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Electronic Voting

Ui

B {Si} {Di}

EA {vπ(i)}∀i

{evi}∀i {e′
vπ(i)
}∀i

evi
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Goals

1. Use lattice-based primitives to achieve post-quantum security

2. Build a zero-knowledge protocol to prove correct shuffle of messages

3. Extend the shuffle to handle ciphertexts instead of messages

4. Build a sequential mixing network from the extended shuffle

5. Extend the encryption scheme to support verifiable distributed decryption

6. Combine everything to construct systems for electronic voting
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Commitment

Algorithms:
Com : samples randomness rm and commits to m as [m] = Com(m; rm).

Open : takes as input ([m], m, rm) and verifies that [m] ?= Com(m; rm).

Properties:
Binding : it is hard to find m ̸= m̂ and rm ̸= r̂ m̂ s.t. Com(m; rm) = Com(m̂; r̂ m̂).
Hiding : it is hard to distinguish Com(m; rm) from Com(0; r0) when given m.

Here we can use the BDLOP18 lattice-based commitment scheme.
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Proof of Linearity

Let

[x ] = Com(x ; r) and
[
x ′] = [αx + β] = Com(x ′; r ′).

Then the protocol ΠLin is a sigma-protocol to prove the relation
x ′ = αx + β, given the commitments [x ] , [x ′] and the scalars α, β.

Here we can use the BDLOP18 proof of linear relations.
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Amortized Proof of Shortness

Let

[x1] = Com(x1; r1), [x2] = Com(x2; r2), ..., [xn] = Com(xn; rn),

for bounded norm values xi . Let ΠA be a sigma-protocol for this relation.

We have approximate proofs by BBCdGL18 and exact proofs by BLNS20.
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BGV Encryption

KeyGen samples random a $← Rq, short s ← Rq and noise e ← NσE .
The algorithm outputs pk = (a, b) = (a, as + pe) and sk = s.

Enc samples a short r ← Rq and noise e1, e2 ← NσE , and outputs
(u, v) = (ar + pe1, br + pe2 + m).

Dec outputs m ≡ v − su mod q mod p when noise is bounded by ⌊q/2⌋.

For more details about the encryption scheme see the BGV12 paper.
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Setting
▶ Public information: sets of commitments {[mi ]}τi=1 and messages {m̂i}τi=1.

▶ P knows the openings {(mi , rmi , fi)}τi=1 of the commitments {[mi ]}τi=1,

and P knows a permutation γ such that m̂i = mγ−1(i) for all i = 1, ..., τ .

▶ We construct a 4 + 3τ -move ZKPoK protocol to prove the statement:

RShuffle =

 (x , w)
x = ([m1] , . . . , [mτ ] , m̂1, . . . , m̂τ , m̂i),
w = (γ, f1, . . . , fτ , r1, . . . , r τ ), γ ∈ Sτ ,

∀i ∈ [τ ] : Open(
[
mγ−1(i)

]
, m̂i , r i , fi) = 1


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Linear System

First, the verifier sends a challenge ρ to shift all commitments and messages
Mi = mi − ρ and M̂i = m̂i − ρ to ensure that all messages are invertible.

Secondly, P draws θi uniformly at random, and computes the commitments:

[D1] =
[
θ1M̂1

]
∀j ∈ {2, . . . , τ − 1} : [Dj ] =

[
θj−1Mj + θjM̂j

]
[Dτ ] = [θτ−1Mτ ] .

(1)
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Linear System

P receives a challenge β from V and computes si
such that the following equations are satisfied:

βM1 + s1M̂1 = θ1M̂1

∀j ∈ {2, . . . , τ − 1} : sj−1Mj + sjM̂j = θj−1Mj + θjM̂j

sτ−1Mτ + (−1)τ βM̂τ = θτ−1Mτ .

(2)
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Linear System
We can rewrite these equations as a linear system:



M1 M̂1 0 . . . 0 0
0 M2 M̂2 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . Mτ−1 M̂τ−1

(−1)τ M̂τ 0 0 . . . 0 Mτ





β

s1
...

sτ−2

sτ−1


=



0
0
...
0
0


We observe that the determinant of the matrix is equal to ∏τ

i=1 Mi −
∏τ

i=1 M̂j . If
the statement is false, it follows from the Schwartz–Zippel lemma that this
system (with high probability) does not have a solution (over the choice of β).
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Linear System

P uses the protocol ΠLin to prove that each commitment [Di ] satisfies the
equations (2). In order to compute the si values, we can use the following fact:
Lemma
Choosing

sj = (−1)j · β
j∏

i=1

Mi

M̂i
+ θj (3)

for all j ∈ 1, . . . , τ − 1 yields a valid assignment for Equation (2).
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Protocol
Zero-Knowledge Proof ΠShuffle of Correct Shuffle
Prover, P Verifier, V

ρ ρ
$← Rq \ {m̂i}τ

i=1

M̂i = m̂i − ρ M̂i = m̂i − ρ

Mi = mi − ρ [Mi ] = [mi ]− ρ

θi
$← Rq,∀i ∈ [τ − 1]

Compute [Di ] as in Eq. (1), i.e.
[D1] = [θ1M̂1], [Dτ ] = [θτ−1Mτ ],

[Di ] = [θi−1Mi + θiM̂i ] for i ∈ [τ − 1] \ {1} {[Di ]}τ
i=1

β β
$← Rq

Compute si ,∀i ∈ [τ − 1] as in (3). {si}τ−1
i=1

Use ΠLin to prove that
(1) β[M1] + s1M̂1 = [D1]
(2) ∀i ∈ [τ − 1] \ {1} : si−1[Mi ] + siM̂i = [Di ]
(3) sτ−1[Mτ ] + (−1)τ βM̂τ = [Dτ ]
i.e. all equations from (2)
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Extending the Shuffle

▶ We extend the shuffle to ciphertext
vectors instead of single messages

▶ We create a mix-net as follows:
1. Re-randomize the ciphertexts
2. Commit to the randomness
3. Permute the ciphertexts
4. Prove that shuffle is correct
5. Prove that the randomness is short

▶ Integrity follows from the ZK-proofs
▶ Privacy if at least one server is honest

S1 S2 . . . Sn
{c(0)

i } {c(1)
i } {c(2)

i } {c(n−1)
i } {c(n)

i }

πS1 πS2 πSn
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Distributed Decryption

Verifiable distributed decryption protocol:

▶ On input key sj and ciphertext (u, v),
sample large noise Ej , output tj = sju + pEj .

▶ We use ΠLin to prove correct computation.
▶ We use ΠA to prove that Ej is bounded.

We obtain the plaintext as m ≡ (v − t mod q)
mod p, where t = t1 + t2 + ... + tξ.

S

D1

...

Dj

...

Dξ

{mi}

{c i}

{c i}

{c i}

{(ti ,1, πD1)}

{(ti ,j , πDj )}

{(ti ,ξ, πDξ
)}
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Verifiable Shuffle-Decryption

▶ SD both shuffle and decrypt the votes.

▶ Integrity follows from the ZK-proof.

▶ Privacy if B and SD do not collude.
Ui

B SD

EA

{vπ(i)}∀i

{(cvi , evi )}∀i

(cvi , evi )
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Verifiable Mix-Net and Distributed Decryption

▶ {Si}may consist of many shuffle-servers.

▶ {Di} consists of many decryption-servers.

▶ Integrity follows from the ZK-proofs.

▶ Privacy holds if the following is true:
1. at least one shuffle-server is honest and
2. at least one decryption-server is honest.

Ui

B {Si} {Di}

EA {vπ(i)}∀i

{evi}∀i {e′
vπ(i)
}∀i

evi
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Proof of Shuffle [CT-RSA’21]

▶ Optimal parameters for the commitment scheme is q ≈ 232 and N = 210.

▶ The prover sends 1 commitment, 1 ring-element and 1 proof per message.

▶ The shuffle proof is of total size ≈ 22τ KB for τ messages.

▶ The shuffle proof takes ≈ 27τ ms to compute for τ messages.
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Verifiable Mixing and Decryption [CCS’23]

▶ Optimal parameters for the system is q ≈ 278 and N = 212.

▶ Commitments and ciphertexts are of size ≈ 80 KB each.

▶ The mixing proof is of size ≈ 370τ KB and takes ≈ 134τ ms.

▶ The decryption proof is of size ≈ 157τ KB and takes ≈ 101τ ms.
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NTRU Encryption
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NTRU Encryption

NTRU ciphertexts consist of one ring element instead of two. We also wanted
to decrease the dimension and moduli to reduce ciphertext sizes, but this was
not possible based on current security analysis on ternary secrets.

We analysed the concrete security of NTRU for arbitrary standard deviations σ,
and we found that the "fatigue point" for NTRU is q = 0.0058 · σ2 · d2.484.

We combined this with exact zero-knowledge proofs of boundedness to get
tighter bounds and smaller parameters (but most expensive proofs).
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NTRU Mixing Network [ePrint’23]

▶ Optimal parameters for the overall system is q ≈ 259 and N = 211.

▶ Commitments are ≈ 30 KB and ciphertexts are ≈ 15 KB each.

▶ The mixing proof is ≈ 130τ KB and decryption proof is ≈ 85τ KB.

▶ Ciphertexts are 5.3× smaller and the overall system is 2.6× smaller.

▶ We expect everything to be at least 2× faster (currently benchmarking).
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▶ Lattice-Based Proof of Shuffle and Applications to Electronic Voting, Diego F.
Aranha, Carsten Baum, Kristian Gjøsteen, Tjerand Silde, and Thor Tunge,
published at CT-RSA 2021, eprint.iacr.org/2023/1318

▶ Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based
Assumptions, Diego F. Aranha, Carsten Baum Kristian Gjøsteen, and
Tjerand Silde, accepted at ACM CCS 2023, eprint.iacr.org/2022/422

▶ Concrete NTRU Security and Advances in Practical Lattice-Based Electronic
Voting, Patrick Hough, Caroline Sandsbråten, and Tjerand Silde, available
at IACR ePrint 2023/993, eprint.iacr.org/2023/933

32

https://eprint.iacr.org/2023/1318
https://eprint.iacr.org/2022/422
https://eprint.iacr.org/2023/933


Thank you! Questions?
Slides are available at https://tjerandsilde.no/talks
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