret share.
◦ A public key.
◦ Commitments for verifiable secret sharing.
◦ A message to mark the end of the transmission.

– payload_len being the length of the payload of the message.
– participant being the ID corresponding to the participant whose information

is being sent.

Figure 5.1: Message transmission to the boards.
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Other structures are also defined to store the serialized data to transmit, ensuring
proper data transmission across different communication channels. With all the data
prepared, an interface was implemented to handle the supported communication
methods, which are UART and USB HID. To use it, the program prompts the
user to choose which communication method they want to use, and the user just
needs to select the one that corresponds to the board they want to send the data
to. This is done by pressing 1 or 2 on the keyboard, and in case of selecting UART
communication, the program will also prompt the user to specify the COM port to
use, which should be the one where the board is connected.

Figure 5.2: Communication method selection.

Then, a function is in charge of sending the data by combining the header with
the payload into a single buffer before transmission. The payload containing the
information to send must be one of the message types we have defined (a secret share,
a public key, commitments, or a message to the end the transmission).

1 BOOL send_message ( comm_handle_t∗ comm, uint8_t msg_type , uint32_t
p a r t i c i p a n t , const void ∗ payload , uint16_t payload_len ) {

2 message_header header ;
3 header . magic = MSG_MAGIC;
4 header . v e r s i o n = MSG_VERSION;
5 header . msg_type = msg_type ;
6 header . payload_len = payload_len ;
7 header . p a r t i c i p a n t = p a r t i c i p a n t ;
8 s i z e_t t o t a l _ s i z e = s i z e o f ( header ) + payload_len ;
9 uint8_t ∗ combined_buffer = ( uint8_t ∗) mal loc ( t o t a l _ s i z e ) ;

10 memcpy( combined_buffer , &header , s i z e o f ( header ) ) ;
11 i f ( payload_len > 0 && payload ) {
12 memcpy( combined_buffer + s i z e o f ( header ) , payload , payload_len ) ;
13 }
14 BOOL r e s u l t = send_data (comm, combined_buffer , t o t a l _ s i z e ) ;
15 f r e e ( combined_buffer ) ;
16 r e turn r e s u l t ;
17 }

Listing 5.2: Function for message transmission.
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Moreover, for UART communication, a function is needed to configure parameters
for the serial port, which should have the same values for the transmitting and
receiving sides, including:

– Baudrate of 115200 bits/s.
– 8 bits per character.
– One stop bit.
– No parity bit.

On the other hand, for USB HID communication, there is no need to specify the
port where the board is connected; instead, the program searches through all available
HID devices connected to the computer to find the one matching the specified Vendor
ID and Product ID. These Vendor ID and Product ID also need to be configured
in the receiving board with the same values. However, the transmission through
USB HID requires special handling; the data is transmitted in chunks to fit within
the device’s output report size, with each chunk being prefixed with a report ID,
the chunk length, and the actual data to ease the handling of them by the receiver.
Working with a Windows device, the program uses the Windows HID API to transmit
each chunk, continuing until all input data has been sent, which can be controlled
thanks to the payload_len defined in the header, which defines the total length that
the chunks should sum up to.

Finally, with the communication configured, all the data for the participants is
generated and sent to each board with a loop that iterates through each participant,
and all allocated resources are properly cleaned up to ensure security.

Board side

To receive the data generated by the computer, two codes are implemented, each
of them specific to a different development board due to their communication
compatibilities with either UART or USB HID.

UART: To receive the data with USB connection through serial communication
the board needs to configure the corresponding Universal Asynchronous Receiver-
Transmitter (UART) peripheral to the COM port used for the connection, as well
as prepare the structures for the messages to be received, which need to be defined
the same way they were in the transmitting side. Moreover, buffers to handle the
messages are also configured to make the communication more efficient and decrease
the burden on the board’s resources.

The UART communication is configured with an interrupt-driven reception, which
allows the handling of incoming data efficiently without blocking the main application.
To handle the incoming data at the UART, the code makes use of interruptions,
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storing the received bytes into a buffer for later processing. With dev being a pointer
to the UART device that triggered the interrupt, a while loop ensures all pending
interrupt conditions are handled before exiting, and when a FIFO queue, which is a
data structure that processes elements in "First In, First Out" order, has at least one
byte to read, uart_fifo_read reads one byte from the FIFO queue and stores it in
a buffer rx_ring_buf to later process the data.

1 s t a t i c void uart_cb ( const s t r u c t dev i ce ∗dev , void ∗ user_data ) {
2 uint8_t byte ;
3

4 whi le ( uart_irq_update ( dev ) && uart_irq_is_pending ( dev ) ) {
5 i f ( uart_irq_rx_ready ( dev ) ) {
6 whi le ( uart_f i fo_read ( dev , &byte , 1) == 1) {
7 ring_buf_put(&rx_ring_buf , &byte , 1) ;
8 }
9 }

10 }
11 }

Listing 5.3: UART interrupt handler.

With the structures and buffers prepared, the main reception loop processes the
incoming data. It toggles between two different states, first, WAITING_FOR_HEADER,
where it checks the buffer to see if there is any header available, if so, it obtains the
information from the header about the message and validates the magic number for
communication to then switch to WAITING_FOR_PAYLOAD. In this second state, the
program reads the payload data until the full message is obtained and then processes
it to switch back to the first state at the end.

Functions to process the different message types are defined. Thanks to the
headers in the messages, the code knows which type of message is received and can
process it to fill the structures required for the threshold signature protocol, which
includes keypair and commitments.

1 s t a t i c void process_publ ic_key ( const uint8_t ∗ payload , uint16_t l en ) {
2 uint8_t ∗ ptr = ( uint8_t ∗) payload ;
3 memcpy(& keypa i r . publ ic_keys . index , ptr , s i z e o f ( uint32_t ) ) ;
4 ptr += s i z e o f ( uint32_t ) ;
5 memcpy(& keypa i r . publ ic_keys . max_participants , ptr , s i z e o f ( uint32_t )

) ;
6 ptr += s i z e o f ( uint32_t ) ;
7 memcpy( keypa i r . publ ic_keys . public_key , ptr , 64) ;
8 ptr += 64 ;
9 memcpy( keypa i r . publ ic_keys . group_public_key , ptr , 64) ;

10 }

Listing 5.4: Public key processing.
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When the end transmission message is received, the system ends the key reception
process and stores everything. To be able to use the received data in the signing, it
is stored in the flash memory of the board for later use. To do that, a partition in
the memory, storage_partition, is defined for storing the data, and the function
flash_are_open gives access to the flash area for read/write/erase operations, being
fa a pointer to the flash area. First, a structure flash_data is filled with the received
data, following this, a page of the flash memory is erased with flash_area_erase,
and lastly, a write buffer is configured with the correct size and the data is written
with flash_area_write, closing the flash at the end with flash_area_close. For
this operation to be successful, it is important that the flash page of the partition is
fully erased and then ensure that the data is stored correctly, which is done thanks
to the function flash_area_read that can check the values stored.

1 i n t write_frost_data_to_f lash ( void ) {
2 const s t r u c t f l a sh_area ∗ f a ;
3 i n t rc = flash_area_open (FIXED_PARTITION_ID(STORAGE_PARTITION) , &fa

) ;
4

5 f r o s t _ f l a s h _ s t o r a g e f lash_data = {0} ;
6

7 // Copy a l l keypa i r and commitment data to f l a s h s t r u c t u r e
8 f lash_data . keypair_index = keypa i r . publ ic_keys . index ;
9 memcpy( f lash_data . keypa i r_secret , keypa i r . s e c r e t , 32) ;

10 memcpy( f lash_data . keypair_public_key , keypa i r . publ ic_keys .
public_key , 64) ;

11

12 // Erase f l a s h area and wr i t e data with proper al ignment
13 s i z e_t wr i te_block_s ize = f lash_get_write_block_size ( f lash_dev ) ;
14 s i z e_t padded_size = ROUND_UP( s i z e o f ( f r o s t _ f l a s h _ s t o r a g e ) ,

wr i te_block_s ize ) ;
15

16 rc = f lash_area_erase ( fa , 0 , e r a s e _ s i z e ) ;
17 rc = f lash_area_write ( fa , 0 , padded_buf , padded_size ) ;
18

19 f l a sh_area_c lo se ( f a ) ;
20 r e turn rc ;
21 }

Listing 5.5: Flash storage writing.

USB HID: To receive the generated data in the other development board, the
implementation includes this communication method, which works by reassembling
chunked data that was segmented and sent by the computer to fit the device’s
report size. To do so, the device is first configured as a custom HID interface with
specific report descriptors so it can be easily detected and identified by the computer,
including:
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– HID_USAGE_PAGE: Specifies that the used device belongs to the "Generic Desk-
top" category (standard for mice, keyboards, joysticks).

– HID_USAGE: Set to undefined as it doesn’t fit a standard HID device.
– HID_COLLECTION: Groups related HID items together to inform the device that

all of them work together as a single functional unit.
◦ HID_REPORT_ID: To identify the report type.
◦ HID_REPORT_SIZE: To specify that each byte is 8 bits.
◦ HID_REPORT_COUNT: To specify that there are a total of 63 bytes. The

report will be 64 bytes total: 1 byte for the report ID and 63 bytes of
payload data.

◦ HID_OUTPUT: To specify the direction of the communication, in this case,
a host-to-device communication.

Unlike UART, which can handle variable-length streams, USB HID uses reports
of a fixed length. Therefore, the implementation includes a way to handle messages
that are larger than the HID report size and reconstruct the full message. When
it finds a new message, it calculates the expected total size and starts to build up
chunk data in a reassembly buffer, keeping track of the progress by means of the
variable reassembly_pos. When all the expected bytes have been gathered and the
original message can be reconstructed (reassembly_pos ≥ expected_total_size),
it then handles the full message and resets the state.

Figure 5.3: Message transmission and reception with reassembly buffer.

A callback function is in charge of handling the incoming data and USB events.
The function int_out_ready_cb() is triggered when the HID device receives data,
reading data up to 64 bytes using hid_int_ep_read() and passing any successfully
read data to handle_chunked_data() for reassembly. The status changes are man-
aged by status_cb(). In status USB_DC_RESET, the flag is reset and the data cleared,
while on USB_DC_CONFIGURED, the device is marked as ready to receive data.
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1 s t a t i c void int_out_ready_cb ( const s t r u c t dev i c e ∗dev ) {
2 uint8_t b u f f e r [ 6 4 ] ;
3 i n t ret , r e c e i v e d ;
4 r e t = hid_int_ep_read ( dev , bu f f e r , s i z e o f ( b u f f e r ) , &r e c e i v e d ) ;
5 i f ( r e t == 0 && r e c e i v e d > 0) {
6 handle_chunked_data ( bu f f e r , r e c e i v e d ) ;
7 }
8 }
9

10 s t a t i c void status_cb (enum usb_dc_status_code status , const uint8_t ∗
param ) {

11 switch ( s t a t u s ) {
12 case USB_DC_RESET:
13 c o n f i g u r e d = f a l s e ;
14 re se t_al l_data ( ) ;
15 break ;
16 case USB_DC_CONFIGURED:
17 i f ( ! c o n f i g u r e d ) {
18 c o n f i g u r e d = true ;
19 }
20 break ;
21 }
22 }

Listing 5.6: USB HID callbacks.

The received messages are processed as in the UART implementation, based on
the type of the message that is marked in the header. When all the required data is
received, it is stored in the flash memory, same as in the UART implementation, but
using Zephyr’s work queue system to prevent blocking the USB interrupt handlers.

All these functions are then used together to process the full message transmitted
from the board, receiving it on the boards through the corresponding communication
and storing the received data in the flash memory, leaving the receiving board
prepared with the key material for the signing.

To summarize, in this implementation we provide an efficient way for the gener-
ation and distribution of key material required for threshold signatures, thanks to
using the FROST protocol. A device acts as a trusted dealer, creating a secret key
and distributing secret shares and the corresponding public keys and commitments
to various devices via USB. On the board side, each board receives the information
through either UART or HID, verifies if it is correct, and saves it in the flash memory
for later use in the singing process. This setup ensures all participants end up holding
a verified piece of the secret key so they can later participate in the signing process
to collaboratively generate a valid Schnorr signature.
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5.5.2 Signing

With the key generation process complete and each participant holding the necessary
data, a signing process can then be carried out. As explained in previous sections
(Section 4), this phase requires a coordinator, a role that is taken by a computer,
which will coordinate the communication and take the signature aggregator role from
the FROST protocol (Section 3.3), and a threshold T of devices to participate.

Computer side

To perform the signing, the computer prepares the required structures and defines
the different types of messages that will be transmitted and received, as in the key
generation. In this implementation, the computer is in charge of coordinating the
communication, facilitating the data exchange of the participants so they can carry
out the required cryptographic operations for the protocol, and acting as a signature
aggregator at the end, gathering all the signature shares, aggregating them, and
computing the final signature. Following the FROST scheme, the signing consists of
two rounds of communication:

Round 1:

1. The computer sends a ready signal to trigger the nonce generation in the
boards.

2. The computer collects the nonce commitments and keypair information, ex-
cluding the secret information that should not be shared, such as the secret
share.

3. The computer verifies the commitments and stores them in an array.

Figure 5.4: FROST’s first round of communication.
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Round 2:

1. The computer sends a hash of the message to sign and the array containing all
the collected commitments to each board.

2. The computer collects the signatures shares computed by the boards and
aggregates them into the final signature.

Figure 5.5: FROST’s second round of communication.

This approach, with the use of a computer as a coordinator/signature aggregator,
requires the computer to perform several tasks. This reduces the burden on the
embedded devices, as the computer is the one performing the most computationally
demanding operations and facilitates the communication of the participants, ensuring
that all the operations are performed correctly, while the used boards only need to
focus on some computations.

Board side

Same as with the computer, the boards need to prepare the structures and define
the different types of messages that are required for the signing. The communication
follows the same implementation as in the key generation, with two independent
codes, one for each development board to work with either UART or USB HID
communication due to their hardware limitations. Each board configure their corre-
sponding parameters for communication and handle the messages received based on
the type marked in the header, with the communication method changing based on
the board designated to receive the data. Again, two rounds of communication are
carried out for the signing:
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Round 1:

1. The board receives a ready message and computes nonces and commitments
with the data stored in flash memory.

2. The board sends the commitments and key pair information to the computer,
omitting the data that should remain secret.

1 s t a t i c void process_ready_message ( ) {
2 LOG_INF( "READY s i g n a l r e c e i v e d " ) ;
3

4 i f ( generate_and_save_nonce ( ) == 0) {
5 send_nonce_commitment_and_keypair ( ) ;
6 }
7 }
8

9 s t a t i c i n t generate_and_save_nonce ( void ) {
10 current_sess ion_id = sys_rand32_get ( ) ;
11

12 unsigned char binding_seed [ 3 2 ] = {0} ;
13 unsigned char hiding_seed [ 3 2 ] = {0} ;
14 f i l l_random ( binding_seed , s i z e o f ( binding_seed ) ) ;
15 f i l l_random ( hiding_seed , s i z e o f ( hiding_seed ) ) ;
16

17 secp256k1_frost_nonce ∗ nonce = secp256k1_frost_nonce_create ( ctx , &
keypair , binding_seed , hiding_seed ) ;

18

19 i n t save_resu l t = save_nonce_to_flash ( nonce , current_sess ion_id ) ;
20 secp256k1_frost_nonce_destroy ( nonce ) ;
21

22 r e turn save_resu l t ;
23 }

Listing 5.7: Ready message processing and nonce generation.

Round 2:

1. The board receives a hash of the message to sign and an array with commitments
from all the boards involved in the signing, and verifies if they are correct.

2. The board computes a signature share using the received data and the nonce
computed before, which was stored in the flash memory.

3. The board sends the signature share to the computer.
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1 // Load nonce
2 secp256k1_frost_nonce ∗ nonce = load_nonce_from_flash (

current_sess ion_id ) ;
3

4 // Prepare commitments array f o r s i g n i n g
5 secp256k1_frost_nonce_commitment ∗ signing_commitments = k_malloc (

num_commitments ∗ s i z e o f ( secp256k1_frost_nonce_commitment ) ) ;
6

7 f o r ( uint32_t i = 0 ; i < num_commitments ; i++) {
8 signing_commitments [ i ] . index = ser ia l ized_commitments [ i ] . index ;
9 memcpy( signing_commitments [ i ] . h iding , ser ia l ized_commitments [ i

] . h id ing , 64) ;
10 memcpy( signing_commitments [ i ] . binding , ser ia l ized_commitments [ i

] . binding , 64) ;
11 }
12

13 // Compute s i g n a t u r e share
14 memset(&computed_signature_share , 0 , s i z e o f (

computed_signature_share ) ) ;
15 i n t return_val = secp256k1_frost_s ign(&computed_signature_share ,

msg_hash , num_commitments , &keypair , nonce , signing_commitments ) ;
16

17 i f ( return_val == 1) {
18 signature_share_computed = true ;
19 send_signature_share ( ) ;
20 }
21

22 k_free ( signing_commitments ) ;
23 k_free ( nonce ) ;
24 }

Listing 5.8: Signature share computation.

These two rounds are implemented in the same code, and the boards are the ones
that start each round based on the message received by the computer, beginning with
the first round after receiving a ready message, or with the second after receiving the
hash of the message with the array of commitments. All this is used together with
an interactive interface, such as the one in the key generation, that allows choosing
the communication method to use with each board.

To sum up, thanks to this implementation we allow each participating board in the
signing to compute a signature share thanks to the secret share they received in the
key generation, and these signature shares are collected by a computer, which then
aggregates them to obtain the final signature without revealing secret information in
the process, therefore, providing security.
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5.6 Testing and evaluation

The evaluation methodology followed was designed to analyze the practical imple-
mentation of the FROST threshold signature scheme in embedded devices. The
evaluation focused on four main aspects: time required, memory usage, protocol
overhead, and communication behaviour.

The performance was measured using high-accuracy timing techniques, with
system performance counters on the coordinator device and specific functions on the
used boards, which allowed us to obtain millisecond accuracy for measuring the time
taken to perform cryptographic operations.

During key generation and signing processes, memory usage was constantly
monitored to analyze overhead and consumption. The analysis measured the starting
memory usage and calculated the increase to determine memory efficiency for the
implementation.

The protocol size analysis required all data elements exchanged during the FROST
processes to be measured, including message headers, public keys, commitments,
secret shares, and signature components. This evaluation determined the storage
and transmission requirements that are relevant to the implementation.

Lastly, the effectiveness of communication was evaluated by measuring message
transmission times on different communication channels: USB HID and UART.
This allowed us to determine the performance of the communication in the two
development boards used when coordinating with a computer.

5.7 Tools and resources

Different tools and resources were used to ensure efficiency and quality performance
during the project’s implementation phase. These tools and resources played a crucial
role in various aspects of the development.

5.7.1 STM32 Nucleo-64 development board

The STM32 Nucleo-64 development board was used together with the OFFPAD
devices due to its similarity in hardware when compared with the OFFPAD, especially
in its processor, using an Arm Cortex M4. This development board is model Nucleo-
L476RG, using a STM32L476RG Microcontroller Unit (MCU), which facilitated
the development and implementation of new code for the integration of threshold
signatures in the OFFPAD devices.
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Figure 5.6: Nucleo L476RG board.

5.7.2 OFFPAD development board

The OFFPAD development board was used to verify that the implementation worked
for the OFFPAD devices. This board is based on an STM32WB5x/35xx board, and
during the development and implementation of the code, it was programmed using
the STM32 Nucleo-64 development board.

5.7.3 Zephyr OS

The Operating System used by both the OFFPAD and STM32 Nucleo-64 Development
Board is Zephyr [Zep23]. It is an open-source, real-time operating system (RTOS)
developed by the Linux Foundation [Lin25] to build secure, connected, and future-
proof devices.

5.7.4 C programming language

When working with embedded systems C programming language is one of the
standardized programming languages. It is a procedural language offering modularity
with plenty of libraries developed by programmers, while also being fast and efficient.
For this reason, the programming language used for this project is C, with Zephyr
OS being compatible with both C and C++ programming languages.

5.7.5 Libraries

To be able to work on implementations that use both Schnorr or ECDSA signatures,
an optimized C library was used [Ban22], enabling to perform public/secret key
operations in the curve secp256k1. It enables to perform different type of operations
such as:

– Field operations
– Scalar operations
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– Modular inverses
– Group operations
– Point multiplication for verification
– Point multiplication for signing
This library is an optimized implementation in C of the secp256k1 library [Bit14],

developed by the Bitcoin Core developers. It was originally designed to perform
efficient and secure ECDSA operations on the secp256k1 curve, but it has been
extended to support Schnorr signatures. This effort to extend the library is part of the
Banca d’Italia’s "itcoin" project, which aims to research solutions for digital payments
and decentralized agreement mechanisms. By integrating threshold signatures with
FROST, the Banca d’Italia seeks to improve security and robustness in its protocols.





Chapter6Results and discussion

In this chapter we offer a full analysis of the threshold signature implementation we
developed for the OFFPAD’s infrastructure using the FROST scheme. We first show a
walkthrough of the functional implementation, specifying how the practical execution
of a 2-out-of-3 threshold signature is obtained, with illustrations of the system output
and interface. Second, we provide an analysis of the implementation with extensive
testing and measurements of key metrics like execution time, memory consumption,
and sizes of data. Next, we describe the limitations we faced in the project, which
include issues of hardware communication, compatibility with libraries, performance
limitations, and security model weaknesses that affected the implementation. Finally,
we provide an analysis of all the findings and discuss all the obtained results and
their potential application and performance in real-world applications.

6.1 Schnorr implementation

Following the FROST scheme, we achieved a 2-out-of-3 threshold signature using
Schnorr signatures, meaning that secret shares are generated and distributed to 3
total participants, and 2 out of them are required to participate in a signing process
to obtain a valid signature. As explained before (Section 5.5.1), the implementation
uses a trusted dealer approach, where the shares and key material are generated in a
computer that then sends this data to each corresponding participant. This can be
observed in Figure 6.1, where the data generated for one participant can be observed.

Figure 6.1: Key generation in a computer.

59
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The generated shares are distributed to the participants using a USB connection
through two different communication methods. The STM32 Nucleo-L76RG devel-
opment board is only compatible with UART communication, and the OFFPAD
development board is only compatible with USB HID. Therefore, the user is allowed
to select the communication method to send the data with, and in case of using the
UART one, to select the serial COM port where the board is connected, as can be
observed in the example from Figure 6.2.

Figure 6.2: Key distribution to participant through UART.

These shares are stored on each board, so when needing to sign a message, 2 out
of 3 boards that hold a share need to participate to compute a valid signature for
the message. With the key generation completed, the signing can be called at any
time. It is the computer, acting as a coordinator, that starts it, sending a message to
the participants so they can start generating the nonces and commitments required,
with the commitments being collected by the computer to complete the first round
of communication required. When the defined threshold of 2 devices have sent their
nonces, the computer passes to the next round of communication.

For the second round, as seen in the implementation, to test the signing, the
message ’Hello World’ is the one signed. This message, as shown in Figure 6.3, is
hashed and shared with the commitments to each participating device that was
involved in the first round. These devices then compute a signature share and send
it to the computer, which aggregates them, obtaining a signature that is verified
to check if it is correct, and if everything went as expected, an output like the one
shown in Figure 6.4 should be observed.

Figure 6.3: Message to sign in FROST.
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Figure 6.4: Completed signature aggregation in FROST.

6.2 Evaluation and testing

For evaluating the practical implementation of the FROST scheme into the OFF-
PAD, we performed an in-depth analysis for both the key generation and signing
processes. An evaluation with different tests performed targeted to investigate some
fundamental aspects: time analysis, memory usage, protocol overhead with data size,
and communication efficiency.

6.2.1 Key generation evaluation

The FROST key generation performance evaluation demonstrated the computational
efficiency of threshold cryptography using a 2-out-of-3 scheme.

Time measurements

Performance tests used very precise Windows timing methods to measure the com-
putational costs related to FROST key generation operations. The timing approach
uses the system performance counter, which allows for millisecond accuracy to
measure cryptographic operations. The get_time_milliseconds() function uses
QueryPerformanceCounter for millisecond precision timing, ensuring accurate mea-
surements. This is key as FROST key generation operates fast, requiring high-
precision measurement to capture meaningful performance data.

This time measurement was employed in an analysis performed using 50 runs to
obtain statistical measures that summarize the performance and reliability from the
FROST deployment. The most important statistics include:

– Mean execution time of 107 milliseconds. This indicates the expected time for
key generation under normal circumstances.

– Standard deviation of 9 milliseconds. This is a measure of the dispersion from
the mean, and being small relative to the mean indicates a stable performance.
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– Execution time interval ranging from 102 milliseconds to 144 milliseconds. This
defines optimal and worst-case performance results.

– Coefficient of variation of 8.41%. This coefficient CV = σ/µ shows a moderate
level of variability in execution times. The variation comes from different factors,
including memory allocation during context initialization, system scheduling
effects, CPU caching, as well as variations in elliptic curve operations.

Memory measurements

Memory monitoring revealed efficient resource handling during the complete FROST
key generation. The analysis continuously monitored memory usage to evaluate the
maximum consumption and overhead.

The results showed an initial memory usage of 6200 KB, a maximum memory
usage of 6404 KB, and an overhead of 204 KB, representing a 3.3% increase. This low
memory usage is really significant as it includes all the operations for key generation
and distribution, including the setup of secp256k1 contexts, verifiable secret sharing
commitments, and the temporary computation of buffers.

Protocol sizes

The elements used in the protocol were measured to determine the storage and
transmission requirements for the implementation used. The protocol components
include a message header of 12 bytes, a public key of 136 bytes, and commitments
of 232 bytes, making the total data per participant 452 bytes. Additionally, each
participant required 36 bytes for secret shares and additional protocol data, summing
up to 368 bytes, including public keys and commitments.

Communication measurements

Some measurements were performed to estimate the message transmission times and
analyze the burden of sending threshold cryptographic information to participants. In
the execution of a key generation process, USB HID transmission for one participant
showed:

– Secret share (36 bytes) was transmitted in 102 milliseconds.
– Public key (136 bytes) was transmitted in 324 milliseconds.
– Commitments (232 bytes) were transmitted in 433 milliseconds.
These times are related to how messages are sent, having to segment large

messages into reports of 64 bytes, with an overhead of 2 bytes per report, leaving a
payload of 62 bytes.

For UART communication in a key generation process for one participant results
showed:
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– Secret share (36 bytes) was transmitted in 1 millisecond.
– Public key (136 bytes) was transmitted in 5 milliseconds.
– Commitments (232 bytes) were transmitted in 11 milliseconds.
This communication showed much faster transmission as the messages do not

need to be segmented, and with the communication being configured with a baudrate
of 115200 bits/s.

6.2.2 Signing evaluation

The FROST signature generation evaluation demonstrated the computational effi-
ciency of the signing process through the use of a 2-out-of-3 threshold scheme.

Time measurements

Performance tests used systematic and careful timing techniques to measure the
time needed for the execution of the scheme. The timing used system performance
counters on the coordinator, as in the key generation, and k_uptime_get() on the
development boards, to provide millisecond accuracy.

The signing process was analyzed across two main phases, which correspond to
the two rounds of communication: nonce generation and commitments, and signature
aggregation. The anaylisis was performed for both the coordinator and the two
development boards used, some of the most important statistics include:

– Signature share average computation time in the development boards of ranged
from 503 milliseconds to 523 milliseconds per participant. This indicates the
expected time needed for creating a signature share under normal conditions
in embedded devices.

– Signature aggregation time in the computer of 2 milliseconds. This represents
the time required for the coordinator to combine the signature shares of two
participants into the final signature.

– Total signing process time varied from 25 seconds to 50 seconds. This includes
the gathering of nonce commitments and the signature share computation of
all the participants. The results showed high execution times, but the majority
of this time was related to the manual USB connection management required
during testing. Since both boards used USB connectivity, the experimental
setup required physically disconnecting and connecting each device.

Memory measurements

The memory monitoring throughout the entire signing process showed efficient use of
resources. The tests continuously monitored memory usage during the computation
and aggregation of signatures, as done during key generation.
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The results showed that the initial memory usage was 6108 KB, and the maximum
memory usage was 6836 KB, with an overhead of 728 KB, corresponding to an increase
of 11.9%. This memory usage involves operations related to computing signatures,
fetching nonces from flash storage, verifying commitments, and processes involved in
signature aggregation.

Protocol sizes

The protocol elements used for signing were analyzed to determine the storage and
transmission needs of the implementation. These elements include:

– Nonce commitments of 132 bytes per participant, consisting of 66 bytes for
binding and hiding commitments. These commitments are generated in the
first round of communication and must be collected to be shared amongst all
participants.

– Commitments array of 264 bytes containing the commitments collected from
two participants. This array is transmitted to each participant in the second
round of communication.

– Signature shares of 36 bytes, each representing the contribution of each partici-
pant to the final signature.

– Final signature of 64 bytes produced by the coordinator through the aggregation
of the signature shares.

Communication measurements

Communication efficiency was tested for the transmission of signature data and the
gathering of signature shares between the coordinator and the participants. When
carrying out the signing process, the time for USB HID transmission concerning
the transmitted data, which includes the message hash, nonce commitments and
additional metadata (300 bytes), was measured to be 1.788 seconds, while the
collection of the signature shares (36 bytes each) took 1.223 seconds.

For UART communication, transmission concerning the same transmitted data
(300 bytes) required 521 milliseconds, while reception of signature shares (36 bytes
each) took 526 milliseconds. This communication showed again better speeds due to
the lack of segmentation limitations and the use of a baudrate of 115200 bits/s.

6.3 Limitations

During the project, several limitations needed to be taken into account, affecting
the decisions and implementation adopted. These limitations ranged from problems
with the hardware specifications of the devices used to problems with compatibility
with the OS used. A more detailed explanation of these limitations is essential for a
better understanding of the decisions made in the project.
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6.3.1 Hardware limitations

One of the boards used in the implementation, the STM32 Nucleo-L76RG develop-
ment board, had significant communication constraints that impacted the decisions
and implementation adopted in the project. The board features a single ST-LINK
virtual COM port, which was mainly used for debugging purposes. Due to this
limitation, carrying out communication and debugging purposes was not possible
at the same time, as no other port was available, forcing to switch between device
communication and debugging support. This restriction made testing and develop-
ment more difficult, as it was not possible to monitor the system behaviour while
performing communication activities.

To overcome this limitation, an auxiliary COM port was added to the board,
attaching it through the pins of the board and assigning a different UART node to
it, using the different UART channels for communication and debugging. This setup
allowed for simultaneous debugging and communication, but introduced another
level of hardware complexity and points of failure.

The STM32 Nucleo-L76RG development board also lacked onboard Bluetooth
functionality, which would have been more suitable for the communication infras-
tructure of the OFFPAD. Providing Bluetooth connectivity would have required the
use of external modules, but the incorporation of new modules was considered to be
out of the scope of the project due to time limit and integration complexity. Due to
these limitations, the communication was restricted to a USB interface, limiting the
portability and usability in real-world scenarios.

Furthermore, due to having boards with different communication protocols, one
constraint during the implementation phase was the basic incompatibility between the
two communication channels of the two development boards used in the project. The
STM32 Nucleo-L476RG development board only supported UART communication,
while the OFFPAD development board, based on the STM32WB5x/35xx architecture,
only supported the USB HID communication protocol and had no capability for
UART communication.

This incompatibility required us to develop two completely different implemen-
tations of communication for a threshold signature scheme. Having this duplicate
communication infrastructure significantly increased the code’s complexity, such
that each board needed customized message handling procedures. This prolonged
the development process and compromised the reliability of the implementation, as
having two communication methods creates more potential weaknesses.

The OFFPAD development board also presented some restrictions on its program-
ming. Unlike other development boards that allow direct programming, the OFFPAD
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required programming through another board, in this case, the STM32 Nucleo-L76RG
development board, which made development and testing more difficult. This led
to longer times for deployment and testing, as each new code implementation re-
quired careful control of the physical interconnections between the boards and careful
handling of the programming process.

In addition, the use of a board to program the other required to create a commu-
nication interface, which enabled the system to automatically determine the correct
communication channel for every interaction with the board. The interface needed to
determine the specific board in use and the corresponding communication protocol,
whether using UART for the STM32 Nucleo-L76RG development board or USB HID
for the OFFPAD development board. This added complexity to the system and
demanded additional user involvement in manually setting the communication.

We were also limited to the use of just two development boards in both the
implementation and testing phases, which prevented a thorough examination of
situations related to device failures, network disruptions, or varied threshold settings.
This limited the system to a 2-out-of-2 or 2-out-of-3 threshold signature scheme,
selecting the latter one for the project. This limited the investigation of different
threshold signature approaches.

6.3.2 Zephyr OS library compatibility

One big limitation faced from the start of the project was the lack of threshold
signature libraries specific to Zephyr OS, the operating system used by the OFFPAD.
The selected cryptographic library contained functions that changed depending on
the operating system where they are executed, being optimized for conventional
operating systems like Windows and Linux, but not having adaptations for embedded
systems running within the Zephyr framework.

This incompatibility required some important changes in the library to ensure
the correct operation on the boards used in the implementation. To solve this, the
library was adapted, changing basic system calls, memory management, and the
implementation of cryptographic primitives to match the architecture and constraints
of Zephyr.

6.3.3 Communication and performance limitations

Threshold signature schemes require many exchanges of information between the
involved devices, leading to higher communication overhead compared to traditional
single-device authentication schemes. While the schemes covered in the project
(Section 3.3 and Section 3.4) are optimized to improve round efficiency, they still
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require devices to exchange coordination messages, which introduces more latency in
the system.

The chosen communication model, where devices send signature shares to a
coordinator/signature aggregator without communication directly between each
other, was partially selected to address these limitations. However, this still caused
significant delays in the authentication process.

Moreover, the usage of threshold signatures leads to larger message sizes compared
to standard single-device signatures since it requires the transmission of signature
shares, commitments, and verification data. These increased message sizes require
additional bandwidth and longer processing times, which can be a serious problem
in bandwidth-limited environments or where multiple authentication operations are
performed concurrently. Even though this supposes a limitation, it represents a
trade-off between enhanced security and system performance.

The limited processing power of the used development boards placed significant
limitations on the complexity of cryptographic operations that could be performed
efficiently. Threshold signatures require more computational power compared to
traditional signatures, which include share generation, computations related to
commitments, and reconstruction of signatures. Though operations using elliptic
curves provide better computational efficiency over those that use RSA, they are still
computationally demanding on embedded systems.

For this reason, a computer was designated to not only handle signature ag-
gregation but also the most computationally demanding operations, including key
generation, secret share distribution, and coordination of communication in the
signing. This decision allowed the reduction of the computational burden on the
embedded devices. The implementation also required careful control of memory
allocation to avoid overflow situations, which is due to the limited memory size of
embedded systems.

6.3.4 Security model limitations

The established communication model is based on the role of a trusted device that
is tasked with managing the threshold signature process. While this device cannot
generate signatures on its own or obtain the secret key, it represents a potential weak
point, limiting the fully decentralized security threshold that signatures are supposed
to provide. This was necessary due to the difficulties inherent in communication and
coordination, and the hardware limitations of the boards used.
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6.3.5 FIDO2 protocol compatibility

One important limitation of using the FROST protocol for threshold signatures
is that Schnorr signatures are not FIDO2-compliant. The FIDO2 protocol only
supports RSA and ECDSA signature schemes for authentication mechanisms, making
the implemented solution incompatible with the existing FIDO2 infrastructure and
limiting its integration into real-world use cases.

While the project scope initially included the development of a threshold signature
scheme using ECDSA signatures, time constraints and the complexity of ECDSA
threshold signature schemes, requiring more rounds of communication and higher
computational capacity, led to the project focusing on a Schnorr signature imple-
mentation. To solve this, we researched a scheme based on ECDSA to pave the way
for a future implementation that integrates threshold signatures in the OFFPAD’s
authentication mechanism, being FIDO2-compliant.

6.4 Discussion

In this project, we implemented a threshold signature scheme with the FROST
protocol on OFFPAD devices. The results prove the feasibility of integrating threshold
cryptography into an authentication mechanism on embedded devices, improving the
security by having a decentralized authentication. However, many of the key aspects
of the implementation and the decisions made require detailed discussion.

6.4.1 Scope limitations and strategic decisions

A critical limitation of the project’s implementation needs to be addressed: the
final system is not FIDO2-compliant. At the start, the project scope included the
integration of both FROST-based and ECDSA-based threshold signatures schemes,
with ECDSA being the only FIDO2-compliant. Due to time constraints and the
complexity of the ECDSA schemes, requiring more rounds of communication and
higher computational capacity, it was decided to focus on the FROST implementation.

The idea of this decision was to first focus on FROST, and when completed,
move to the ECDSA implementation. Both schemes were researched, performing a
literature review on them, but only FROST was implemented at the end, as it took
more time than expected, with the need to work on different communication methods
adding more time for the development of the functional implementation. Therefore,
ECDSA is included in this project as a future work implementation following the
scheme presented (Section 3.4).
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6.4.2 FIDO2 compliance implications

With Schnorr signatures not being compliant with FIDO2, the project’s implemen-
tation is not compatible with FIDO2 authenticators, which makes it impossible
to integrate it into existing FIDO2 infrastructures. This limits the application of
the implementation in real-world scenarios where the standard supports RSA and
ECDSA schemes.

However, even with this limitation, as seen in the project, Schnorr signatures
have great potential that justifies the decision to choose them for this project
(Section 3.3.4). The cryptographic advantages of the FROST protocol offer security,
robustness, efficiency, and flexibility, which is promising for authentication systems.

6.4.3 Performance analysis and practical implications

The results obtained from the evaluations and tests showed that threshold signatures
with the FROST protocol can achieve acceptable execution times for authentication
scenarios, as both key generation and signing present acceptable execution times for
embedded applications.

The memory monitoring confirmed that threshold signature schemes can be
implemented even with the constraints of embedded devices. The approach taken
in the project includes a good handling of the memory requirements to fulfil all the
requirements for the different cryptographic operations and rounds of communication.

Communication also proved to be consistent, presenting an inherent trade-off in
threshold signatures, where the authentication takes more time but is proven to be
more secure. The use of a computer as a coordinator also showed to minimize the
computational burden from the used development boards and reduced the complexity
involved in the coordination of them. The use of this computer as a coordinator
would also facilitate communication with the authentication server.

6.4.4 Implementation challenges and solution

Several challenges were identified and solved during the project. The used library
needed to be adapted to work with Zephyr OS, including the adaptation of system
calls, memory management, and cryptographic primitives to work on embedded
devices. Hardware communication limitations were addressed by developing separate
communication channels for USB HID and UART. Memory management involved
careful handling to use the flash memory of the development boards to store and
retrieve the required data for the cryptographic operations of the scheme.
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These modifications took more time than initially estimated, but they represent a
valuable contribution to authentication in embedded devices, specifically in threshold
signatures for authentication.
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Based on the findings from the implementation, evaluation, and challenges we
encountered during the project, in this section we aim to provide some conclusions
and answers to the initial research questions and cover the future work that could be
developed from them.

7.1 Conclusion

What is the best communication model for threshold signatures?

The project’s implementation found the use of a coordinator model as an optimal
approach to the integration of threshold signatures in embedded systems, especially for
the OFFPAD’s infrastructure, given its hardware limitations. In this model, devices
exchange data with a computer acting as a coordinator without communicating
directly with other participants. This coordinator shares the needed data among
the participants and also has the role of a signature aggregator, who is in charge of
collecting the signature shares to compute the final signature.

This approach provides some benefits in systems with limited computational
capacity, like embedded devices, as the most demanding operations are carried out
by a computer while security is maintained thanks to the use of threshold signatures.
However, this model introduces a dependency on a trusted computer, something that
must be considered in security assessments.

What is the total number of participants N , and the threshold T of
devices that should participate to achieve a good balance between
security and efficiency for the OFFPAD?

Even though the number of development boards for the project was a limitation
to perform tests with different values for N and T , the 2-out-of-3 (N = 3, T = 2)
approach showed a good performance. This approach provided fault tolerance against
single device failures with a low level of coordination complexity for communication.

71
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Tests and evaluation results proved good execution times and memory use,
meaning that there is a good trade-off between security, robustness, and efficiency,
where security and robustness are improved thanks to the use of threshold signatures
without requiring much more time or computational costs.

Given these performance results, configurations with more participants could
potentially be implemented and achieve acceptable trade-offs. However, the 2-out-
of-3 scheme provides a good balance in the OFFPAD’s environment, as adding
more devices would provide more security, but would also require more time for
the execution of the protocol, impacting the communication overhead and adding
complexity to the communication model. Therefore, even though the 2-out-of-3
scheme we implemented showed good results, the evaluation of schemes with more
participants to find the optimal setup will be an important part for future work.

What is the best threshold signature scheme for the OFFPAD? And the
best FIDO2-compliant?

Among threshold signature schemes for embedded devices like the OFFPAD, the
FROST protocol presents itself as a good choice with great potential due to its round
efficiency, security properties, and adaptability to the computational capability of
embedded systems. FROST’s ability to minimize the number of communication
rounds while maintaining strong security makes it well-suited for limited resources
environments.

However, for FIDO2-compliant implementations, FROST cannot be employed
due to being based on Schnorr signatures rather than ECDSA signatures, which are
included in FIDO2 standards. Based on the literature review and research performed,
threshold signature schemes using ECDSA, such as the one covered in this project
(Section 3.4), are key to achieving FIDO2 compliance using threshold signatures.
This scheme, while more complex to implement, represents the required path to
achieve a true FIDO2-compliant threshold authentication.

What are the challenges in implementing the selected threshold signature
scheme, and how can they be solved?

Several important implementation challenges were identified and addressed in the
project. First, it was important to realise that most cryptographic libraries for
threshold signatures need to be adapted to work with Zephyr OS. Second, hardware
communication limitations required configuring different communication methods
depending on the embedded devices used. Lastly, memory management required
careful handling of the flash memory of the participants to store and retrieve the
needed data for the protocol.
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Furthermore, the most important challenge that remains unsolved is achieving
FIDO2 compliance. Even though Schnorr signatures in FROST implementations
provide great security and efficiency, only schemes using ECDSA or RSA would be
compliant with FIDO2 authentication environments. For that reason, a protocol was
covered and is included as a future line of work.

Final assestment

This project successfully demonstrates the feasibility of implementing threshold
signatures on OFFPAD devices using the FROST protocol. While the limitation
of not being FIDO2-compliant due to the priority of first implementing Schnorr
signatures over ECDSA signatures, which restricts usability in practical use cases,
the project provides a solid foundation for implementing distributed authentication
in embedded environments.

The decision to focus on the FROST protocol enabled the implementation of
an efficient and tested threshold signature scheme. The problems and limitations
identified and the proposed solutions provide valuable knowledge to cryptography in
embedded devices. Moreover, the research performed on threshold signature schemes
that use ECDSA paved the way for future work on integrating threshold signatures
in the OFFPAD’s authentication mechanism while complying with FIDO standards.

7.2 Future work

Using the findings from the project and addressing the current limitations of threshold
signature implementations in FIDO2 authentication, several aspects need to be
improved. In this section we will suggest some improvements to allow the development
of a fully functional threshold authentication system that is FIDO2-compliant.

ECDSA threshold signatures for FIDO2 compliance

The biggest flaw of the current implementation is the lack of compliance with the
FIDO2 protocol. Future work involves the use of the three-round threshold ECDSA
protocol outlined in the project (Section 3.4), as that would enable full compliance
with FIDO2 while keeping good round efficiency and security. However, such an
implementation has important challenges, such as increased computational cost
compared to FROST, the need for more complex coordination techniques due to
one more round of communication, and the need to adapt to the hardware of the
OFFPAD device.
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Bluetooth communication

We relied on USB communication for the implementation, but this places an important
limitation on real-world usability and scalability in multi-device environments. A
change towards Bluetooth Low Energy (BLE) communication would significantly
improve the usability of the selected threshold signature scheme. Future work should
adapt the implementation to operate efficiently over Bluetooth with the coordinator
model for communication.

Bluetooth implementation must address additional security considerations, includ-
ing proper pairing and bonding mechanisms, encryption of threshold signature shares
during transmission, and protection against wireless attack vectors. Furthermore,
the implementation should also leverage BLE’s power-saving features to maintain
minimal power consumption of the involved devices.

Threshold parameter optimization

The current setup consists of a 2-out-of-3 threshold model because of the number
of development boards that were available for the project. Even though the setup
we used presented good results, future work should investigate and evaluate other
configurations for N (number of participants) and T (threshold) to optimize the
balance between security, robustness, and efficiency in different use cases.

Enhanced security model

Due to hardware limitations, the security model employed relies on a coordinator
model, which introduces potential vulnerabilities and limits the fully decentralized
nature of threshold signatures. Future research should aim to create peer-to-peer
communication to eliminate the use of a trusted coordinator.

Post-quantum threshold signatures

Finally, the emergence of quantum computing poses an important threat to current
cryptographic systems, including threshold signature schemes we implemented in
this thesis. The National Institute of Standards and Technology (NIST) [US 25] and
other standardization bodies are actively working on post-quantum cryptographic
standards, with several post-quantum signature schemes that are already getting
standardized, which will be included in the FIDO standard.

We believe an important field for future work includes the study and development
of possible threshold versions of these post-quantum schemes. While these post-
quantum schemes are more computationally demanding, adapting them to work
with threshold signature protocols would ensure long-term security against quantum
threats.



References

[ADI+17] B. Applebaum, I. Damgård, et al., “Secure arithmetic computation with
constant computational overhead”, in Advances in cryptology – CRYPTO
2017, part I, J. Katz and H. Shacham, Eds., ser. Lecture notes in computer
science, vol. 10401, Santa Barbara, CA, USA: Springer, Cham, Switzerland,
Aug. 2017, pp. 223–254. [Online]. Available: https://doi.org/10.1007/978-3-31
9-63688-7_8.

[Ban22] Banca d’Italia, GitHub - bancaditalia/secp256k1-frost: Implementation of
Flexible Round-Optimized Schnorr Threshold Signatures on secp256k1, Jun.
2022. [Online]. Available: https://github.com/bancaditalia/secp256k1-frost.

[Bit14] Bitcoin Core, Bitcoin-core/secp256k1, Aug. 2014. [Online]. Available: https:
//github.com/bitcoin-core/secp256k1.

[Blu24] Bluetooth, Core Specification, en-US, 2024. [Online]. Available: https://www
.bluetooth.com/specifications/specs/core-specification-5-3/.

[BS15] D. Boneh and V. Shoup, “A Graduate Course in Applied Cryptography”, en,
in 2015. [Online]. Available: https://toc.cryptobook.us/.

[CKGW24] D. Connolly, C. Komlo, et al., “The Flexible Round-Optimized Schnorr Thresh-
old (FROST) Protocol for Two-Round Schnorr Signatures”, Internet Engi-
neering Task Force, Request for Comments RFC 9591, Jun. 2024. [Online].
Available: https://doi.org/10.17487/RFC9591.

[CKM21] E. Crites, C. Komlo, and M. Maller, How to Prove Schnorr Assuming Schnorr:
Security of Multi- and Threshold Signatures, 2021. [Online]. Available: https:
//eprint.iacr.org/2021/1375.

[DKLsa24] J. Doerner, Y. Kondi, et al., “Threshold ECDSA in three rounds”, in 2024
IEEE symposium on security and privacy, San Francisco, CA, USA: IEEE
Computer Society Press, May 2024, pp. 3053–3071. [Online]. Available: https:
//doi.org/10.1109/SP54263.2024.00178.

[Fel87] P. Feldman, “A practical scheme for non-interactive verifiable secret sharing”,
in Proceedings of the 28th Annual Symposium on Foundations of Computer
Science, ser. SFCS ’87, USA: IEEE Computer Society, Oct. 1987, pp. 427–438.
[Online]. Available: https://doi.org/10.1109/SFCS.1987.4.

[FID22] FIDO Alliance, FIDO2, en-US, May 2022. [Online]. Available: https://fidoalli
ance.org/fido2/.

75

https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-319-63688-7_8
https://github.com/bancaditalia/secp256k1-frost
https://github.com/bitcoin-core/secp256k1
https://github.com/bitcoin-core/secp256k1
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://toc.cryptobook.us/
https://doi.org/10.17487/RFC9591
https://eprint.iacr.org/2021/1375
https://eprint.iacr.org/2021/1375
https://doi.org/10.1109/SP54263.2024.00178
https://doi.org/10.1109/SP54263.2024.00178
https://doi.org/10.1109/SFCS.1987.4
https://fidoalliance.org/fido2/
https://fidoalliance.org/fido2/


76 REFERENCES

[Gar25a] J. García, PoneBiometrics/JavGar_master, 2025. [Online]. Available: https:
//github.com/PoneBiometrics/JavGar_master.

[Gar25b] J. García, “Threshold Signatures for FIDO Authentication”, en, 2025.

[GG18] R. Gennaro and S. Goldfeder, “Fast multiparty threshold ECDSA with fast
trustless setup”, in ACM CCS 2018: 25th conference on computer and com-
munications security, D. Lie, M. Mannan, et al., Eds., Toronto, ON, Canada:
ACM Press, Oct. 2018, pp. 1179–1194. [Online]. Available: https://doi.org/10
.1145/3243734.3243859.

[GG20] R. Gennaro and S. Goldfeder, One Round Threshold ECDSA with Identifiable
Abort, ACM CCS 2020 (as a joint paper), 2020. [Online]. Available: https://e
print.iacr.org/2020/540.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of
interactive proof-systems”, in Proceedings of the seventeenth annual ACM
symposium on Theory of computing, ser. STOC ’85, New York, NY, USA:
Association for Computing Machinery, 1985, pp. 291–304. [Online]. Available:
https://dl.acm.org/doi/10.1145/22145.22178.

[HM11] D. Hankerson and A. Menezes, “Elliptic Curve Discrete Logarithm Problem”,
en, in Encyclopedia of Cryptography and Security, H. C. A. van Tilborg and S.
Jajodia, Eds., Boston, MA: Springer US, 2011, pp. 397–400. [Online]. Available:
https://doi.org/10.1007/978-1-4419-5906-5_246.

[Int25] Internet Engineering Task Force, Introduction to the IETF, en, 2025. [Online].
Available: https://www.ietf.org/about/introduction/.

[JMV01] D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic Curve Digital Sig-
nature Algorithm (ECDSA)”, en, in International Journal of Information
Security, ser. Johnson, Don, Alfred Menezes, y Scott Vanstone. «The Elliptic
Curve Digital Signature Algorithm (ECDSA)». International Journal of Infor-
mation Security 1, n.º 1 (august 2001): 36-63. Aug. 2001, pp. 36–63. [Online].
Available: https://doi.org/10.1007/s102070100002.

[KG20] C. Komlo and I. Goldberg, “FROST: Flexible round-optimized Schnorr thresh-
old signatures”, in SAC 2020: 27th annual international workshop on selected
areas in cryptography, O. Dunkelman, M. J. Jacobson Jr., and C. O’Flynn,
Eds., ser. Lecture notes in computer science, vol. 12804, Halifax, NS, Canada
(Virtual Event): Springer, Cham, Switzerland, Oct. 2020, pp. 34–65. [Online].
Available: https://doi.org/10.1007/978-3-030-81652-0_2.

[KKS10] A. Khalique, S. Kuldip, and S. Sood, “Implementation of Elliptic Curve Digital
Signature Algorithm”, in International Journal of Computer Applications,
May 2010. [Online]. Available: https://doi.org/10.5120/631-876.

[Lin25] Linux Foundation, Linux Foundation - Decentralized innovation, built with
trust, en, 2025. [Online]. Available: https://www.linuxfoundation.org.

[LLM23] Z. Luo, R. Liu, and A. Mehta, “Understanding the RSA algorithm”, Aug.
2023. [Online]. Available: https://www.researchgate.net/publication/3729624
15_Understanding_the_RSA_algorithm.

https://github.com/PoneBiometrics/JavGar_master
https://github.com/PoneBiometrics/JavGar_master
https://doi.org/10.1145/3243734.3243859
https://doi.org/10.1145/3243734.3243859
https://eprint.iacr.org/2020/540
https://eprint.iacr.org/2020/540
https://dl.acm.org/doi/10.1145/22145.22178
https://doi.org/10.1007/978-1-4419-5906-5_246
https://www.ietf.org/about/introduction/
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/978-3-030-81652-0_2
https://doi.org/10.5120/631-876
https://www.linuxfoundation.org
https://www.researchgate.net/publication/372962415_Understanding_the_RSA_algorithm
https://www.researchgate.net/publication/372962415_Understanding_the_RSA_algorithm


REFERENCES 77

[LN18] Y. Lindell and A. Nof, “Fast secure multiparty ECDSA with practical dis-
tributed key generation and applications to cryptocurrency custody”, in ACM
CCS 2018: 25th conference on computer and communications security, D.
Lie, M. Mannan, et al., Eds., Toronto, ON, Canada: ACM Press, Oct. 2018,
pp. 1837–1854. [Online]. Available: https://doi.org/10.1145/3243734.3243788.

[Mag16] K. Magons, “Applications and Benefits of Elliptic Curve Cryptography”, en,
2016. [Online]. Available: https://ceur-ws.org/Vol-1548/032-Magons.pdf.

[Men08] A. Menezes, “The Elliptic Curve Discrete Logarithm Problem: State of the
Art”, en, in Advances in Information and Computer Security, K. Matsuura
and E. Fujisaki, Eds., vol. 5312, Series Title: Lecture Notes in Computer
Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 218–218.
[Online]. Available: https://doi.org/10.1007/978-3-540-89598-5_14.

[Mil86] V. S. Miller, “Use of Elliptic Curves in Cryptography”, en, in Advances in
Cryptology — CRYPTO ’85 Proceedings, H. C. Williams, Ed., vol. 218, Series
Title: Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin
Heidelberg, 1986, pp. 417–426. [Online]. Available: https://doi.org/10.1007/3-
540-39799-X_31.

[Och22] E. Ochekliye, Elliptic Curves and the Discrete Log Problem, en, May 2022.
[Online]. Available: https://enigbe.medium.com/about-elliptic-curves-and-dlp
-ed76c5e27497.

[Pai99] P. Paillier, “Public-key cryptosystems based on composite degree residuosity
classes”, in Advances in cryptology — EUROCRYPT ’99, J. Stern, Ed., Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 223–238. [Online]. Available:
https://doi.org/10.1007/3-540-48910-X_16.

[Ped91] T. P. Pedersen, “Non-Interactive and Information-Theoretic Secure Verifiable
Secret Sharing”, en, in Advances in Cryptology - CRYPTO ’91, J. Feigen-
baum, Ed., vol. 576, Berlin, Heidelberg: Springer, 1991, pp. 129–140. [Online].
Available: https://doi.org/10.1007/3-540-46766-1_9.

[Pol78] J. M. Pollard, “Monte Carlo methods for index computation ()”, en, Mathe-
matics of Computation, vol. 32, no. 143, pp. 918–924, 1978. [Online]. Available:
https://doi.org/10.1090/S0025-5718-1978-0491431-9.

[PON18] PONE Biometrics, Welcome to Pone Biometrics, en-US, 2018. [Online]. Avail-
able: https://ponebiometrics.com/.

[PON24] PONE Biometrics, Offpad, en-US, 2024. [Online]. Available: https://ponebio
metrics.com/product/offpad/.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”, en, in Communications of the
ACM, vol. 21, New York: Commun. ACM, Feb. 1978, pp. 120–126. [Online].
Available: https://doi.org/10.1145/359340.359342.

[Sch05] B. Schoenmakers, “Verifiable Secret Sharing”, en, in Encyclopedia of Cryptog-
raphy and Security, H. C. A. van Tilborg, Ed., Boston, MA: Springer US, 2005,
pp. 645–647. [Online]. Available: https://doi.org/10.1007/0-387-23483-7_452.

https://doi.org/10.1145/3243734.3243788
https://ceur-ws.org/Vol-1548/032-Magons.pdf
https://doi.org/10.1007/978-3-540-89598-5_14
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://enigbe.medium.com/about-elliptic-curves-and-dlp-ed76c5e27497
https://enigbe.medium.com/about-elliptic-curves-and-dlp-ed76c5e27497
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1090/S0025-5718-1978-0491431-9
https://ponebiometrics.com/
https://ponebiometrics.com/product/offpad/
https://ponebiometrics.com/product/offpad/
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/0-387-23483-7_452


78 REFERENCES

[Sch91] C. P. Schnorr, “Efficient signature generation by smart cards”, en, Journal of
Cryptology, pp. 161–174, Jan. 1991. [Online]. Available: https://doi.org/10.10
07/BF00196725.

[Sha79] A. Shamir, “How to share a secret”, en, in Communications of the ACM,
vol. 22, New York: Commun. ACM, 1979, pp. 612–613. [Online]. Available:
https://doi.org/10.1145/359168.359176.

[Sil09] J. H. Silverman, The Arithmetic of Elliptic Curves (Graduate Texts in Math-
ematics). New York, NY: Springer, 2009, vol. 106. [Online]. Available: http:
//link.springer.com/10.1007/978-0-387-09494-6.

[SY06] S. Subramanya and B. Yi, “Digital signatures”, IEEE Potentials, vol. 25, no. 2,
pp. 5–8, Mar. 2006. [Online]. Available: https://ieeexplore.ieee.org/document
/1649003/.

[US 25] U.S. Department of Commerce, National Institute of Standards and Technology,
en, Jun. 2025. [Online]. Available: https://www.nist.gov/.

[W3C19a] W3C, Client to Authenticator Protocol (CTAP), 2019. [Online]. Available:
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authent
icator-protocol-v2.0-ps-20190130.html.

[W3C19b] W3C, Guide to Web Authentication, en, 2019. [Online]. Available: https://we
bauthn.guide.

[W3C21] W3C, Web Authentication: An API for accessing Public Key Credentials -
Level 2, 2021. [Online]. Available: https://www.w3.org/TR/webauthn-2/#bi
blio-fido-ctap.

[Won21] D. Wong, “Real-World Cryptography”, en, pp. 129–149, 2021.

[Zep23] Zephyr, Zephyr Project, en-US, 2023. [Online]. Available: https://www.zephyr
project.org/.

https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://doi.org/10.1145/359168.359176
http://link.springer.com/10.1007/978-0-387-09494-6
http://link.springer.com/10.1007/978-0-387-09494-6
https://ieeexplore.ieee.org/document/1649003/
https://ieeexplore.ieee.org/document/1649003/
https://www.nist.gov/
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://webauthn.guide
https://webauthn.guide
https://www.w3.org/TR/webauthn-2/#biblio-fido-ctap
https://www.w3.org/TR/webauthn-2/#biblio-fido-ctap
https://www.zephyrproject.org/
https://www.zephyrproject.org/



	List of Figures
	Listings
	List of Acronyms
	Introduction
	Objectives
	Research questions
	Our contributions
	Related work
	FROST: original protocol design
	FROST: enhanced security framework
	FROST: IETF standardization
	Fast multiparty threshold ECDSA
	Threshold ECDSA with identifiable abort
	Three-Round ECDSA threshold signatures scheme

	Outline

	Background
	The OFFPAD
	FIDO ecosystem
	Architecture
	Client to authenticator protocol
	Web authentication
	Registration
	Authentication

	Mathematical background
	Elliptic curves
	Elliptic curve cryptography

	Digital signatures
	RSA
	ECDSA
	Schnorr


	Threshold signatures
	Threshold signature schemes
	Secret sharing
	FROST protocol
	Parameter setting
	Key generation
	Signing
	Advantages

	ECDSA three-round protocol
	Parameter setting
	Key generation
	Signing
	Advantages


	Proposed solution
	Signature scheme
	Communication between devices
	Signing preparation
	Signing communication
	Share aggregation

	Methodology
	Project overview
	Research phase
	Design phase
	Implementation phase
	Practical implementation
	Key generation
	Signing

	Testing and evaluation
	Tools and resources
	STM32 Nucleo-64 development board
	OFFPAD development board
	Zephyr OS
	C programming language
	Libraries


	Results and discussion
	Schnorr implementation
	Evaluation and testing
	Key generation evaluation
	Signing evaluation

	Limitations
	Hardware limitations
	Zephyr OS library compatibility
	Communication and performance limitations
	Security model limitations
	FIDO2 protocol compatibility

	Discussion
	Scope limitations and strategic decisions
	FIDO2 compliance implications
	Performance analysis and practical implications
	Implementation challenges and solution


	Conclusions and future work
	Conclusion
	Future work

	References

