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Abstract

Steganography is the art of embedding a secret message into an inconspicuous
container in order to conceal its existence. Unlike cryptography, steganography
does not aim to obscure the contents of a message, but rather to hide the fact that
a message exists at all. The field of audio steganography focuses on hiding such
information in audio files, and a plethora of tools and methods have been created
for this purpose. An important metric for evaluating these tools and methods is
perceptual transparency. This metric says something about how difficult it is for a
human observer to hear that a secret message has been embedded into an audio
file. One way to measure this metric is by the use of Subjective Mean opinion score
(MOS-LQS) tests and Objective Mean opinion score (MOS-LQO) algorithms that
try to mimic the results of such tests. In this study the MOS-LQO algorithms PESQ,
ViSQOL Speech and ViSQOL Audio are compared to the results of a subjective
degradation mean opinion score (DMOS) test for evaluating our four chosen audio
steganography tools and methods: Steghide, Hide4PGP, Low capacity GAN (GAN
Low) and High capacity GAN (GAN High). Signal to noise ratio (SNR) is also
measured in order to assess previous work’s proposal of a 30 dB threshold value
for human perception.

Our results show that ViSQOL Audio correlates the closest to DMOS across all
of our audio samples, with PESQ also getting a very high correlation to DMOS,
and ViSQOL Speech falling behind the two others by a significant amount. ViSQOL
Audio also has by far the smallest absolute deviation from DMOS, deviating, in
the worst case, approximately three times less on average than PESQ and ViSQOL
Speech, which achieve similar deviations to each other. In addition to this, ViSQOL
Audio shows a tendency to give moderately stricter evaluations than DMOS in
these worst case scenarios, while PESQ and ViSQOL Speech show a tendency to
evaluate far more lenient. Our results ultimately lead us to recommend the use
of ViSQOL Audio for perceptual transparency testing within the field of audio
steganography.

The identified SNR threshold value for human perception from previous work
is also disputed, as audio samples shown to have perceptible degradations by our
subjective DMOS test, simultaneously achieve SNR values far above the claimed
threshold.

Lastly, a mathematical error in a paper proposing a tan map based audio
steganography method is also discovered and documented.
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Sammendrag

Steganografi går ut på å gjemme en hemmelig melding i et annet medium, helst
uten å endre det på en måte som kan oppdages av uvedkommende. I motsetning
til kryptografi er ikke målet med steganografi å skjule selve innholdet i informas-
jonen man gjemmer, men heller å skjule at informasjonen eksisterer i det hele
tatt. Lyd-steganografi feltet fokuserer på å gjemme slik informasjon i lydfiler, og
det har blitt utarbeidet utallige metoder for å oppnå dette målet. En viktig metrikk
for å evaluere lyd-steganografimetoder er "perceptual transparency". Denne met-
rikken sier noe om hvor lett det er for et menneske å høre på en lydfil at den har
blitt endret på. En måte å måle dette på er ved å bruke subjektive "mean opinion
score" (MOS-LQS) tester og objektive "mean opinion score" (MOS-LQO) algorit-
mer som prøver å emulere de subjektive testene. I denne studien sammenliknes
resultater fra MOS-LQO algoritmene PESQ, ViSQOL Speech og ViSQOL Audio med
resultatene fra en subjektiv "degradation mean opinion score" (DMOS) test for å
evaluere våre fire valgte lydsteganografi metoder; Steghide, Hide4PGP, lav kapa-
sitet GAN (GAN Low) og høy kapasitet GAN (GAN High). "Signal to noise ratio"
(SNR) blir også målt for å sjekke om tidligere arbeids forslag om en terskel på
30dB for menneskelig hørbarhet stemmer.

Resultatene våre viser at ViSQOL Audio korrelerer best med DMOS for alle
lydklipp, og at PESQ også har en veldig høy korrelasjon til DMOS, ViSQOL Speech
faller derimot bak de to andre med en betydelig lavere korrelasjon enn de to andre.
ViSQOL Audio har også de klart laveste absolutte avviket fra DMOS, med et avvik
som i verste fall er rundt tre ganger lavere enn PESQ og ViSQOL Speech sine
avvik, som begge oppnår omtrent like avvik som hverandre. I tillegg til dette har
ViSQOL Audio en tendens til å gi moderat strengere vurderinger enn DMOS, mens
PESQ og ViSQOL Speech har en tendens til å gi mye mindre strenge vurderinger.
På grunn av resultatene våre ender vi til slutt opp med å anbefale ViSQOL Audio
for "perceptual transparency" testing i lyd-steganografi feltet.

SNR resultatene våre motsier også terskelen for menneskelig hørbarhet fra
tidligere arbeid, da lydklipp med bevist stor nedsatt lydkvalitet fra den subjektive
DMOS testen vår, oppnår SNR resultater langt over den foreslåtte terskelen.

Til slutt blir det også funnet og dokumentert en matematisk feil i en "tan map"
basert lydsteganografi metode.
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Chapter 1

Introduction

This chapter begins with introducing the Motivations behind this thesis. Then it
describes the research problem and objectives, along with defining our two re-
search questions to be answered. It then goes on to outline the specific contribu-
tions found by our study, before finally including a reflection on the thesis con-
tributions towards sustainable development, in relation to the United Nations 17
goals for sustainable development [1].

1.1 Motivation

Audio steganography is the art of embedding a secret message inside an audio
container [2]. It is customary to evaluate audio steganography in regards to three
different metrics: perceptual transparency, hiding capacity and robustness [2]. In
this thesis we will focus on different ways to evaluate the perceptual transparency
of audio steganography methods.

An audio steganography method’s perceptual transparency quantifies how mu-
ch it alters the perceptible audio quality of its container file, in a way that can
be heard by a human observer [3]. One way to measure this is by the use of a
Subjective Mean Opinion Score (MOS) test [4], where participants typically rate
the perceived audio quality on a scale from one to five [5]. Lower average rat-
ings from the participants of this test would in turn translate to worse perceptual
transparency, since a human can perceive that the audio steganography method
has altered its container.

Another way to measure perceptual transparency is by the use of algorithms
trying to emulate these types of subjective MOS tests. These are often referred to
as MOS-LQO [6] algorithms, and the most commonly used one within the field
of audio steganography appears to be PESQ [2, 7]. These algorithms are more
convenient and less time consuming to use than arranging a Subjective MOS
test, as you do not need to invite any participants. However, we have been un-
able to identify any previous work investigating what MOS-LQO algorithm is the
most suited for evaluating the perceptual transparency of audio steganography

1



2 H. H. Stormyhr: Comparing MOS-LQO algorithms for perceptual transparency testing

methods. This thesis aims to change this by putting a few different MOS-LQO
algorithms to the test for this purpose.

Another metric that is often used to measure perceptual transparency within
the field is Signal to Noise Ratio (SNR) [2, 3]. We have discovered a claimed SNR
threshold for human perception in the literature [3, 8] that we also want to put
to the test in this thesis.

Parts of this section was adapted from the IMT4205 Pre-project course report
for this thesis, where this project was initially planned out [9].

1.2 Research Problem and Objectives

This thesis has a couple of objectives that it aims to investigate. The first objective
is based on an observation made during the IMT4205 - Research project planning
pre-project [9] for the Master’s thesis. During this course it was discovered that the
most commonly used MOS-LQO algorithm for evaluating the perceptual transpar-
ency of audio steganography methods appeared to be PESQ. This was discovered
by surveying different literature such as this review [2] showing that PESQ was
used in 12 out of 134 papers and PEAQ [10] in 3 out of 134. 29 out of 134 papers
use either PESQ, PEAQ, Subjective MOS or a combination of the three, and 14 of
the papers used MOS and neither of these two MOS-LQO algorithms [2]. No other
MOS-LQO algorithms than PESQ and PEAQ was mentioned in the review. Google
Scholar was also used to search for papers mentioning different algorithms identi-
fied during the pre-project [9] in relation to audio steganography; such as POLQA
[11], ViSQOL [12] and AqUA [13], but no examples of other MOS-LQO used for
evaluating perceptual transparency was found.

Several of these MOS-LQO algorithms are not free to use, and while a gray-
zone in the PESQ license appears to allow for our specific academic use by al-
lowing us to evaluate its performance [14], we had a hard time finding a license
for PEAQ at all. We also tried to acquire academic licenses for POLQA and AqUA
without luck. Google’s open source MOS-LQO algorithm, ViSQOL, on the other
hand, is free to use for anyone. The MOS-LQO algorithms PESQ, ViSQOL Speech
and ViSQOL Audio will therefore be tested in this thesis.

This gray-zone license, combined with he fact that PESQ was released in 2001
[15], while ViSQOL was released in 2015 [12] makes us curious whether any of
the two ViSQOL MOS-LQO algorithm modes (speech and audio) could be better
suited than PESQ for evaluating the perceptual transparency of audio stegano-
graphy methods. Which is also what we aim to investigate in this thesis.

The main goal of this thesis is to evaluate our chosen MOS-LQO algorithms by
seeing how they compare to a subjective DMOS test. Subjective MOS tests are of-
ten seen as the "ground truth" for MOS-LQO algorithms [12], as they derives their
results from real human perception [5]. The most commonly used subjective MOS
test is ITU-T P.800 ACR procedure [5, 12], this procedure is typically referred to
as just "MOS" [6]. In this study we are using the P.800 DCR procedure, typically
referred to as "DMOS" [5], for reasons that are explained in Section 3.2. This pro-
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cedure is based on the more commonly used ACR procedure, but is more sensitive
to degradations in audio quality [5]. This paper about Korean synthesized speech
shows a high correlation between the scores resulting from both procedures [16].

The thesis achieves its main objective of evaluating the chosen MOS-LQO al-
gorithms by conducting a subjective DMOS test with 21 human participants fol-
lowing the P.800 DCR procedure [5]. In the DMOS test the participants rate the
degradation in audio quality for audio samples containing information embedded
by our chosen audio steganography methods, compared to a high quality refer-
ence, on a scale from 1-5. The average ratings from the DMOS test are then used to
produce DMOS scores. The MOS-LQO algorithms are then applied to the same au-
dio samples to give them MOS-LQO scores from 1-5, and the scores are compared
by Pearson’s correlation, mean absolute errors (MAE) and manual inspection.

Different statistical methods are also used to justify the exclusion of outliers
from the DMOS test, and to see whether we can combine the DMOS scores from
our male and female samples, or if we have to report them separately, with this last
step of being recommended by the P.800 [5]. MOS-LQO algorithms that produce
scores that both correlate closely with, and that are as close as possible to the
DMOS scores, in terms of MAE, are likely the most desirable to use for evaluating
the perceptual transparency of audio steganography methods. We elaborate on
why we think this is the case in Section 3.2 of the thesis.

Signal to Noise ratio (SNR) is another common way to measure the percep-
tual transparency of audio steganography methods [3]. In fact, as much as 65 of
the 134 papers reviewed by this paper [2] investigating the state of the art within
the field in 2020 have included SNR as an evaluation metric. We think that SNR
is likely more popular than MOS-LQO algorithms because of its ease of use and
implementation, but the fact that it is not based on human perception [17]makes
us question its suitability for evaluating perceptual transparency. While investig-
ating this directly is not one of the goals of this thesis, some of our results did
exaggerate our skepticism towards using SNR for this purpose, which we discuss
further in Section 5.3. We therefore also propose this to be investigated further
by future work.

During this project we also identified a claimed SNR threshold for human
perception at 30 dB [3, 8]. This claim did not have any source or elaborating
information to back it up, but had already made it into several papers [3, 8].
We therefore want to investigate the legitimacy of this threshold as a secondary
objective of this thesis. This will be done by measuring the SNR of the same audio
samples as the subjective DMOS test, and comparing the results of the two to see
whether the threshold holds up or not, when compared to a metric based on real
human perception.

For these objectives we have formulated the following research questions:

1. How do the different MOS-LQO algorithms; PESQ, ViSQOL Speech, and
ViSQOL Audio compare to a subjective DMOS test, when it comes to evalu-
ating the perceptual transparency of our chosen audio steganography meth-
ods, and which one appears to be the best suited?
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2. How do the SNR scores compare to the subjective DMOS scores from our ex-
periments, do the results support or oppose a threshold of 30 dB for human
perception?

Our research questions are based on, but not exactly the same, as the re-
search questions proposed in the pre-project report for this thesis made during
the IMT4205 - Research Project Planning course at NTNU [9].

1.3 Contributions

The thesis produces several interesting results and contributions to the field. It is
identified that ViSQOL [12] Audio appears to produce by far the closest results
to our Subjective DMOS test, while PESQ [18] and ViSQOL Speech both produce
results that differ significancy more from DMOS for our tested audio stegano-
graphy methods than ViSQOL Audio. Suggesting that ViSQOL Audio should likely
be chosen over the others when it comes to evaluating the perceptual transpar-
ency of audio steganography methods. ViSQOL Audio also consistently evaluates
degradations in audio quality more strictly on average than our Subjective DMOS
test, while ViSQOL Speech and PESQ consistently evaluate this less strictly. Since
audio steganography methods are typically used to hide and secure secret in-
formation, we think that a more strict way of objectively evaluating the method’s
perceptual transparency is likely preferable to the opposite. So, this is another
potential advantage of using ViSQOL Audio over the others. In addition to this,
the observed less strict evaluations of PESQ and ViSQOL Speech are about three
times further away from DMOS than ViSQOL Audio’s worst case stricter evalu-
ations, which we deem to be highly in favor of ViSQOL Audio. Combined with the
apparent licensing issues of PESQ, our results strongly suggest that ViSQOL Audio
should replace PESQ as the "go-to" MOS-LQO algorithm for perceptual transpar-
ency testing within audio steganography.

This finding is significant, as PESQ, which is identified as seemingly being the
most used MOS-LQO algorithm within the field in [2], has a license that strictly
speaking means it requires payment to use for purely evaluating audio stegano-
graphy methods, even academically. ViSQOL on the other hand, is free and open
source, and while ViSQOL Audio strongly outperforms PESQ in our study, we could
still not find any papers using this MOS-LQO algorithm to evaluate the perceptual
transparency of audio steganography methods. For the reasons mentioned above,
we think that using ViSQOL Audio to evaluate the perceptual transparency of au-
dio steganography methods rather than PESQ would likely be beneficial for the
field.

In addition to this, the results from comparing our Subjective DMOS scores
to our measured SNR values strongly suggest that a claimed SNR threshold of
30 dB for human perception discovered in the literature [3, 8] is incorrect. With
audio samples proven by very low DMOS scores to be not only perceptible, but
borderline annoying, receiving SNR scores far above 30 dB, where higher SNR
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decibel scores typically translate to better perceptual transparency [3]. We there-
fore suggest future work exploring whether such a threshold makes sense, and if
it does trying to identify one, as well as work exploring if SNR is really suitable
for evaluating the perceptual transparency of audio steganography methods.

Lastly, a mathematical error is discovered in a paper [19] describing a Tan map
based audio steganography method. This error was discovered by implementing
the method (with help from Microsoft’s CoPilot AI Chat-bot [20]) and seeing that
we were not able to reproduce the results listed in the paper when using the
same input for its functions, despite deterministic functions being a key feature
of the method. Eventually, the specific error of missing a "+1" in an one of the
functions, to offset the iterations of the two functions of the two dimensional
TAN map used in the paper was discovered. This was noticed by finding a paper
[21] describing a very similar method that the TAN map paper [19] was likely
inspired by as they cited it in one of their previous papers using a sine map for
audio steganography [22], that was cited in the tan map paper. This mistake was
confirmed when correcting the issue in the implementation allowed us to produce
most of the same results as the TAN map paper (one output value differed, but
we strongly suspect this to be another spelling error in the tan map paper). This
finding is included in the thesis as we deem that it could be useful for other people
trying to troubleshoot why they are unable to reproduce the results of the TAN
map paper.

1.4 Reflection on Sustainability

The NTNU resource on sustainability in computing describes sustainability as hav-
ing three pillars; environmental impact, economic sustainability, and social re-
sponsibility [23]. In this section we will reflect on how the results of this thesis
could affect the three pillars of sustainability, seen in relation to the 17 Goals for
sustainable development set by the United Nations [1].

Better evaluation of audio steganography methods could make it easier for
researchers to evaluate such methods, which could in turn save them time, and as
we all know time is a valuable resource that is closely connected to the economic
pillar of sustainability. Currently, the field does not seem to agree on a single subset
of methods to be used for evaluating the perceptual transparency metric, work
like this thesis could help bring the field together and strengthen collaboration
by investigating what methods are the best to use for this purpose. This could in
turn lead to research being able to be compared more easily without having to
run extra tests, potentially saving researchers even more time.

Our results also show that the best performing MOS-LQO algorithm of the
ones tested appears to evaluate perceptual transparency either very similarly, or
moderately stricter than a subjective DMOS test with 19 human participants. With
the stricter results happening for audio files that were already very perceptible
according to the DMOS test. These subjective DMOS tests can be costly and time
consuming to conduct, so research like this thesis helping to find objective al-



6 H. H. Stormyhr: Comparing MOS-LQO algorithms for perceptual transparency testing

gorithms that are free and quick to run could further contribute to the economic
pillar of sustainability. In addition to this, our findings suggest that a free and
open source alternative MOS-LQO algorithm, that we could not find any existing
audio steganography papers using, appears to significantly outperform a paid al-
gorithm that is often used in the field, contributing directly to the economic pillar
of sustainability.

In addition to this, we can also find some more indirect social and environ-
mental benefits of this work. The work done in this thesis could help actors trying
to protect highly sensitive information by the use of audio steganography, evalu-
ate the perceptual transparency of methods they are considering for this purpose.
Depending on their use of this audio steganography method, one could picture
several scenarios where this could benefit both social and environmental sustain-
ability. One type of actor that could potentially benefit from the added security
provided by secret communication through audio steganography could be polit-
ical dissidents in oppressive regimes. The work done in this thesis could help such
actors pick a more secure method for communication by helping them select an
audio steganography method with good perceptual transparency. Helping such
actors communicate secretly without being discovered is a clear social benefit that
could be helped by our work. Another example could be if an oil company wanted
to use some type of real time VOIP based audio steganography communication sys-
tem for critical and sensitive communication. The work done in this thesis could
help this company pick the right method in terms of having good perceptual trans-
parency, and potentially indirectly help avoid environmental disasters caused by
attacks from different types of threat actors.

The things discussed here contribute to goal 9 and 16 of the United Nations
17 goals for Sustainable Development, by contributing to the following targets:
"9.1 - Develop quality, reliable, sustainable and resilient infrastructure, including
regional and transborder infrastructure, to support economic development and
human well-being, with a focus on affordable and equitable access for all" [24],
"9.5 - Enhance scientific research, upgrade the technological capabilities of indus-
trial sectors in all countries, in particular developing countries, including, by 2030,
encouraging innovation and substantially increasing the number of research and
development workers per 1 million people and public and private research and
development spending" [24], and "16.10 - Ensure public access to information
and protect fundamental freedoms, in accordance with national legislation and
international agreements" [25].

All in all, this thesis could have several direct and indirect benefits to all the
three pillars of sustainability. While some of these types of benefits could be shared
by much of the work done in the field of information security, some of them are
also extra relevant to this thesis’s work in particular. The thesis also contributes
to several of the United Nations 17 goals for sustainable development.



Chapter 2

Background

This chapter presents the necessary background information on the concepts used
and discussed in this thesis. It starts by explaining the concept of steganography,
before going on to further clarify what audio steganography is. It then introduces
the typical ways of evaluating audio steganography methods, stating that we will
focus on the perceptual transparency metric in this thesis. The audio stegano-
graphy tools and methods used in the thesis are then introduced and explained in
detail. Then, the concepts of subjective and objective mean opinion score (MOS)
testing are explained, along with different ways of doing this. This includes the ex-
planation of the absolute category rating and degradation category rating, as well
as introducing and providing background information the different MOS-LQO al-
gorithms used in this study, and explaining why some MOS-LQO algorithms had
to be excluded. Finally, the concept of signal to noise ratio (SNR) is explained.

2.1 Steganography

Steganography can be found in many varieties, but it typically involves disguising
a secret message by embedding it inside an inconspicuous container of some sort
[26]. In contrast to cryptography, steganography typically does not hide the con-
tents of the secret message, but rather the fact that a message has been sent at all
[2]. Because of these complimentary qualities, steganography is often combined
with cryptography when deployed to achieve stronger security by hiding both the
contents of a message and the fact that the message has been sent [2]. You can-
not try to crack a message that you don’t know has been sent, and it might also
be harder to extract a steganography message from its container if the content
appears to be random.

The earliest recorded instance of steganography is from Greece in year 440 BC,
where the Greek ruler Histiaeus sent a message to his vassal by marking a message
on one of his loyal men’s shaved scalp [26]. Once the hair regrew the message
was hidden and could be retrieved by shaving the head again. Steganography has
historically often been used in wars, with some notable examples being the use of
invisible ink by prisoners in war camps in WW2 [26], and Jermiah Denton blinking

7
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in morse code after being captured and forced to participate in a propaganda
interview to convey a message of torture being used in prison camps during the
Vietnam war [27]. Another somewhat well known modern example could be the
yellow dot-matrix code used in some modern laser printers to encode timestamps,
model and serial numbers onto printed documents in a way that is invisible to
the naked eye [28]. Recently, there has also been much discussion about using
steganography to watermark AI-generated content [29].

In modern electronic steganography the host medium is often referred to as
the "cover file" and the altered cover file containing the secret embedded mes-
sage as the "stego file" [2]. These terms will also be used in this thesis as we are
applying modern electronic steganography methods that use audio files as their
cover medium. We will also sometimes refer to steganography methods as "stego
methods".

2.2 Audio Steganography

Audio steganography is a form of steganography that uses audio as its cover me-
dium and that can be described as the art of embedding a secret message into
an audio container [2]. In this thesis, we are focusing on audio steganography
methods utilizing audio files specifically, which appear to be most of the modern
audio steganography methods [2]. However, audio steganography methods utiliz-
ing non-file cover mediums such as continuous VOIP (Voice over IP) transmission
also exist [2].

2.2.1 Perceptual Transparency, Robustness and Hiding Capacity

Audio steganography methods typically balance a trade off between three differ-
ent qualities: Perceptual transparency, hiding capacity and robustness [2]. These
are therefore also typically the metrics that are used to evaluate the performance
of audio steganography methods upon their creation or later evaluation [2].

Hiding Capacity has perhaps the most obvious meaning of the three and refers
to how much information that can be embedded into the cover file by an audio
steganography method [3]. While robustness refers to how well the stego file
containing some secret information holds up to different types of attacks or modi-
fications [3]. Some examples of "attacks" against audio steganography stego files
could be compression, noise addition and audio filters [3].

The metric we are the most interested in this thesis is perceptual transparency.
This metric refers to the similarity between the cover file and the stego file [2].
It can also be described as how easy it is for a human observer to hear that a
hidden message has been embedded into the stego file [3]. The fact that the word
"perceptual" is used here makes us like this last definition of the metric better.
However, this review of 134 audio steganography methods shows that SNR is a
more popular way to measure perceptual transparency than subjective MOS tests
and objective MOS-LQO algorithms. With 65 of the papers using SNR to measure
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perceptual transparency, which is not based on human perception, but rather the
difference in noise between the cover and stego files [17]. 29 of the papers in
the review [2] are using either MOS [5], PESQ [7] or PEAQ [10] to evaluate
perceptual transparency, which are all methods that are based on or meant to
emulate human perception.

2.3 Audio Steganography Tools and Methods Used

This thesis implements two audio steganography methods from 2019 and applies
two older audio steganography tools from the early 2000’s. These tools and meth-
ods were chosen during the pre-project [9] to be the same tools and methods used
in Reyer’s bachelor thesis [3] which evaluates the hiding capacity, robustness and
perceptual transparency of these methods in a purely objective manner. This se-
lection was in part done because Reyer’s thesis greatly inspired the theme for this
thesis by suggesting the exploration of MOS-LQO algorithms like PESQ for evalu-
ating the perceptual transparency of audio steganography methods. Reyer’s thesis
focuses on evaluating the steganography methods themselves, and uses signal to
noise ratio (SNR) instead of perceptual models like MOS-LQO algorithms to eval-
uate their perceptual transparency.

In contrast to Reyer’s thesis [3], our thesis focuses on evaluating different
MOS-LQO algorithms, which are models based on human perception. The steno-
graphy methods used in Reyer’s thesis are chosen because they appear to have
done a thorough search when selecting these methods, stating that it was not
easy to find recent audio steganography methods that were actually able to be
implemented easily from their published papers. We also agreed with their lo-
gic of choosing two recent audio steganography methods from papers published
after 2016, and two older well known audio steganography tools that have com-
monly been included in research. However, the methods are not applied exactly
like Reyers and one method was excluded from the main experiments for reasons
that will be explained in Section 3.5.4 and 4.5. The methods are described in the
Subsections 2.3.1, 2.3.2, 2.3.3, and 2.3.4, following below.

2.3.1 Steghide

The first steganography tool used in this thesis is Steghide 0.5.1, created by Stefan
Hetzl and released in 2003 [30]. Steghide’s audio steganography feature works
by first splitting the selected cover audio file into smaller samples, the positions
of the samples that will have the cover file embedded into their least significant
bits (LSB), i.e. the last bit of the sample, are chosen by a pseudo-random number
generator with a passphrase as the input [31]. The positions already containing
correct bit-values by chance are filtered out and a graph-theoretic pair matching
algorithm is used to find pairs of samples and parts of the cover data to be em-
bedded that can be swapped without interfering too much with the first order
statistics of the stego file [30]. In the end the data that did not have any pairs
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identified by this algorithm is overwritten on to remaining pair-less samples [31].
This method is used to preserve first-order-statistics in order to make it more dif-
ficult to detect that a secret message has been embedded into the stego file [31].
More technical details about our application of Steghide can be found in Section
3.5.1.

2.3.2 Hide4PGP

The second steganography tool used in this thesis is Hide4PGP 2.0, this tool was
created by Heinz Repp in 2000 [32]. The basics of how the audio steganography
part of the Hide4PGP steganography tool works is explained in the manual file
included with the download [32]. The manual explains that Hide4PGP is meant
to be used with PGP and that the cover files needs to be encrypted with PGP by
the user manually before using Hide4PGP to embed them into the stego file. The
manual also explains that Hide4PGP splits up audio files into their samples and
that it can change up to 1 bit per sample in VOC files and 8-bit WAV files and up
to 4 bits per sample in 12 and 16-bit WAV files, the manual states that these limits
were put in place to ensure that the average listener would not be able to hear that
an embedding of information had taken place in the stego file. It also elaborates
that the embedded data is spread evenly across the stego file. The manual further
explains that Hide4PGP only works on "real" data and doesn’t modify file headers
etc. so that lossless file conversions won’t ruin the embedded data.

It was difficult to find resources explaining exactly how Hide4PGP works, but
according to [3] Hide4PGP uses a variation of least significant bit (LSB) substitu-
tion [33]when used on audio files. [34] also states that Hide4PGP uses a variation
of LSB substitution when used on image files. Combining this information with the
previous information from the manual we find it likely that Hide4PGP works by
evenly substituting the least significant bit of each audio sample when embedding
information in VOC and 8-bit WAV files, and the four least significant bits when
embedding in 12 and 16-bit WAV files. [3] achieves almost exactly 25% hiding ca-
pacity both while embedding in 16-bit WAV files from the GZTAN [35] and TIMIT
[36], and we also achieve similar hiding capacities to this when applying the tool
on our 16-bit WAV files, which coincides with the Hide4PGP manual [32] stating
that four bits per sample are used for embedding information in 16-bit WAV files.

2.3.3 GAN Based Audio Steganography

In this thesis we refer to "GAN Based audio steganography" or "GAN Low" and
"GAN High" as the audio part of the combination of the two steganography meth-
ods first proposed the papers [37] and [38], and then combined, extended and
implemented in [39]. GAN Low and GAN High refers to this same method applied
at low and high embedding capacities, this is further explained in Section 3.5.3.
This method uses three generative adversarial networks (GANs) [40] to embed in-
formation into images and audio files [39]. The method uses an encoder, decoder
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and critic approach with all of these components being their own GAN. The en-
coder encodes data into a file, the decoder decodes them, and the critic attempts
to evaluate how easily the presence of a secret message can be detected in the
generated stego file in order to improve its quality [39]. For audio steganography,
the cover audio files are turned into their respective spectrograms before being
passed through the GAN for embedding the secret messages, after the embed-
ding has taken place they are turned back into audio files [3]. The spectrograms
generated for one of our audio files can be seen in Figure 2.1.

Figure 2.1: The spectrograms generated by the GAN method for one of our audio
files.

2.3.4 TAN Based Audio Steganography

When referring to "TAN based audio steganography" or the "TAN method" in this
thesis, we are referring to the audio steganography method proposed in [19]. This
method first uses basic AES-128 [41] encryption before applying a chaotic 2D TAN
map system in order to decide what order of 16-bit WAV file audio sample’s least
significant bits (LSB’s) to use for embedding the hidden message. This system
uses two mathematical functions to make up the 2 dimensional TAN map that will
generate chaotic looking outputs from their inputs, applying a similar idea to the
pseudo random number generators often used in encryption. The chaotic behavior
of the 2D TAN map is displayed in Figure 2.2 by plotting the values returned by its
functions. The output of each function is used to decide the order samples whose
LSB’s are to be used for embedding the hidden message, with the output of one
function deciding the positions of samples in the left audio channel of a stereo file
and the other deciding positions for the right channel [19]. The reasoning behind
using a 2D TAN map for this system is that they are deterministic, but generate
widely different outputs for even a small change of the input value. In practice this
means that the starting input given to the functions can be used as a key for being
able to extract the hidden message from the stego file, providing extra security to
the method [19].

The paper proposing the TAN method [19] has a mathematical error which
was not discovered in time to include the method in the main experiments of this
thesis. However, we consider the discovered error and how to solve it as a mean-
ingful result and therefore include and document it in this thesis. More inform-
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ation about this mathematical error and the implementation of the TAN method
can be found in Sections 3.5.4 and 4.5.

Figure 2.2: The chaotic behavior of the 2D TAN map used in [19] after fixing the
mathematical error, in the first 5 iterations (left plot) and the first 40 iterations
(right plot), adapted from [19].

2.4 Mean Opinion Score Testing

A Mean opinion score (MOS) test as described in the ITU Telecommunication Stand-
ardization Sector’s (ITU-T) P.800: Methods for subjective determination of transmis-
sion quality recommendation (P.800) was originally just a subjective way of meas-
uring the perceived audio quality of a telecommunication system [5]. The idea of
a MOS test as described in the P.800 recommendation is to rate the perceived au-
dio quality of a voice transmission system [5]. In all objective and subjective MOS
procedures and algorithms relevant to this thesis, this audio quality is ranked on
on a scale from 1-5. However, the P.800 also contains other scales such as the
comparison category rating (CCR) scale ranging from 3 to -3 [5], but these are
not relevant for this thesis as we have not found objective MOS algorithms using
other scales than 1-5.

The P.800 recommendation proposes procedures for five different styles of
Subjective MOS testing, where some involve subjects engaging in conversation,
while others are pure listening tests [5]. Since the release of the P.800 recom-
mendations many objective algorithms trying to emulate these types of subjective
MOS tests have emerged, such as PESQ [18], POLQA [11], ViSQOL [12] and AqUA
[13]. In addition to this, MOS testing has also started to be used in the field of
video quality [6]. Likely because of this broadness, the ITU-T proposes some new,
more specific, terminology to be used for the different types of MOS testing in the
P.800.1: Mean opinion score (MOS) terminology recommendation [6]. The P.800.1
recommendation proposes different abbreviations to be used for different types
of MOS testing like audio and video MOS tests, conversation and listening based
MOS tests and subjective and objective MOS tests [6].

Some abbreviations from the P.800.1 recommendations [6] that are relevant
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for this thesis are the ones for listening based subjective and objective MOS tests,
which are defined as "MOS-LQS" (MOS subjective listening quality) and "MOS-
LQO" (MOS objective listening quality) respectively. The MOS-LQO abbreviation
from the P.800.1 recommendation refers to an objective MOS test performed by an
algorithm, while MOS-LQS refers to a subjective MOS test that has been done us-
ing the absolute category rating (ACR) scale from the P.800 recommendation [5],
this procedure will be explained further in Section 2.5.1. In addition to this, the
P.800 recommendation’s "DMOS" (degradation MOS) abbreviation, referring to a
subjective MOS test conducted in accordance to the Degradation Category Rating
procedure (DCR), is also highly relevant to this thesis [5]. The DCR procedure
will be explained further in Section 2.5.2.

2.5 Subjective MOS testing

The ITU-T P.800 recommendation describes five different procedures for conduct-
ing subjective MOS tests [5]. Of these five, two of the procedures are particularly
relevant for this thesis. These are the Absolute Category Rating (ACR) and Degrad-
ation Category Rating (DCR) respectively, these procedures follow the same core
principles, but deviate in a few meaningful ways. Both of the procedures focus on
rating the quality of audio from 1-5, but the formulations of the scales presented
to the participants to rate by varies between the two [5]. Despite their differences,
studies have previously shown high correlation between the two [16]. The ACR
and DCR procedures will be explained in further detail in the Sections 2.5.1 and
2.5.2 following below. The selection of one of these procedures for our subjective
MOS test will be done in Section 3.2, so they will also be discussed even further
there.

2.5.1 Absolute Category Rating

According to [12], the Absolute Category Rating (ACR) procedure appears to be
the most commonly used P.800 [5] procedure for measuring mean opinion scores
(MOS) subjectively. This also appears to be the case for the field of audio stegano-
graphy when looking at this review of the state of the art within the field from
2020 [2]. As explained in Section 2.4 on Subjective MOS testing, the ACR proced-
ure ranks audio quality on a scale from 1-5. The ACR procedure contains three of
these scales, where the "Listening-quality scale" appears to be the most commonly
used [12], as displayed in the far right of Table 3.1, we will therefore focus only
on this ACR scale in this thesis.

The scales of the different MOS procedures contain formulations given to the
participants to instruct them on how to rate the perceived audio quality [5]. The
scores produced by conducting a subjective MOS test using the Listening-quality
scale with the ACR procedure are often simply referred to as MOS scores, as this is
the terminology shown in the P.800 recommendation [5]. However, the P.800.1 re-
commendation [6], updating the recommended MOS terminology, refers to MOS
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tests done using any of the ACR scales as MOS-LQS, which stands for "mean opin-
ion score listening quality subjective" [6]. This is done to differentiate the subject-
ive MOS tests from the objective MOS algorithms emulating these tests, which
are defined as MOS-LQO or mean "opinion score listening quality objective" [6] in
the P.800.1. However, at least within the field of steganography, it seems more
common to refer to scores from ACR as MOS and using the names of the specific
MOS-LQO algorithm used to describe their respective scores [2]. Nevertheless, we
have seen most of these terminologies being used within the field [2] and we will
be using all of them in this thesis as we see fit.

The P.800 ACR procedure contains many recommendations to be followed
which will be explained in further detail in Sections 3.4 and 2.5. For now, the most
important ones to showcase the difference between the scales used in ACR and
DCR, and the fact that ACR does not use high quality reference audio samples, in-
stead the participants rate the overall audio quality of the degraded audio samples
only [5].

2.5.2 Degradation Category Rating

The P.800 degradation category rating (DCR) procedure is based on the ACR pro-
cedure, but differs in a few meaningful ways [5]. For DCR, high quality reference
audio samples are used and the participants listen to these before listening to
each of degraded audio samples. They then rate the degradation of audio quality
from the high quality reference on a scale from 1-5, based on the DCR scale for-
mulations shown in Table 3.1. The scores generated from a MOS test following
the DCR procedure are usually referred to as DMOS scores, which stands for de-
gradation mean opinion scores, we will be using this abbreviation in this thesis,
both to describe a test done with the DCR procedure (DMOS test), and to describe
the scores generated (DMOS scores). According to the P.800 recommendation, the
DCR procedure has been shown to be more sensitive than ACR.

2.6 Objective MOS Testing

Objective MOS testing typically refers to models or algorithms used to emulate
the results of Subjective MOS tests [12, 15]. Typically, these algorithms try to
emulate the scores from a ITU-T P.800 [5]MOS test following the ACR procedure.
According to the ITU-T P.800.1 recommendation, the scores generated from these
algorithms can be abbreviated as MOS-LQO. We will therefore sometimes refer to
these algorithms as MOS-LQO algorithms in this thesis, as it gives us an easy way
to refer to all of them at once.

2.6.1 PESQ

PESQ is an older MOS-LQO algorithm that was first proposed in 2001 in the ITU-T
P.862 recommendation [18] as the ITU-T’s new recommended way of evaluating



Chapter 2: Background 15

speech quality objectively [15]. It has since been replaced by POLQA in 2011 [42]
in the P.863 recommendation [11]. PESQ is mostly based on subjective P.800 [5]
ACR MOS experiments [43], and originally only worked for narrow-band audio
in the P.862 recommendation [18]. In the beginning, PESQ also provided scores
on a range from -0.5 to 4.5 that were not directly comparable to ACR MOS scores
[44]. However, this was later changed with a mapping function, mapping the raw
PESQ scores into the ACR MOS range from 1-5 in the ITU-T’s P.862.1 recommend-
ation in 2003 [44]. When the wide-band version of PESQ was introduced in the
P.862.2 recommendation [45] in 2007, this mapping function was included into
the PESQ wide-band code. This means that PESQ measurements taken using the
wide-band version of PESQ produces scores from 1-5 that are directly comparable
to subjective ACR MOS scores.

When we refer to PESQ in this thesis we are referring to wide-band PESQ re-
implemented to be used with a python wrapper in this GitHub repository [46].
This is a popular way to use PESQ now a days and big actors like NVIDIA and
Facebook research can be seen using this repository [46]. More about our specific
PESQ implementation can be seen in Section 3.7.2.

PESQ is first and foremost a paid piece of software, and a license needs to be
followed in order to use it [14]. Even for academic use, most use cases call for
obtaining a paid license [14]. However, there are some exemptions to this, such
as being able to evaluate the performance of the algorithm’s intended function
[14]. Since our main focus in this thesis when it comes to PESQ is to evaluate
how well it performs compared to other MOS-LQO algorithms, we have assessed
that we are within this exemption. However, we are not convinced that papers
simply using PESQ to evaluate their own proposed audio steganography methods
are strictly speaking within their rights to do so without a paid license.

2.6.2 ViSQOL

Unlike PESQ, ViSQOL is a free and open source MOS-LQO algorithm developed
by Google [47]. Like PESQ, ViSQOL also appears to be mostly based on subjective
P.800 [5] ACR MOS experiments during its development, judging by the paper pro-
posing it [12] only referring to the ACR procedure, calling it the most commonly
used procedure, and doing an ACR MOS test as their only subjective comparison.
ViSQOL is made as a free alternative to PESQ and POLQA, and like them it scores
audio quality on a range from 1-5 [12].

ViSQOL has two modes; speech and audio, the original proposal only con-
tained ViSQOL Speech [12], while the audio mode was introduced with ViSQOL
V3 in a later paper [48] from 2020. We will refer to these modes as two separ-
ate MOS-LQO algorithms called ViSQOL Speech and ViSQOL Audio in this thesis.
When referring to ViSQOL in this thesis we are referring to version 3.3.3 which is
the latest released version on the ViSQOL GitHub as of the writing of this thesis
[47], this is also the version we use in our testing. More information about the
used ViSQOL implementation used in this thesis can be found in Section 3.7.3.
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ViSQOL Audio (v. 3.3.3) technically does not follow the P.800 ACR rating scale
to a tea, as it caps out at a MOS-LQO score of about 4.75. However, we do not
think this is a problem as even our extremely hard to hear steganography methods,
Steghide and Hide4PGP, did not achieve PESQ, ViSQOL Speech or ViSQOL Audio
scores of higher than about 4.73 for any samples, with PESQ and ViSQOL Speech
consistently ranking these samples lower than ViSQOL Audio. This combined with
the fact that ViSQOL Audio correlated the closest to DMOS and got scores with
the least absolute deviation from DMOS on average makes us think the 4.75 score
cap is not a problem in practice. In addition to this, the average DMOS score of
all null pair’s, meaning we show the participants two of the same high quality
reference samples then ask them to rate the degraded difference, is about 4.79 in
our subjective test, further suggesting that the 4.75 cap for ViSQOL Audio is likely
not a problem, as it is very close to the average DMOS score of a perfect sample.

2.6.3 Excluded MOS-LQO Algorithms

During the pre-project [9] we also identified POLQA [42] and AqUA [13] as po-
tential MOS-LQO algorithms to include in our comparison. The POLQA Coalition’s
website states that OPTICOM [49] might be able to provide an academic license
for POLQA [50]. However, when contacting them during the pre-project, we were
told that they could not provide us with this for this thesis. We also contacted
Sevana Öu [51], the creators of AqUA to ask for an academic license which in-
formed us that they no longer offered academic licenses. OTPICOM informed us
that an academic license for POLQA could potentially be acquired from one of
its many vendors, but we decided that contacting 100+ vendors would be a poor
use of our limited time for producing this thesis. Especially since ease of use and
acquisition is likely also beneficial if we want to find a new standard MOS-LQO
algorithm for perceptual transparency testing within the field of audio stegano-
graphy.

PEAQ was also identified as a relevant MOS-LQO algorithm to include, as
it is sometimes used for audio steganography perceptual transparency testing,
although it appears to be quite a bit less commonly used than PESQ [2]. However,
this algorithm was excluded as we were not able to find any licensing information
for it other than it being a paid piece of software [52].

2.7 Signal to Noise Ratio

SNR appears to be the most commonly used way to measure perceptual transpar-
ency in audio steganography according to this review [2] of the state of the art
within the field from 2020. We think that this method is likely so popular because
it is quite easy to implement and not protected by any licenses. However, unlike
MOS-LQO algorithms, it is not based on human perception [17]. We discuss this
as a potential weakness of SNR when it comes to measuring the perceptual trans-
parency of audio steganography methods in Section 5.3.
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The basic definition of signal to noise ratio (SNR) is that it is a ratio between
the power of a signal and the power of noise [17]. SNR is usually measured in
decibel (dB) and its general definition can be expressed with this formula [17]:

SNRdB = 10log10

Psi gnal

Pnoise

In practice SNR can be measured in several ways, but for evaluating audio
steganography a commonly used method [17] of looking at the difference between
the cover and stego files and assuming the entire difference is noise, is likely the
easiest to implement and use. This method also works particularly well for eval-
uating audio steganography methods since you usually have a clean cover file to
use as your reference without added noise from the audio steganography method.
By measuring SNR with this method you are therefore isolating the measurement
to only measure noise added by the audio steganography method, which is likely
what you would want from such a measurement. More information about our
specific SNR implementation can be found in Section 3.8.





Chapter 3

Method

This chapter explains the methodology of the necessary activities done in order to
answer our research questions. It also discusses and justifies the selection of these
activities. The chapter starts by explaining our idea of using subjective mean opin-
ion score (MOS-LQS) tests as a benchmark for our objective mean opinion score
(MOS-LQO) algorithms. It then goes on to discuss considerations for choosing the
right MOS-LQS procedure from the ITU-T P.800 [5] recommendations, concluding
that the degradation mean opinion score (DMOS) procedure is the most suited for
our purposes. Recruitment and practical considerations for the subjective DMOS
test are then discussed, before explaining our method for selecting a dataset, and
audio files to be used as the cover files for our audio steganography methods. The
application and implementation of each of our chosen audio steganography meth-
ods is then explained in detail, followed by the DMOS experiment design. Then,
the methods for applying and implementing our chosen MOS-LQO algorithms are
described, as well as our method for implementing and measuring the signal to
noise ratio of our audio samples. Lastly, the methods for calculating DMOS scores
and analyzing and comparing our various results are presented.

3.1 Using MOS-LQS as a Benchmark for our MOS-LQO
Algorithms

To find out what MOS-LQO algorithm is the most suited for evaluating the percep-
tual transparency of audio steganography methods we are planning to first con-
duct a subjective MOS test to use as baseline for comparison of the algorithms. As
stated in the background section, MOS-LQO algorithms are typically made to emu-
late subjective MOS tests [12, 13, 15, 53], and the paper proposing ViSQOL states
that subjective testing with human participants are to be considered the "ground
truth" for these types of algorithms [12]. We therefore think that comparing per-
forming a subjective MOS test that we can compare MOS-LQO algorithms to is a
good place to start, when it comes to answering our first research question, that
can be found in Section 1.2. This section describes the steps and considerations
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taken to conduct the subjective MOS test.

3.2 Choosing the Right ITU-T P.800 MOS-LQS Procedure

As stated in Section 2.5, the ITU-T P.800 recommendations contains recommenda-
tions on how to design different types of subjective MOS tests [5]. However, there
are still decisions and considerations that need to be taken while following the
P.800, as it leaves many things up to the people designing the experiment. Look-
ing at additional literature can also be helpful, as well as carefully considering the
options best suited for our specific situation.

For instance, the P.800 differs between "Listening-opinion tests", which are
MOS tests where the test subjects are purely listening to some audio samples and
"Conversation-opinion tests", for example, which is another type of MOS test de-
scribed in the P.800, as well as also describing several other types of MOS tests
[5]. The subjective MOS test done in this thesis is a "Listening-opinion test" as
described by the P.800. Even for this specific type of MOS-LQS test, several pro-
cedures are mentioned by the P.800. We deem the "Absolute Category Rating"
(ACR) and "Degradation Category Rating" (DCR) procedures from the P.800 to be
the most relevant for our purposes, as these both result in scores from 1-5, just like
most MOS-LQO algorithms that we have been able to identify [12, 13, 15, 53].
Many MOS-LQO algorithms also appear to be based largely on ACR tests [12, 13,
15, 53], and DCR is based on ACR [5]. The difference in the purpose behind these
procedures is highlighted by the language used to describe their rating scales from
one to five [5], the formulations of these rating scales can be seen in Table 3.1.

It should also be mentioned that the ACR method includes two other rating
scales, one for listening effort and one for loudness preference, the one displayed
here is known as the "Listening-quality scale" [5] and is the one we assessed to
be relevant to our study. When referring to the ACR method in this thesis we are
referring to using the ACR method with the Listening-quality scale exclusively, as
we found that this appeared to be the one mentioned in most of the MOS-LQO
algorithm’s we were able to identify papers and resources [12, 13, 15, 53].

Score DCR ACR

5 Degradation is inaudible. Excellent
4 Degradation is audible but not annoying. Good
3 Degradation is slightly annoying. Fair
2 Degradation is annoying. Poor
1 Degradation is very annoying. Bad

Table 3.1: The different formulations used for rating audio quality in the P.800’s
DCR and ACR methods, adapted from [5].

The ACR procedure as described in the P.800 aims to assess the general speech
or audio quality of some audio samples [5]. Because of this inherent goal, no ref-
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erence audio is used in ACR MOS testing [5]. The goal behind the DCR procedure
on the other hand, is to evaluate how much the quality has degraded from a high
quality reference [5]. The P.800 states that this is likely one of the reasons that the
DCR procedure has shown to be more sensitive than the ACR procedure, mean-
ing that it should be better at detecting small changes in audio or speech quality
[5]. In this thesis we are more interested in audio quality than speech quality,
as we think this is more relevant to the degradations typically caused by audio
steganography methods.

We assess that the increased sensitivity of the DCR procedure makes it the
most suited for our purposes. One of the most important characteristics of audio
steganography methods is that they should be difficult to detect. The ACR pro-
cedure’s lower sensitivity has us concerned about it possibly not being sensitive
enough to answer our research question. This thesis will use Subjective DMOS
scores as a baseline to compare some chosen Objective MOS (MOS-LQO) algori-
thms. We think that it would be more difficult to draw sensible conclusions from
this comparison if the chosen MOS-LQS procedure is not sensitive enough to pick
up degradations in audio quality for audio steganography methods where they
may be difficult, but still potentially possible, to hear.

However, PESQ which is one of the MOS-LQO algorithms that we plan to use
was mostly compared to subjective MOS tests using the ACR procedure during
it’s development [43], and the paper proposing ViSQOL [12], which is another
MOS-LQO algorithm we plan to use, also only refers to the ACR procedure, as
well as using it in one of its experiments comparing ViSQOL to PESQ, POLQA and
AN ACR MOS-LQS test. In addition to this, the P.800 states that the MOS notation
is reserved for the ACR procedure using the listening-quality scale, while results
from tests using the DCR procedure shall be labeled as "DMOS" scores [5]. As
both wide-band PESQ and ViSQOL report their results with the MOS notation,
it is likely that they are trying to emulate the ACR procedure. Despite this, we
will use the DCR procedure for our MOS test because of the sensitivity concerns
mentioned earlier. One paper [16] comparing DCR DMOS, ACR MOS and PESQ
for evaluating Korean synthesized speech also found that DCR DMOS correlated
closer to PESQ than ACR MOS, as well as ACR and DCR correlating closely to each
other. The DeepL AI PDF translator [54] was used to translate this Korean article,
but the abstract is in English and contains the information referred to here.

We argue that the DCR DMOS results will likely be more useful than the ACR
methods MOS scores to find out what MOS-LQO algorithm appears to be best
suited for evaluating the perceptual transparency of audio steganography meth-
ods. The same scale of one to five is used for both procedures and the P.800 states
that DCR is based on ACR [5], DMOS should therefore simply be a more sens-
itive version of the ACR MOS score. When combining this with the results from
the Korean study [16]mentioned earlier showing high correlation between MOS,
DMOS and PESQ we conclude that comparing DMOS and MOS-LQO scores should
not be any more or less problematic than comparing them to ACR MOS. Since
there are also other to measure perceptual transparency other than MOS, such as
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the SNR (signal to noise ratio) method used by Reyers [3], and the DCR DMOS
procedure still uses human perception to measure degradation in audio quality,
we find it just as suitable to measure the perceptual transparency as ACR MOS.
We would also argue that it is desirable for a MOS-LQO algorithm to get as close
results to DMOS as possible when evaluating the perceptual transparency of au-
dio steganography methods, as a more sensitive algorithm could be useful when
comparing audio steganography methods that get increasingly difficult to detect
by the human ear. In addition to this, the added sensitivity of the P.800 DCR pro-
cedure is also deemed to be desirable by us when evaluating technology that is
meant to secure sensitive information.

The paper proposing ViSQOL states that Subjective MOS tests are the ground
truth for MOS-LQO algorithms [12], and as stated previously PESQ was also de-
veloped largely with ACR MOS scores in mind [43]. We therefore find it likely
that our planned methodology of comparing different MOS-LQO algorithms to the
Subjective DMOS scores of different audio steganography methods is an effective
way to measure their suitability for measuring perceptual transparency within the
field. This is further supported by the fact that the ViSQOL paper mentioned at
the start of this paragraph also does something similar to our methodology by
comparing the results from a subjective MOS test to results from the ViSQOL and
PESQ MOS-LQO algorithms, on audio modified with degradations that are typical
for VOIP systems, in order to see what algorithm performs the best in different
scenarios.

While the DCR procedure is ultimately chosen for this study, it is less defined
in the P.800 than the ACR procedure [5]. Because of this, we will also try to follow
the ACR procedure when something is not defined in the DCR procedure, but is
defined in the ACR procedure. We think it makes more sense to do this rather
than making up our own choices on the spot, especially since the DCR procedure
is based on the ACR procedure, according to the P.800 [5]. In addition to this, it
is not always possible for us to completely follow either procedure for practical
reasons, in these cases we try to come up with solutions that are inspired by one
of the procedures, but that are possible for us to do (see Table 3.4). We will get
further into this in Section 3.6 describing the experiment design of the DMOS test.

3.3 DMOS Test Recruitment and Practical Considerations

According to the P.800 recommendation the environmental noise for the listening
test should be kept as low as possible, setting a recommended limit below 30 dBA
[5]. It also states that the room size should be between 30 and 120 cubic meters
and have a reverberation time of less than 500 ms. We have decided to deviate
slightly from these recommendations for a few reasons; we do not have immediate
access to the equipment to measure these things, nor do we have access a profes-
sional recording studio that may ensure some of these requirements. It would also
add a fair bit of complexity to our already quite broad study in terms of different
activities needed to be done to acquire these things. This would take time and re-
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sources in itself, but it would also make it more practically difficult to conduct our
subjective DMOS test. One of the reasons for this is that the participants would
have to travel to our recording studio, and/or having to rent/borrow a studio and
the necessary measurement equipment at the same time as the participants also
have time to participate would add complexity to the time management of our
study. This could likely result in the recruitment of less participants, as it would
be more work for them to travel to us and they may also not be free when we
have access to the studio and equipment needed.

Because of this we decide to go with a more practical methodology that we still
think covers the ideas behind the P.800’s recommendations [5] to a high degree.
Instead of using these very rigid room requirements, we travel to our participants
preferred locations to conduct our subjective DMOS tests. At these locations we
look for the quietest room available with the least distractions from other people.
All participants are also wearing a pair of Sony WH-1000XM3 Noise canceling
headphones with noise canceling enabled during the DMOS test. As mentioned,
we still look for the quietest rooms possible as the noise canceling headphones
are not perfect and may let in some noise or otherwise alter the audio in noisy
environments. We believe this ensures enough consistency between our different
test environments to ensure valid and comparable results.

Since we are traveling to the participants the audio samples are played from
a laptop. The same Lenovo Thinkpad L13 is used for all of our testing to ensure
consistency. We also make use of a 3.5mm audio cable for the noise canceling
headphones, in order to remove any potential audio disturbances or quality is-
sues that may arise from using Bluetooth. More technical information about the
experiment can be found in Section 3.6.2 explaining the experiment setup and
technical details.

To ensure proper hygiene and that the participants are comfortable with par-
ticipating, single-use disposable ear-cup covers are used on the noise canceling
headphones. These are of course replaced for each participant. To ensure that the
participants are comfortable they are also allowed to pick a comfortable volume
themselves before the DMOS test. They are however, instructed to pick the loudest
comfortable volume. The reasoning behind this is further explained in Section 3.6
on the experiment design, along with more details.

Participants are mainly recruited from family, friends and their acquaintances.
If more participants would still be needed after exhausting these alternatives there
was a backup plan in place to recruit students and employees at NTNU, in addition
to recruitment from social media channels. However, this has not been necessary
as 21 participants are recruited from the first group. The initial recruitment goal
was 20 participants, as this is a number that we have seen used in several other
studies [4, 16], and one that seemed realistic considering the time frame of the
thesis. [16] achieved close correlation between MOS, DMOS and PESQ with this
number of participants. [4] appear to have used the older, narrow-band version
of PESQ as they state that the PESQ scores are given between 1 and 4.5, they
achieve a subjective MOS score of 5 and a PESQ score of 4.47 while testing their
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proposed audio steganography method. It was difficult to find an exact recom-
mended number of participants for audio or speech quality MOS testing, but this
paper on MOS limitations [55] refers to the audiovisual MOS testing ITU-T recom-
mendation P.911’s [56] recommended participant number of anywhere from to 6
and 40 and the video MOS testing ITU-T recommendation BT.500’s [57] stated
recommended minimum of 15 participants. This survey investigating how differ-
ences in methodology affects MOS scores for TTS evaluation uses 26 participants
for each of its four different MOS methodologies [58]. Judging from these papers
20 participants seems like a fair number for our study.

One extra participant is included as they were practical to include at the time
of conducting the DMOS test, and because we deem it advantageous to have more
participants than required in case of any outliers being excluded from the study.
Assuming some potential differences in DMOS ratings given by people of different
ages and genders, some efforts are also made to try to recruit participants from
different gender and age groups. However, we assess it to be more important to get
enough participants than maintaining this balance, so we do not let this consid-
eration stop us from recruiting willing participants. The age groups and genders
of all participants are collected and the participant demographics are reported in
Section 4.1.1.

During the pre-project [9] it was identified that any study at NTNU that col-
lects personal information needs to be registered with Sikt, which provides pri-
vacy services for the university [59]. It was not clear to us if the age and gender
information we planned to collect classified as personal information, so Sikt was
contacted to check this. They encouraged us to register the study with them for
approval [60], which was done shortly after handing in the pre-project report in
December 2024. This also meant we had to create a consent form to be signed by
all participants of our Subjective DMOS test. This was done using Sikt’s template
[61] and can be seen in Appendix C. The project was swiftly approved within a
few days after reporting it to Sikt.

3.4 Cover File Selection

3.4.1 Dataset Selection

Our dataset is chosen in adherence to the P.800 recommendations [5]. Both the
ACR and DCR procedures of the P.800 are deemed relevant for our dataset selec-
tion. This is because the DCR procedure explained in the P.800 is not nearly as
detailed as the ACR procedure, especially when it comes to details concerning the
selection of audio samples. For instance, the DCR method does not state the de-
sired length of the chosen sentences, nor does it specify the use of speakers with
different genders. It does however mention that the DCR method is largely based
on the ACR procedure, as well as explicitly mentioning parts of the ACR method
that does not need to be followed in DCR, such as accounting for the order of
presentation effect. We therefore decide to follow the P.800 ACR method’s recom-
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mendations relevant to dataset selection for the areas where the DCR procedure
did not explicitly state otherwise or have its own recommendations.

The P.800 ACR recommendation [5] stresses the importance of including both
male and female speakers in the tested speech samples. The ACR procedure re-
commendation also emphasizes the importance of using more than one speaker
of each sex to avoid having the results potentially skewed by peculiarities of a
single individual’s voice. The ACR procedure recommendations also state that the
recordings used for the MOS test should be of studio quality. The DCR specific
recommendations recommends the inclusion of at least four speakers, further
stating that the speakers should all be reading the same two phonetically rich
sentences during the test. In addition to following the relevant parts of the P.800
recommendation, we add the requirement of the dataset being chosen for this
study being free of charge for academic use.

As discovered during the research project planning course [9] planning out
this study, the TIMIT dataset [36] stands out as a possible contender, as Reyers [3]
evaluated this to be suitable for the audio steganography tools and methods that
we will be using in this project, in his thesis [3] comparing these methods. Reyers
did this by comparing four datasets identified as the most commonly used ones
within the field in a review of the current state of the art in audio steganography
from 2020 by AlShabany et. al. [2] and his reasoning is compelling. However,
on further inspection it is discovered that the TIMIT dataset does not currently
appear to be free to use for academic purposes [36].

Alternative datasets are therefore found with assistance from the Microsoft Co-
pilot [20] AI assistant. Copilot is prompted to suggest alternative datasets similar
to TIMIT [36], that also follows the requirements from the P.800 mentioned earlier.
The suggestions are then reviewed manually. After looking through many differ-
ent proposed datasets we find three that appear to be possible contenders: The
"MOCHA MultiCHannel Articulatory database" [62] (MOCHA-TIMIT), the "Pitch
Tracking Database from Graz University of Technology" [63] (PTDB-TUG) and the
"CMU ARCTIC databases for speech synthesis" [64]. All of these datasets appear
to be recorded in professional recording studios with the PTDB-TUG dataset con-
taining phonetically rich sentences, and the two others containing phonetically
balanced sentences.

The PTDB-TUG dataset initially seems like a strong contender as it contains
ten speakers of each sex and only contains phonetically rich sentences [63]. In
addition to this the PTDB-TUG dataset is also newer as it was released in 2011
compared to the MOCHA-TIMIT and CMU Arctic datasets that were released in
1999 and 2003 respectively [62, 64]. Which we initially thought could mean it
had higher quality recordings. However, on further inspection it is noticed that
the ten speakers do not all speak the same sentences and that it is not possible to
choose four identical sentences spoken by each of our needed two male and two
female speakers. Many of the sentences also contained breathing noises and but-
ton presses, and while some of them only contained these noises before and after
the sentence was spoken so that they could be edited out somewhat easily, this was
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not the case for all of the sentences. This would complicate both the audio selec-
tion process as it isn’t always easy to hear whether the breathing or button noises
can be easily edited out or not. It would also require an extra pre-processing step
for editing out these noises before the audio files would be ready for embedding
which would take time. The MOCHA-TIMIT dataset is also excluded for similar
reasons as it only contains one speaker of each sex, which is not enough for our
requirements.

Ultimately, it is discovered that the CMU ARCTIC dataset contains a more than
sufficient amount of male and female speakers reading out the same sentences
[64]. The four speakers labeled as US English bdl (male), US English slt (female),
US English clb (female) and US English rms (male) are chosen from the main
CMU ARCTIC database as they speak clearly and have recordings of pretty good
quality. The sentences also appear to have been edited to not contain much space
before and after the spoken words, as well as seemingly having the least amount
of breathing or other unwanted noises in its recordings. This comes at the cost
of the microphone quality not always being the best, with some unwanted noises
seemingly coming from the microphones being present in some of the recordings.
The dataset also contains phonetically balanced sentences, rather than phonetic-
ally rich ones. However, this was the only dataset found that otherwise fit all of
our required criteria. At this stage a considerable amount of time has also been
spent on finding a suitable dataset, and this one will therefore have to be selected
in order to ensure ample progress of the project.

3.4.2 Audio Selection

The P.800 DCR and ACR procedure recommendations [5] are also used when
selecting our audio samples for our study from the CMU ARCTIC dataset [64].
The P.800 recommendations do not mention any audio file length for the DCR
method specifically. The recommendations for the ACR method of about two to
three seconds per recorded sentence is therefore followed [5]. It makes sense to
use the ACR method recommendations for the sentence length as both PESQ and
ViSQOL appear to have been developed with this type of Subjective MOS test in
mind. This is explicitly stated for PESQ in [43] and suggested by comparison to a
Subjective ACR MOS test in Experiment 1 of the paper proposing ViSQOL as well
as being mentioned as being the most common subjective MOS methodology in
the background section of the same paper [12]. It therefore seems rational to us to
follow this recommendation in order to increase the chances of the audio samples
working well with our MOS-LQO algorithms, as the same samples will have to be
used for both our subjective and objective MOS testing in order to compare the
algorithms.

The P.800 ACR specific recommendations also mention that a windscreen sho-
uld be used if breath puffs from the speakers can be noticed [5]. While it is possible
that this may not affect our DMOS results, as it is not explicitly mentioned in the
DCR specific recommendations of the P.800, we imagine that it could at the very
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least affect the results of our MOS-LQO testing. We therefore take this into consid-
eration while choosing our audio files by trying to select audio files with minimal
"non-speech" breathing or mouth sounds. From this we also assume that other
"non-speech" disturbances like button clicks or background noise could possibly
also affect our MOS-LQO and DMOS test results negatively. We therefore try to
avoid audios that contain any non-speech sounds to the best of our ability when
selecting our audio files.

Figure 3.1: Different things that can affect speech quality, adapted from [65].

Effects mentioned in a seminar of mean opinion score testing of voice quality
hosted on HEAD acoustics International’s, an acoustics company that has been in
the industry for 40+ years, YouTube channel and presented by Jabob Sondergaard
is also taken into consideration during the audio selection process [65]. The sem-
inar showcases different effects than can affect speech quality MOS scores. Even
though we are interested in audio quality rather than speech quality, we think
that it is possible that many of these effects could also affect how participants
rate audio quality. We therefore deem the effects mentioned in this seminar to be
relevant to our audio selection, as we do not want external factors to affect our
MOS scores, but rather want the effects measured to be isolated to degradations
in audio introduced by our audio steganography methods. We think this will allow
us to more effectively evaluate what MOS-LQO algorithm is most suited to meas-
ure the perceptual transparency of audio steganography methods. The different
effects showcased in the seminar can be seen in Figure 3.1.

Two effects highlighted by the HEAD seminar [65] early on strikes us as par-
ticularly relevant for our study. While many of the other effects appear to either
not be applicable to us or otherwise already being taken care of, for example by
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following the P.800 standard or using audio files recorded in a recording studio.
Sondergaard refers to these two particularly relevant effects as intelligibility and
naturalness. While intelligibility has a quite obvious definition as how compre-
hensible speech is [66], Sondergaard states that naturalness is bit of a vaguer
concept [65]. Sondergaard explains speech with low naturalness as speech that
might be perfectly intelligible, but that we still wouldn’t say sounds natural. He
uses Stephen Hawking’s synthesized speech as an example of this [65].

These concepts are applied during our audio selection process by excluding
sentences that for any reason sounds unnatural to us from being selected. This
can for instance be sentences that have unconventional sounding connotations of
specific words, or sentences that have unnatural pauses, i.e. sentences that do not
follow a natural "flow". The intelligibility effect is taken care of by excluding any
sentences that we find can be difficult to understand from the selection. If this
is true for any of our chosen speakers in the dataset, another sentence needs to
be selected for all speakers as they all need to repeat the same four sentences in
accordance to the P.800 DMOS procedure [5].

The audio files are picked by listening carefully to several recorded sentences
from different speakers from the CMU ARCTIC dataset [64], using the same pair
of headphones that will be used by the participants of our Subjective DMOS test.
The two female and two male speakers that we evaluate as generally sounding
the clearest to us are then selected. Four sentences that are close to two to three
seconds in length, and that sound clear and good across all of the selected speak-
ers, as well as fulfilling our requirements for intelligibility and naturalness, are
then chosen. We also try to exclude sentences containing any potentially sensit-
ive topics that could possibly disturb our participants. For instance, one sentence
containing references to weapons is excluded on these grounds.

The sentences labeled "a0011", "a0069", "a0094", "a0154" are selected from
the CMU ARCTIC dataset [64] by following the procedure described above. The
spoken contents of these sentences can be seen in Table 3.2. These four sentences
are later combined in pairs divided by 0.5 seconds of silence to make up two
so called "audio samples" for each speaker, in accordance to the P.800 DCR re-
commendations [5], following the order that they are presented in above. More
information about the presentation of the audio files and an illustration showing
the silence dividing the audio files and audio samples can be seen in Section 3.6
showcasing the Experiment Design of the Subjective DMOS test. The chosen au-
dio files are all 16-bit single channel (mono) PCM WAV files with a sample rate of
16.000 kHz and bit rate of 256 kbps.

The selected audio files can be found on our GitHub [67] in the "Selected
Audio Files" directory in "Supplementary Materials".

3.5 Applying Audio Steganography Methods

After selecting our audio files we can start implementing and applying our chosen
audio steganography methods to them, before eventually combining the files into
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File name Sentence spoken

a0011 If I ever needed a fighter in my life I need one now.
a0069 It was his intention to return to Eileen and her father.
a0094 He had barely entered this when he saw the glow of a fire.
a0154 He was smooth shaven and his hair and eyes were black.

Table 3.2: The sentences spoken in the the selected audio files from the CMU
Arctic [64] dataset.

audio samples for our MOS tests. This section explains the implementation and
application of each audio steganography method. As mentioned in Section 2.3
our steganography tools and methods and chosen to be the same as were used in
Reyers thesis [3], Section 2.3 also explains our reasoning for this.

In Reyer’s thesis, it is reported that for Steghide and Hide4PGP higher embed-
ding capacities lead to worse SNR scorer. Therefore, we have chosen a methodo-
logy to embed close to maximum capacity into these methods in order to create a
worst case scenario. For the GAN method, Reyers reports an almost flat SNR score
across different embedding capacities. We find this a bit strange and therefore ap-
ply this method at two hiding capacities, one near maximum and one of about 5%
to see if we get similar results. As mentioned previously in this thesis, we refer to
the GAN method applied at these different capacities as GAN low and GAN high.
The TAN method is implemented, but not applied to all of our selected audio files.
This is because we had trouble implementing it in time for the subjective DMOS
test. However, we were eventually able to implement it after finding a mathemat-
ical error in the paper [19] proposing it. More about this can be seen in Sections
3.5.4 and 4.5.

The subsections in this section show the details of how our different chosen
audio steganography tools and methods are implemented and applied.

3.5.1 Steghide Methodology

For the Steghide methodology a Kali Linux 2024.4 VirtualBox virtual machine
(VM) image installed from the official Kali website [68] is used with Oracle Virtu-
alBox [69] Version 7.1.6 r167084 (Qt6.5.3). Steghide [30] version 0.5.1 is then
downloaded from the default official Kali Linux repository with the apt command.

To create the Steghide stego files the maximum capacity of each cover file is
first checked with the built in Steghide "info" command. This command returns
the maximum capacity of each file in kilobytes (KB), which is then converted to
bytes using this online converter [70] (the binary result is used), before using this
online Lorem Ipsum generator [71] to generate a random Lorem Ipsum text that
is exactly the size of the maximum embedding capacity of each file to be used
as the secret message. This generated text is then copied for each cover file and
saved as txt files to be used for embedding (Figure 3.2 illustrates the process up
to this point), before embedding each txt file into their respective cover files with
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Figure 3.2: How the Steghide maximum capacity secret message is created.

the following command:

steghide embed -ef ’secrets/[SECRETMESSAGE].txt’
-cf ’stegofiles/[STEGOFILE].wav’ -p password123

The command assumes that all the cover files have been copied over to a
directory called "stegofiles" before it is ran. This is done so that the original cover
files won’t be altered by the command since it changes the specified files directly
instead of copying them to a new directory and keeping the originals. "embed"
specifies to Steghide that we want to embed information into a file, "-ef" specifies
the path of the file to be embedded into the cover file, "-cf" specifies the path of
the cover file, and -p specifies a password needed to recover the message from
the stego file again after embedding, which is set to "password123" for all of our
cover files.

To make sure everything went as expected we also extract the information
from each stego file and compare the extracted message txt file to the original
embedded txt file manually to ensure that they are the same. The extraction is
done using the command:

steghide extract -sf ’stegofiles/[STEGOFILE].wav’
-p password123 -xf ’extracted/[EXTRACTEDSECRET].txt"

This process is repeated for all 16 cover files selected in Section 3.4 (four files
each for four speakers) to create stego files that are later used to make audio
samples for our subjective and objective DMOS, MOS-LQO and SNR testing. The
stego files retain all the same file properties in terms of sample rate, bit rate, etc.
as explained in Section 3.4.2.

We decided against automating this process, both because the time saved
would be limited, and because we didn’t want to risk bugs in the automation
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code potentially messing up the embedding process. We also considered the pos-
sibility of these bugs staying undiscovered because of worsened oversight of the
embedding procedure.

3.5.2 Hide4PGP Methodology

The Hide4PGP methodology shares many similarities with the Steghide method-
ology, but is slightly more complicated because of its PGP integration. Hide4PGP
2.0 downloaded from [32] for Linux is used on an Ubuntu 22.04.2 LTS virtual ma-
chine (VM) running on Microsoft’s Windows Subsystem for Linux (WSL) 2 [72].
WSL 2 was chosen in favor of VirtualBox [69] this time around as it appears to
run faster and overall give us less problems. However, we did get some permission
issues with Ubuntu and decided to fix these quickly by simply doing all commands
as the root user, as we were only going to use this VM for our Hide4PGP stego file
creation.

Like with Steghide, we start by checking the hiding capacity of each file, which
is done with the "-i" parameter in Hide4PGP. An example of how this command
can look is shown below:

./hide4pgp -i "coverfiles/[COVERFILE].wav"

"./" is used in front of "hide4pgp" as it is ran straight from its 32-bit execut-
able. "-i" specifies that Hide4PGP should show information about the cover file,
such as the file type and hiding capacity. However, we cannot just generate Lorem
Ipsum text using the hiding capacity displayed here like we did with Steghide.
This is because the Hide4PGP documentation included with the install [32] states
that the secret message should be encrypted with PGP before embedding, and in
our experience this process slightly increases the file size of the secret message.
Because of this, we add a "safety margin" of one kilobyte (1024 bytes) to make
sure that all the PGP-encrypted secret messages will embed successfully. This is
done by subtracting 1024 bytes from the maximum embedding capacity shown
by Hide4PGP, before generating the Lorem Ipsum with the same Lorem Ipsum
text generator used in the Steghide methodology [71]. Like Steghide, Hide4PGP
also reports maximum hiding capacities in kilobytes, so the same online kilobyte
to byte converter that was used for Steghide is also used for Hide4PGP, before
subtracting one kilobyte and generating the secret Lorem Impsum message.

For each file, this generated message is put into a txt file which is encrypted
with PGP using RSA-2048, by utilizing the GnuPG (gpg2) 2.4.4 program typically
included with Ubuntu. For ease of use, we initially use the GPG file format rather
than the older PGP format. However, we later noticed that we had been extracting
the files in the PGP format, but this made no difference in being able to recover
and decrypt the secret message. This is also reflected in the showcased commands.

The generated secret message is first encrypted with gpg2 by using the follow-
ing command:
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gpg2 --encrypt --recipient root --output
./encrypted/[ENCRYPTEDSECRET].gpg
./secrets/[PLAINTEXTSECRET].txt

The encrypted secret message is then embedded into each cover file to create
our Hide4PGP stego files with the following command:

./hide4pgp stegofiles/[STEGOFILE].wav
encrypted/[ENCRYPTEDSECRET].gpg

The command above assumes that all cover files have been copied over to a
directory called "stegofiles" before it’s ran. This is done so that the original cover
files won’t be altered by the command.

Each secret message is also extracted from the stego files, decrypted and manu-
ally compared to their original embedded counterparts to ensure that the message
is recoverable and unaltered. The extraction is done using the following com-
mand:

./hide4pgp -x stegofiles/[STEGOFILE].wav
extracted/[EXTRACEDSECRET].pgp

The "-x" specifies that Hide4PGP should extract a message from the stego file.
Lastly, the extracted message is decrypted with gpg before it can be compared

with the original secret message, using the following command:

gpg2 --decrypt --output ./decrypted/[DECRYPTEDSECRET].txt
./extracted/[EXTRACTEDSECRET].pgp

This process is repeated for our 16 selected cover files to create our Hide4PGP
stego files that are later used to create the audio samples for our subjective and
objective MOS testing. The stego files retain the same file properties in terms of
sample rate, bit rate, etc. as explained in Section 3.4.2.

3.5.3 GAN Based Audio Steganography Implementation and Method

The GAN method implementation [39] used in this thesis is an extension and im-
plementation of the two papers [37] and [38]. This implementation supports both
image and audio steganography. The implementation is largely left unchanged,
however extensive work is put into to making it work by installing the correct
versions of dependencies, as is typical for getting older Python projects to work.
Python 3.6 is chosen to be the most likely contender to have been used during
the implementations development judging from the initial creation date of the
GitHub project [39], and this version is therefore used to run the implementa-
tion. Versions needed to be specified for most dependencies in order to get the
code to run, a combination of trial and error and asking Microsoft CoPilot AI [20]
about what dependency versions work together, and that may fix various error
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messages, is used to eventually specify and install a working combination of de-
pendency versions.

All our cover files were manually resampled from 16.000 kHz 44.100 kHz
with Audacity [73] before embedding. The report from the GAN implementation
authors [39] also posted on the GitHub states to use 5 kHz or 22 kHz sample rates,
however when resampling our cover files to 22.100 kHz, the stego file generated
by the GAN method appear to play back in double speed. Inspecting the stego
file’s properties reveals a sample rate of 44.100 kHz which is why we decided to
try resampling our cover files to this sample rate instead. Doing this resolves the
double speed problem and the samples appear to play back at a normal speed.

The same pre-trained model that was used by the authors of [39] in their
Python Jupyter Notebook for applying the audio steganography part of the GAN
method was used also for our purposes. This may not be optimal as the authors
state that this was trained mostly on music, while we are operating on audio files
containing spoken english. This does appear to make a slight difference as Reyers
[3] report a slightly better SNR score for their tested music samples than their
spoken english samples when applying the GAN method in their thesis. However,
the SNR scores for both their spoken english and music datasets are both very
poor and seem to get closer to each other at maximum capacity. We also measure
way higher SNR scores than Reyers results in our experiments, is is possible that
they used one of the recommended sample rates or another one of the included
models. We also don’t know for sure if Reyers used the same GAN implementation
as us, as they only refer to the original GAN paper [37] in their thesis. Since
we are mainly interested in evaluating ways to measure perceptual transparency,
rather than the audio steganography methods themselves, we will not be spending
time on training our own model for the GAN method. In fact, having a method
with worse performance could even be beneficial in order to test a wider range of
degradations.

As mentioned in Section 2.3.3 about the GAN method’s background, we divide
the GAN method into two hiding capacities which we refer to as GAN High and
GAN Low. GAN High is the GAN method applied at its maximum capacity for each
file, while GAN Low is the GAN method applied at 5% of maximum capacity for
each file. Unlike Steghide and Hide4PGP, the GAN method does not have a way
of showing the maximum hiding capacity of a file. We therefore decide that this
will have to be brute-forced by embedding larger and larger messages. Several
attempts are made to automate this process. One attempt adds one by one letter
to the input until the embedding fails, saving the last input and one attempt does
the same with extra words instead. However, both of these methods encounter
strange errors where the embedding fails on inputs way smaller than the max-
imum capacity. It appears to us that certain words or characters can sometimes
get the embedding to fail, even for inputs much smaller than the max capacity. A
manual method is therefore ultimately chosen, as we do not have time to figure
out exactly what is causing these strange errors.

The manual method chosen is similar to the Steghide and Hide4PGP meth-
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ods, but differs in some areas. For the GAN high method a plenty large enough
Lorem Ipsum text is generated with an online Lorem Ipsum generator [71]. Once
this fails to embed, parts of it are manually removed until it no longer fails. Then,
letter by letter is added back to find the exact maximum capacity of the file. When
this is found the GAN High stego file can be generated with a maximum capacity
message embedded. After this is done, characters are counted to determine the
amount of bytes embedded, as all normal English capital and non-capital charac-
ters, as well as commas and punctuation marks, take up one byte in Python UTF-8
encoded strings. After counting the amount of characters/bytes in the maximum
capacity message we can multiply the resulting size by 0.05 to find 5% of max-
imum capacity for the current cover file. After doing this, characters are removed
to leave just the resulting 5% of max byte size and the GAN Low stego file is gen-
erated. This is repeated for all cover files to generate our 16 GAN High and 16
GAN Low stego files. The stego files generated by the GAN method are 44.100
kHz 32-bit float wav files with a bit rate of 1411 kbps.

The final code used for the GAN method implementation can be found on our
GitHub in the "GAN Method Code" directory [67].

3.5.4 TAN Based Audio Steganography Implementation

The TAN method proposed in the paper [19] was implemented from scratch with
the help of Microsoft CoPilot [20] and OpenAI ChatGPT [74]. This method con-
tains three main components: AES-128 encryption, a two dimensional logistic tan
map (2D TAN map), and code for embedding and extracting the secret message
using the outputs of the TAN map. The AES-128 implementation was largely gen-
erated by CoPilot, while the rest of the code was largely generated and modified
by both ChatGPT and CoPilot. Naturally, some manual work was also done to
make everything work together, as well as fixing some bugs in the AI generated
code.

The TAN method uses a least significant bit (LSB) approach where an audio
file is split up into its (in our case 16-bit) audio samples, and the deterministic
(for the same starting input) chaotic output generated by the 2D TAN map is used
to decide what order of samples LSB’s are used for embedding the secret message.

Figure 3.3: The sine map functions from paper [22] and the tan map functions
from paper [75]. Adapted from [22] and [19].
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The AES-128 encryption component was developed by the help of Microsoft
CoPilot [20] and was quite straight forward to implement. The 2D TAN map
defined in the paper [19] however, is not so trivial to implement, even though
Microsoft CoPilot was also used to develop this component of the stego method.

The 2D TAN map is first implemented exactly as it is described in the paper.
To confirm that we have the correct implementation we try to replicate the output
values of the 2D TAN map implementation used in the TAN paper [19] and show-
cased in Table 1 of their paper. An adapted version of their table can be found to
the left of our Table 3.3. To do this, we need to replicate the tan paper’s starting
values for x and y , and the r parameter as required by the tan map functions
shown to the right of Figure 3.3. The starting values for x and y are both shown
to be 0.3 in the tan paper, but they do not specify the r value used. To find the
r value values from 0.1 to 0.9 are tried in increments of 0.1 and the output is
inspected. When using an r value of 0.9 it is observed that the same output as
the first iteration of the tan paper’s [19] TAN map output can be reproduced, but
after the first iteration the values all deviate. Since the first values being both be-
ing identical by chance seems unlikely, this prompts us to look for any potential
mistakes in the TAN paper.

Output by TAN paper (x, y) Output by our implementation (x, y)

(10465258, 30235701) (10465258, 30235701)
(7346647, 6264212) (7346647, 6264212)

(13410269, 26680129) (13410269, 26680129)
(5695430, 102796485) (5695430, 102796485)
(52553839, 14999801) (52553839, 1431521)

N. A. (14999801, 12300396)

Table 3.3: The 2D TAN map output from the TAN method paper [19] compared
to the output of our implementation, partly adapted from [19].

Eventually, an error is found in the TAN paper [19] by looking at the papers
cited and discovering a sine map steganography method paper [22] by the same
authors [19] that cites yet another similar sine map paper [21]which both propose
very similar methods to the TAN paper, using a sine map instead of a tan map. The
y function in the last of the two mentioned sine papers [21] contains xn+1 in its y
function to offset the iterations of x and y between the two functions, while the
TAN method paper’s y function simply reads xn, meaning that the values are not
offset. This difference is showcased in Figure 3.3 with the "+1" omitted by the tan
paper marked in red.

When adding this iteration offset to our implementation of the TAN method,
we recognized many of the same output values. However, we noticed that we also
had a many output negative values that were not shown in the TAN paper. We
therefore concluded that the TAN papers implementation likely simply got rid of
all negative values and used every other positive value in the order they were left
behind as either x or y values, regardless of what function created them. After
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implementing this logic we are able to produce a nearly identical output to the
TAN paper.

Our TAN map’s outputs compared with the tan paper’s outputs can be seen in
Table 3.3. The only difference between the two can be seen in iteration five, where
the TAN paper reported a y value of 14999801, and our implementation produced
a y value of 143121. However, the next output value produced is 14999801 for
our implementation. We would argue that this strongly suggests that this is an-
other spelling mistake by the TAN paper, as we find it very unlikely that they
produced all the same output values as us, before somehow skipping one value
and going back to produce the same next output value.

Finally, the code for embedding and extracting the message by splitting up the
audio files into their (in our case 16-bit) audio samples, and changing their LSB’s
in the order generated by the TAN map, and in the way defined by the TAN paper,
was created with help from Microsoft CoPilot [20]. All the code, including a proof
of work demonstration of the entire method as proposed in the tan paper [19],
applying AES-128 to a secret message before embedding it in an audio file, and
doing the whole process in reverse to extract it again can be found on our GitHub
in the "TAN Method Code" directory [67].

As mentioned, we did not have time to create stego files using the TAN method
before our first appointment with test subjects for the objective DMOS test, be-
cause of the errors discovered in the TAN paper. We therefore decided to include
two capacities of GAN instead of the TAN method in the DMOS and MOS-LQO
tests, as described in Section 3.5.3, and report the discovered TAN errors and
solutions as an additional result.

3.6 DMOS Experiment Design

After choosing the DCR method for our subjective MOS test in Section 3.2, we can
go ahead with the experiment design of our Subjective DMOS test based on the
P.800 recommendation [5]. The P.800 annex for ACR refers to annex A for con-
versation opinion tests which names a number of experiment types that can be
used, such as Latin Squares [76] and Randomization with Replication [77], but
ultimately states that the researcher needs to decide what is best for their own
use case [5]. The P.800 ACR procedure also specifies that the order of presenta-
tion effect needs to be accounted for, which is something that can intuitively be
done with some sort of simple randomization of order of steganography method
for each participant or for instance by the use of Balanced Latin squares [78].
However, doing this would add complexity for our manual approach using pen
and paper, and while it would be possible to implement in our experiment design
it would also leave more room for manual errors during it’s conduction. Luckily,
the P.800 DCR procedure we have chosen also explicitly states that the order of
presentation effects does not need to be accounted for [5]. We therefore decide
against using any of these experiment types mentioned by the ACR procedure and
instead design our own experiment that we think will allow us to compare how
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good our chosen MOS-LQO Algorithms are at evaluating the perceptual transpar-
ency of our chosen audio steganography methods compared to Subjective DMOS
in a good way.

We are taking a manual approach to our experiment and this is done to ensure
that we have time to conduct it with the somewhat limited resources of a single
person’s Master’s thesis. We do not find it appropriate to spend time on developing
or investigating potentially already existing frameworks for our test, as we are
already under time pressure from all the activities needed to be done for this
thesis. We therefore decide to make use of a experiment design where the audio
is manually controlled by the person conducting the study and the ratings from
the participants are collected with pen and paper. Which we will now explain the
details of in greater detail in Section 3.6.1.

3.6.1 Experiment Procedure and Information Given to Participants

First and foremost, the participants are given some information about the study
and the law obliged consent form displayed in Appendix C is read and signed by
each participant. More detailed information about the practicalities of the study
are given to the participants in the form of printed paper displayed in Appendix D,
as is recommended by the P.800 [5]. The first three participants are given the same
information as contained in the information paper verbally before discovering
that an information paper might be more effective for this purpose. Some of the
participants were also sent this information by E-Mail before the test took place
in order to save time by allowing them to read it beforehand. The participants
are then given a chance to ask practical questions about the test and are told
that they can also ask questions during the test if something is unclear. The P.800
ACR recommendations are followed when it comes the types of questions that
are answered, answering questions about the meaning of the instructions given
and general questions about the procedure, but not technical questions [5]. For
instance, the participants are not informed about the existence of a null pair even
if they ask about this directly.

In accordance to the P.800 [5] ACR procedures participant requirements, each
participant is asked whether they have; "...been directly involved in work con-
nected with the assessment of the performance of telephone circuits, or related
work such as speech coding" [5, p. 18], "not participated in any subjective test
whatever for at least the previous six months, and not in any listening-opinion
test for at least one year" [5, p. 18], and have never heard the sentences presen-
ted in the tests audio samples before. All the participants answer no to all of these
questions. The P.800 ACR participant requirements are used here as there are no
explicit participant requirements mentioned in the DCR procedure.

The consent form in Appendix C given to the participants contains some gen-
eral information about the experiment and its purpose, along with some privacy
related information about how their data is processed etc. The information paper
in Appendix D given to the participants contains more detailed information about
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Figure 3.4: The DMOS Scale explanation and translation used in the participant
information paper.
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the actual procedure of the test. The document explains that the participants are
to rate the degradation in audio quality between some different degraded audio
samples and their high quality reference on a scale of 1-5. The scale explanation
used in the document can be seen in Figure 3.4. This scale also includes a transla-
tion of the P.800 DCR scale [5] to Norwegian as the study is conducted in Norway.
This translation is made by us and great care is put into making it as direct of a
translation as possible. The information paper also includes a simplified illustra-
tion of the papers that the participants will be given to mark their ratings on, this
simplified version can be viewed in the original information paper in Appendix D.

Figure 3.5 displays the first page of the two page paper given for each degrad-
ation to collect the ratings in the actual test. The first page contains the ratings
to be given for the four female audio samples for each method, while page two
contains the ratings to be given for the four male audio samples. Two pages like
this are given for each of our four stego methods as well as for our null-pairs, so
each participants fills our ten pages in total. The rating paper shows each tested
steganography method and null-pair method as one "Round" so that the rating for
each method can be correctly interpreted later.

The null-pair is included in accordance to the P.800 DCR procedure recom-
mendations in order to be able to check the quality of the anchoring [5]. In the
null-pairs the high quality reference is also played as the "degradation", instead
of a sample altered by a stego method. The round numbers on the rating papers
are already filled in by us along with the participant number before handing the
papers to the participants. The participants age, sex and chosen volume is filled in
by us after they have completed the test. The participant number is used as an an-
onymous identifier for each participant and the chosen volume is collected to have
better grounds for excluding outliers if they have selected a different volume level
than most of the participants, and have given ratings deviating from the norm.

Volume is quickly discovered to seemingly make a big difference for some
participants. When we refer to volume levels in this thesis we are referring to
Windows 11’s built in volume adjustment. Initially, the participants are allowed
to pick any volume they want by the use of the scroll wheel on a wireless mouse.
The volume is started at 50% and the participants are instructed to scroll up or
down from here. This is done by playing one sentence from each of our selec-
ted speakers from the CMU Arctic dataset [64] that are not used as samples in
our actual DMOS test. This method is chosen to ensure that the participants have
a comfortable volume across all of the different speakers. The logic behind let-
ting the participants pick their own volume is that hearing is subjective, and we
expect that the same volume level can be perceived differently by our different
participants. This logic is also backed up by the P.800 ACR procedure where it’s
stated that "there is no universal optimum listening level" [5, p. 16]. Therefore,
we do not think that forcing every participant to use the same volume will add
consistency to the test as this volume might be too loud or too quiet for some
participants to effectively percept the degradations of audio quality.

However, this first method for picking the volume quickly appears to not have
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been defined strictly enough as one of our first three participants chose a Windows
11 volume level of 12% while the two others both chose 100%. The participant
selecting 12 as the volume gave both the GAN High and GAN Low methods the
same DMOS scores of 4.875, while the other participants gave them 3.5, 3.7, 1 and
1. This participant was therefore asked to try to listen to the samples again with
higher volume, which they did. They then expressed that they would have given
the samples a way lower rating if they had used a higher volume, and that they
could have probably quite comfortably have used a higher volume for the test. The
participant giving these high ratings were therefore excluded completely from the
test as an outlier. Z-scores were later also used to statistically confirm them as an
outlier, which also resulted in the participant giving the ratings of 3.5 and 3.7
being excluded. These statistics are explained in further detail in Section 3.9.1 on
excluding outliers.

Because of this early volume method observation, the way of deciding the
volume for each participant is changed. With the new method being more strictly
defined and rigid to try to prevent participants from picking a volume that is so
low that it affects the results significantly. In the new method, the participants
are instructed to pick the loudest volume that they can possibly be comfortable
with. The same volume test samples are used, but the participants are now made
to listen to the max volume first and are instructed to verbally tell the conductor
of the experiment if the volume is too loud. If this is the case the volume will
be adjusted down in intervals of 25%. This gives a total of four possible volume
levels: 100%, 75%, 50% and 25%. The reasoning behind using only four steps is
that it divides participants into fewer volume groups where statistics can be used
more effectively to check if the difference in volume lead to a significant change in
DMOS score. Doing a statistical check like this before combining the scores from
different listening levels is also recommended by the P.800 ACR procedure [5].

This added rigidness to the volume selection methodology seems to have had
the intended effect of participants performing the test at the highest comfortable
volume, as the rest of the participants all chose 100% volume except for one par-
ticipant that chose 75%. Some would maybe argue that this could suggest that
participants picked a higher volume than they were actually comfortable with, but
we find this to be unlikely as the participants were clearly told that they should
not pick a volume that is uncomfortable to them.

The information paper given to the participants also explains how the samples
are presented, as well as showing this by including the illustration shown in Figure
3.6. This figure is translated to English, while the information paper given to the
participants contains a Norwegian version. The information paper explains how
each sample is comprised of two sentences spoken by the same speaker divided by
0.5 seconds of silence. This is in done in accordance to the P.800 recommendation’s
DCR procedure [5]. As explained in Section 3.4.2 on Audio Selection, two male
and two female speakers have been selected to repeat the same four sentences.
These sentences are then combined in pairs into two audio samples per speaker.
Figure 3.6 shows how each of these samples are presented in each round (null-pair
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Figure 3.5: Page one of the two page document given on paper to the participants
for each steganography method and the null-pairs.
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or audio steganography method).
First, the reference audio sample is played, in the meantime the conductor of

the study is holding up a sign labeled "Reference" in both English and Norwegian.
Then after 1 second of silence, in accordance to the P.800 DCR procedure [5], a
degraded version of the sample is played while the conductor of the experiment
holds up a sign labeled "Degraded" in both English and Norwegian. By degraded
sample we mean that the sample is either a null-pair, i.e. the same high quality
reference, or has been modified by one of our four chosen audio steganography
methods. This playback sequence is repeated twice so that the participants can
"double check" if they actually noticed a degradation in audio quality between
the samples. This is also done in accordance to the P.800 DCR procedure which
recommends either presenting the samples in a A-B or A-B-A-B repeated sequence
configuration, where A is the high quality reference and B is the degraded sample
[5]. After each of these sequences the participants marks their rating on the rating
paper illustrated in Figure 3.5. They know when its time for this as the conductor
is no longer holding up any signs. The conductor of the study also pays attention
to make sure that the rating is given for the correct sample.

A total of 40 of these sample combination files were created manually in Au-
dacity to be played and rated during the DMOS test. This process is repeated until
the test is done and the entire test takes about 30 minutes, which is within the
45 minute maximum suggested by the P.800 ACR procedure, but outside the ideal
recommendation of not exceeding 20 minutes [5]. However, we think this is a
worthy trade-off for having each of our participants rate all of our samples. In
addition to this, the participants did not seem excessively fatigued after the test,
in our subjective opinion.

While designing the experiment we noticed that two of the audio stegano-
graphy methods appear to be very difficult to tell apart from the reference files,
while two of them appear to be very easy: However, both the author of this thesis
and two of the supervisors thought that they might have heard some differences
in the files that are hard to distinguish from the reference. We therefore worry
that playing the methods that are very easy to tell apart from the reference files
first would ruin the sensitivity of the test, because participants would expect large
deviations from the reference and therefore give the methods that are hard to
distinguish a perfect score. Because of this we decide to deviate a bit from the
P.800 DCR recommendation here [5]. The P.800 DCR procedure states that only
one random order of presentation needs to be used in a DMOS test. However, we
decide to use the same pre-defined order of presentation where all of the null-pair
samples will be presented first, followed by all of the samples by the rest of the
methods in order ranked from being the hardest to the easiest tell apart from the
reference by us subjectively for all participants. This gave us the order of Null-pair
samples, Steghide [30] samples, Hide4PGP [32] samples, GAN [37] Low samples
and GAN [37] High samples.

We feel that this also helps the participants regain some focus at a crucial time,
when being presented the samples withy he much more noticeable degradations,



Chapter 3: Method 43

Figure 3.6: Sample presentation illustration used in the participant information
paper translated to English.

and hope that this counters some of the potential listening fatigue caused by a
longer than optimal test duration. It was observed while conducting the experi-
ment that participants that appeared to be getting fatigued and tired of the test
after the first three methods, that are either hard or impossible to distinguish,
seemed to perk up a bit and appeared to regain some focus after hearing the large
degradations of the last two methods.

The samples are manually played by the conductor of the experiment by open-
ing different labeled audacity files. This works well as it naturally gives the par-
ticipant a bit of time to rate the sample they just listened to before the next one
is played. The conductor of the experiment makes sure that the participant has
crossed out their rating, and that they have rated the correct sample before play-
ing the next one. This manual method also allows for questions to be asked by the
participant between samples during the experiment.

Table 3.4 shows what parts of the experiment design that followed the dif-
ferent procedures used from the ITU-T P.800 recommendations [5]. It also shows
parts of the experiment design that were inspired by these procedures, but not
following them completely. This is often because of some compromise, like us-
ing noise canceling headphones instead of potentially not being able to recruit
enough participants if we have to invite them to a sound proof recording studio
to conduct the experiment.

Some people may question why we state that we are doing a DMOS test,
mainly following the P.800 [5] DCR procedure when Table 3.4 makes it seem
like there are more experiment activities attributed to the ACR procedure than
the DCR procedure. This is because the most important parts of the experiment,
such as using reference and degraded samples and the degradation category rat-
ing scale, are based on the DCR procedure. As stated earlier, we try to follow the
ACR procedure when something is not specified by the DCR procedure.
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Procedure Followed Part of the Experiment Design

ITU-T P.800 DCR Degradation category rating scale formulation.
ITU-T P.800 DCR Sample & reference presented in A-B-A-B format.
ITU-T P.800 DCR Silence duration between samples.
ITU-T P.800 DCR Samples consists of two sentences from same speaker.
ITU-T P.800 DCR Speech material from 4 speakers.
Inspired by DCR Order of presentation of samples.
ITU-T P.800 ACR About 2-3 second long sentences.
ITU-T P.800 ACR Studio quality, easy to understand speech material.
ITU-T P.800 ACR Separated male and female MOS scores.
ITU-T P.800 ACR Separated male and female MOS scores.
ITU-T P.800 ACR Non-technical instructions to subjects.
ITU-T P.800 ACR Participant requirements.
ITU-T P.800 ACR Below 45 min maximum test duration.
Inspired by ACR Noise-canceling headphones.
Inspired by ACR Listening environment.
Inspired by ACR Volume selection method.

Table 3.4: The different ITU-T P.800 [5] procedures followed and used as inspir-
ation for the different experiment activities of the Subjective DMOS test.

3.6.2 Experiment Setup and Technical Details

To ensure consistency throughout the experiment, the same laptop is used across
its entire conduction. This laptop is a Lenovo ThinkPad L13 Gen 2, using the on-
board Realtek soundcard for 3.5 mm output set to its maximum output quality of
2 channel 24-bit 48000 hz to power the headphones used in the test. The laptop is
running Windows 11 Pro and the audio samples are played using Audacity [73].
Furthermore, the participants listen to the audio samples using a pair of Sony
WH-1000XM3 Noise canceling headphones with noise canceling turned on. The
headphones are connected to the laptop via a 3.5 mm cable, a 3.5 mm splitter is
used to split the output signal to a 3.5 mm Eletra CA101 chat headset [79] that is
worn by the conductor of the experiment. The Eletra headphones have a quite low
frequency rate at 32 ohms, but it is still observed that using the two headphones
together lowers the volume of both of them noticeably.

The extra headphones are used so that the conductor can monitor the play-
back and hear if there are any disturbances caused by other factors that the tested
degradations. The Eletra headset’s volume adjustment wheel is taped to its max-
imum position to ensure consistency throughout the experiment. As mentioned in
Section 3.3 on practical considerations for the experiment, disposable non-woven
sanitary headphone covers are used on the ear-pads of the Sony headphones for
all participants. It is possible that this could affect how the audio sounds both by
changing the isolation capabilities of the ear-cups, and by covering some of the
noise-canceling microphones. However, we believe that the microphones are still
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largely able to do their job as it is quite normal to use wind-muffs and pop-filters
on microphones. All experiments are done at a table or desk where the participant
is seated in a way that they can not see the computer screen of the laptop used by
the conductor. This is done to prevent them from realizing any details about the
test that they should not, such as the first round of samples being a null-pair test.

3.7 Objective MOS Testing Methodology

3.7.1 Selection of MOS-LQO Algorithms

This [2] review of the state of the art withing the field of audio steganography is
used to find the most commonly used MOS-LQO algorithms used for evaluating
perceptual transparency within the field. This survey reviews 134 audio stegano-
graphy papers, out of these 134 papers 12 of them use PESQ [18] as an evaluation
metric. The only other MOS-LQO algorithm mentioned in this survey is PEAQ [10],
but only three of the articles surveyed used this in their evaluation.

During the pre-project for this thesis [9], we also discovered some other MOS-
LQO algorithms that could be used for this purpose. These were, POLQA [80],
ViSQOL [12], and AqUA [13]. As mentioned in the Background Chapter in Section
2.6, POLQA and AqUA is excluded from our study because we were not able to
acquire academic licenses for them, and PEAQ [10] is excluded as we are unable
to find its license conditions. Section 2.6 also mentions how PESQ can be used
in this study, despite being a paid piece of software, because of an exception in
its license, and that ViSQOL Speech [12] and ViSQOL Audio [48] are both open
source and free to use for anyone. More details about these MOS-LQO algorithms,
and why some of them were excluded from this study, can be found in Section 2.6.

This leaves us with PESQ, ViSQOL Speech and ViSQOL Audio as the selected
MOS-LQO algorithms to be evaluated on their ability to measure the perceptual
transparency of audio steganography methods in this thesis.

3.7.2 PESQ Implementation

A PESQ wrapper for Python by ludlows on GitHub [46] is used as our PESQ im-
plementation. This contains a modified version of the PESQ original source code,
and a wrapper to be able to use it in Python. This is a popular way to use PESQ and
is used by several big actors such as NVIDIA, Facebook Research and SpeechBrain
[46]. ludlows implementation supports both wide band and narrow band PESQ,
we are only using wide band PESQ in this thesis as we are working exclusively
with sample rates of 16.000 kHz or higher.

Wide-band PESQ requires 16.000 kHz sample rates in order to function prop-
erly [46]. The same 16.000 kHz cover files were therefore used for all compar-
isons. The stego files generated by the GAN steganography method have to be
resampled from 44.100 kHz to 16.000 kHz. We also convert them back to 16-bit
PCM files as we had problems with their 32-bit float format while measuring SNR
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and figure 16-bit PCM files appear to be more common and less likely to cause
problems that we may or may not be able to easily notice. Despite these conver-
sions the author of this thesis can not tell the difference between the converted
and non-converted audio samples when listening to them side by side, so we as-
sume that the effect this conversion has on the PESQ measurement is minimal.
The resampling also has to be done to measure PESQ correctly at all, so this is an
easy decision to make.

A Python Jupyter notebook is used to apply the Python wrapper [46] in order
to measure the PESQ scores of all of our stego files. Microsoft CoPilot [20] is used
to help set up the requirements for the wrapper, and to generate code applying
PESQ to our stego files and writing the calculated scores for each stego file to CSV
files for each of our steganography methods. The wrapper requires a C compiler
to be installed and to be accessible in Visual Studio Code (VSCode) [81], as this is
the program we used for developing our notebook. "MSCV Compiler", "Windows
11 SDK" and "CMake" are downloaded through Microsoft’s C++ build tools in-
staller [82], as prompted by CoPilot, to full-fill this requirement. Then the conda
environment for the project used to run the Python Jupyter notebook is activated
in a terminal, and the following commands are ran. First:

"C:\Program Files (x86)\Microsoft Visual Studio\2022
\BuildTools\VC\Auxiliary\Build\vcvarsall.bat" x64

Is ran to to activate the C compiler in the environment. Then:

code .

Is ran to launch VSCode directly from the terminal.
After doing this the Python Jupyter notebook is executed and the CSV files

containing the scores for all of our stego files are generated. The Python Jupyter
notebook containing the code used for this is available on our GitHub [67] in the
"PESQ Code" directory.

3.7.3 ViSQOL Implementation

Google ViSQOL [48] contains two modes that are both used in this thesis; ViSQOL
Speech and ViSQOL Audio. ViSQOL Speech requires the audio files to be evaluated
to have a sample rate of 16.000 kHz, while ViSQOL Audio requires 48.000 kHz
sample rates to be used. A set of 16.000 kHz and 48.000 kHz resampled cover files
in 16-bit PCM WAV format are therefore created with Audacity [73] to be used
as reference files for all stego files from our different steganography methods.
Resampled stego files with 16.000 kHz and 48.000 kHz sample rates from all of
our methods are naturally also created with Audacity [73] in order to be able to
evaluate them with the ViSQOL MOS-LQO algorithms.

Google ViSQOL version 3.3.3 is downloaded from the official GitHub reposit-
ory [47], and is ran on an Ubuntu 22.04 LTS WSL 2 [72] virtual machine (VM).
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The ViSQOL repo’s guide for installation is followed to set up the software. The
prerequisites Numpy [83] and Bazel [84] are installed and ViSQOL v 3.3.3 is built
from its source code using Bazel. Bazel initially returns a 404 error for fetching
a file called "armadillo" while trying to build ViSQOL, stating that it cannot be
found. Microsoft CoPilot [20] is used to help with debugging and points us to
this GitHub issue [85] where the answer from user "rsanchezpizani" is followed
to resolve the issue. This answer states to download another version of armadillo
from the website [86] (version 14.0.3), then get the sha256 checksum for this new
version and update the checksum, link to the download and version name in the
WORKSPACE file used by Bazel to build the software. Applying this fix resolves
the issue and allows us to successfully build ViSQOL.

Google ViSQOL’s GitHub repository (repo) shows some example commands
where a batch input CSV file is used. This seems suitable for our purposes, but we
could not find information on how to structure the CSV file. Microsoft CoPilot is
again consulted to resolve this issue and replies that the CSV batch files should
contain two columns with the top rows containing the words "reference" and "de-
graded", with file paths for the reference and degraded file pairs following in the
columns below. It also stresses the importance of LF line endings being used for
our Linux VM instead of the CRLF line endings that are used for Windows, and
shows us how to change these line endings in VSCode by pressing a button at
the bottom of the screen. Eight CSV batch files are created to specify the paths of
both the 48.000 kHz and 16.000 kHz audio samples from all of our steganography
methods to be evaluated by ViSQOL Speech and Audio. The evaluations are then
ran using these commands as specified by the guide in the ViSQOL GitHub repo
[47]. For ViSQOL Speech this command is ran for each of our stego method’s
ViSQOL Speech CSV batch files:

./bazel-bin/visqol --batch-input_csv [BATCH CSV PATH]
--results_csv [PATH FOR RESULTS] --output_debug [DEBUG OUPUT PATH]
--use_speech_mode

And for ViSQOL Audio the following command is ran for each of our stego
method’s ViSQOL Audio CSV batch files:

./bazel-bin/visqol --batch-input_csv [BATCH CSV PATH]
--results_csv [PATH FOR RESULTS] --output_debug [DEBUG OUPUT PATH]

This leaves us with eight CSV files containing the ViSQOL Speech and ViSQOL
Audio results of the evaluations of all of the audio samples for all our four tested
audio steganography methods.

3.8 SNR Implementation

Our Signal to noise ratio (SNR) implementation is almost entirely based on the
"compute_transparency.py" code [87] used Reyer’s thesis [3]. The only changes
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made was the changing of some paths and repetition of some parts of the code to
generate one CSV file for each of our stego methods, containing the SNR scores
for all of their respective stego files.

Reyers SNR method [87] works by first splitting up the cover and stego audio
files into the (in our case 16-bit) samples they are composed of. Then it computes
the Mean Square Error (MSE) of the difference between the two sets of samples,
before finally dividing the cover file samples with the MSE and multiplying the
result by 10log10 to compute the SNR in decibel. Reyers defines their SNR com-
putation like this in their thesis [3]:

SNR= 10 log10(
XS

MSE
),

where MSE =
1
N

N
∑

i=1

(x i − yi)
2

XS =
1
N

n
∑

i=1

x2
i

"Where x and y are the cover and stego audio signals respectively, N is the
number of samples in a signal, and x i and yi are the i th sample of x and y re-
spectively." [3, p. 6].

After running the SNR calculations we are left with one CSV file for each of our
stego methods which contains the SNR results of all stego files for each method.
The average of these scores are also taken manually in Microsoft Excel to be used
in Results Chapter (Chapter 4).

The exact code we used for our SNR implementation is available on our Git-
Hub [67] in the "SNR Code" directory.

3.9 Method for Calculating DMOS Scores

This section explains the methodology we have used to calculate our Subject-
ive DMOS scores, as well as all the statistical methods we applied to our data.
Microsoft CoPilot was used to discuss different options, but all chosen methods
were discussed with supervisors and cross checked with other sources. The ITU-T
P.800 recommendations on calculating mean opinion scores were naturally also
used [5]. For the statistical tests requiring a confidence interval, we decide to use
a 95% interval, as this appears to be commonly used in computer science [88].
This means that our significance level (α) for our P-value is set to 0.05 [88]. The P-
value stands for probability value, and tells us the strength of the evidence against
our null-hypothesis [89]. The P-value says something about the probability of ob-
taining equally or more extreme results than what is observed, if one assumes that
the null hypothesis is correct [89].
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In accordance with the ITU-T P.800 recommendations for MOS testing [5],
DMOS scores are calculated by simply taking the average of each participants rat-
ings of all samples for each degradation, which in our case are our audio stegano-
graphy methods. DMOS scores can also be calculated separately for male and
female samples by just taking the averages of these respective samples separ-
ately [5]. For the sake of identifying outliers we will also be using the intermedi-
ate DMOS scores from each participant for each sample to use with a statistical
method that is often used for this, this will be further explained in Section 3.9.1
following below.

3.9.1 Excluding Outliers

The temporary DMOS scores from all the participants are first calculated in Mi-
crosoft Excel following the methodology explained here: First, all participants rat-
ings for all male and female audio samples for the null-pairs and our four stegano-
graphy methods are used to calculate separate male and female sample DMOS
scores for each steganography method and the null-pairs. This is done by tak-
ing the average of all scores for all female samples and male samples for each
participant to get participant isolated DMOS scores for male and female samples
separately.

These individual DMOS scores are used to calculate Z-scores used to identify
potential outliers. Z-scores let us know how many standard deviations above or
below the average a specific DMOS score is [90], a common way to identify out-
liers is to set an absolute Z-score value threshold for extreme values at either 2 or
3 [90]. We set our threshold at 2 because we had subjective observations to back
up this choice, which we will get further into later in this section. The Z-scores
are calculated following this equation, and this tutorial [91] is used to calculate
it in excel:

Zscore =
IndividualDMOS −MeanDMOS

StandardDeviat ion
Z-scores are calculated for all participant’s male and female sample DMOS

scores and two potential outliers are discovered. The first potential outlier gets
z-scores of −2.83 and −3.46 for null-pair male and female DMOS scores respect-
ively, as well as −3.45 and −2.53 for male and female Steghide null-pair scores
respectively, and −2.92 for their female Hide4PGP DMOS score. This means that
they are consistently ranking these samples to be way lower quality than the av-
erage participant. Because of these extreme discrepancies, and especially since
the null-pair samples are rated so much lower than by the average participant,
we decide that we cannot trust this participants ability to rate the audio samples
consistently, and decide to exclude all of their scores from the test entirely.

The second potential outlier gets less extreme Z-scores for the null-pair, Steg-
hide and Hide4PGP DMOS scores. However, they get Z-scores of 1.97 and 2.05 for
male and female GAN Low DMOS scores respectively, and 2.06 and 2.08 for male
and female GAN High DMOS scores respectively. This is close to the threshold,
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and it would be possible to set the Z-score threshold at 3 to keep this participant.
However, this participant also picked a volume level of 12%, where all other par-
ticipants, except one that picked 75%, picked 100% volume. This low volume par-
ticipant also expressed that they could barely hear any degradation in the GAN
audio samples, and wanted to hear the samples again after the test with higher
volume. Upon doing this the participant stated that they would have rated the
samples way worse if they had listened at a higher volume.

In addition to this, the low volume participant’s average DMOS scores for both
GAN Low and GAN High was 5 for female samples and 4.75 for male samples.
Where the average DMOS scores of all participants (before excluding outliers)
was 2.58 and 2.69 for female and male GAN Low samples respectively, and 2.5
and 2.77 for female and male GAN High samples. If we look back at the DCR rat-
ing scale used for DMOS in Figure 3.4 we can see that the second potential outlier
participant rated these methods as having either inaudible or close to inaudible de-
gradations, while the average participant rated them as being somewhere between
annoying and slightly annoying.

Judging from these qualitative observations, we can clearly tell that a Z-score
threshold absolute value of 2 is not excessive in our situation. The combination of
all of these observed discrepancies makes us convinced that we can not trust this
second potential outlier participant’s ability to hear degradations at the volume
they were using during the test. This leads us to exclude also this participant from
the test entirely.

After excluding these two outlier participants from the test entirely, the in-
dividual DMOS scores are recalculated. Male and female average DMOS scores
across all non-excluded participants are calculated as the actual Male and Female
DMOS scores, and the average of these as the combined DMOS score, which is
usually the one just referred to as the DMOS score.

The Excel sheet used for our Z-test calculations can be found on our GitHub
[67] in the "Supplementary Materials" directory.

3.9.2 Statistical Difference Between Male and Female Sample DMOS
Scores

The ITU-T P.800 recommendation states that male and female ACR MOS scores
can only be combined if they are not significantly different. While the P.800 DCR
procedure does not explicitly mention this, it also does not explicitly say not to,
and we can not see a reason why the DMOS scores could be combined, and not
the MOS scores. We therefore decide to follow the P.800 ACR procedure’s recom-
mendations, and check if our male and female sample DMOS scores are statist-
ically different to see if we can report our results using just the combined DMOS
score.

Microsoft CoPilot [20] is consulted for suggestions of tests to use to assess if
a statistically significant difference is present, and the suggestions given are cross
checked with other sources. A Students T-Test is initially suggested, and this You-
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Tube tutorial [92] is used for extra information and to learn how to perform one in
Microsoft Excel. The tutorial states that we would have to use a paired t-test since
we are testing if two conditions are rated differently by the same population. [93]
confirms this, stating that paired difference tests should be used if we are work-
ing on paired data, and use experiments where the same participants are used
to compare two different conditions. [93] mentions the paired-samples t-test and
Wilcoxon signed-rank test among others as some examples of paired difference
tests that can be used on paired data like this.

According to [94] and [95, p. 344] a paired t-test assumes that the the differ-
ences in measurements are at least approximately normally distributed. We there-
fore need to see if this is true for our data before proceeding with the students
T-test. To check if this is the case, CoPilot suggests we perform a Shapiro-Wilk
test, and [96] confirms that this is a commonly used statistical method for check-
ing normality for datasets with less than 5,000 samples.

We do our Shapiro-Wilk test by plotting the differences between male and fe-
male samples for all of our measured methods and the null-pairs into this [97] on-
line calculator and setting a significance level of 0.05, to align with our 95% con-
fidence interval defined in Section 3.9. This gives us P-values of 0.0087, 0.0015,
0.0156, 0.0364 and 0.5199, for Null-pair, Steghide, Hide4PGP, GAN Low and GAN
High respectively. The GAN High scores are above the threshold and are clearly
normally distributed, so we can definitively do a T-test on this method, but the
rest are all below the significance level. This means that these methods likely do
not have normally distributed differences and that we cannot use the paired t-
test for these methods. The t-test is therefore done only on the GAN Low method
in Microsoft Excel following this [92] tutorial. This gives us a P-value of 0.0506
which is barely not significant if we follow a strict cutoff threshold of 0.05, which
appears to be the norm for T-tests [98].

Microsoft CoPilot [20] suggests using Wilcoxon Signed-Rank tests for the met-
hods without normally distributed differences, and this [99] online calculator is
identified. [99] confirms that this test appears to be suitable for our purposes, by
stating that the Wilcoxon Signed-Rank test works well on data from experiments
where the samples are correlated, for investigating the difference between con-
ditions or treatments. [99] also gives an example of a suitable experiment where
some data scoring reading performance from the same children before and after
reading training is evaluated to be significantly different or not. This Norwegian
university level statistics book also confirms that a paired Wilcoxon test is a good
way of assessing if of two paired datasets are significantly different [95, pp. 360–
362].

One problem we found with the Wilcoxon Signed-Rank test is that, according
to [99], there should optimally be no ties in the data to ensure maximum accuracy,
while we have quite a few ties in our differences. Ties, meaning data points with
the same differences so that their ranks are tied in the test [100]. However, we
still chose to use this method as it does have ways to adjust for ties [99, 100]. The
biggest problem is tied differences of 0, as these are typically omitted from the
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test [101]. This can cause issues because the number of remaining values need
to be large enough for the method’s "Wilcoxon W statistic" to create a normal
distribution in order to be able to use the results [99]. The null-pair and Steghide
samples fail to generate usable results for this reason. However, Hide4PGP gets
a P-value of 0.00466 which is far below the 0.05 threshold. Since this is so far
below the threshold we think it shows that the male and female sample DMOS
ratings for the Hide4PGP method are very likely significantly different, even with
the potentially lower accuracy caused by the ties. We also think that it is better to
be wary of combining the DMOS scores, rather than to potentially lose accuracy
by going against the ITU-T P.800 recommendations [5] by combining the scores
without definitively proving that they are not statistically different, and potentially
losing accuracy in our results.

To further confirm a significant difference between male and female samples
for our Hide4PGP results, we also perform a paired sign test, which according
to [95, p. 362] requires paired data, but makes no other assumptions about it,
coming at the cost of sensitivity. A paired sign test is done on all of our method’s
male and female sample DMOS scores from all participants using this [102] online
calculator. P-values of 1, 0.4795, 0.00228, 0.2059 and 0.0707 are achieved for
null-pairs, Steghide, Hide4PGP, GAN Low and GAN High respectively. This very
low P-value of 0.00228 is far below our 0.05 significance threshold, and again
strongly confirms the Wilcoxon signed rank tests strong indication of there being
a significant difference between male and female sample DMOS scores for the
Hide4PGP audio samples.

Since the individual male and female DMOS scores across all our participants
for one of our steganography methods are shown to very likely be statistically
different, we will report all DMOS scores generated by all methods by gender to
keep things consistent. We will refer to these as DMOSM and DMOSF for male
and female DMOS scores respectively. We will also often report the concatenated
DMOS scores as just DMOS, along with the separated ones.

3.10 Methods for Comparing Results

3.10.1 Pearson’s Correlation and Mean Absolute Errors

After discussing pros and cons of different methods and metrics for quantifying the
results of this thesis in a meaningful way with Microsoft CoPilot [20], and looking
at other sources [103, 104] for more accurate information about the suggested
methods, Pearson’s correlation [103] and mean absolute errors (MAE) [104]were
chosen to be used for this purpose.

The statistics programming language R [105] is used in the RStudio IDE [106]
with code largely generated by Microsoft CoPilot [20] to calculate Pearson’s correl-
ation, after using this [107] YouTube tutorial to understand the basics of Pearson’s
correlation in R. Microsoft Excel is used to calculate the MAE values following this
[108] YouTube tutorial.
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Mean Absolute Errors or MAE is calculated just how it sounds. The average ab-
solute differences between the DMOS scores and each of the MOS-LQO algorithm
scores for all audio samples are calculated for each of our stego methods. We
also calculate separate MAE scores for male samples and female samples for each
method in the same way, by only including the relevant samples in the calculation.
This leaves us with three MAE scores for each MOS-LQO algorithms, which show
us the absolute differences between DMOS and the scores from the algorithms. In
addition to MAE, manual inspection will be done to see if the errors go largely in
one direction (negative or positive), as this also might be relevant for evaluating
the MOS-LQO Algorithms. The Excel sheet used for our MAE calculations can be
found on our GitHub [67] in the "Supplementary Materials" directory.

Pearson’s correlation is taken between the DMOS scores for all 32 audio samp-
les and the MOS-LQO scores for the sample samples, and for the 16 DMOSSex
scores and MOS − LQOSex scores each for the male and female samples. Giving
us a total of nine correlation scores showing how closely our three tested MOS-
LQO algorithms PESQ, ViSQOL Speech and ViSQOL Audio correlate with DMOS
overall for all of our samples, and for male and female audio samples separately.
The confidence level of the results is also calculated in R, and scatter plots with
regression lines are created for each of the nine results.

The Pearson’s correlation values, 95% confidence intervals and p-values are
produced using the built in cor.test function of R like this:

result1 <- cor.test(df$DMOS, df$PESQ, method = "pearson")

This returns an output like this:

Pearson’s product-moment correlation

data: df$DMOS and df$ViSQOL.A
t = 26.977, df = 30, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.9590322 0.9902935

sample estimates:
cor

0.9800042

The confidence level value to be put besides the score is then calculated with
R like this:

margin_of_error1 <- (result1$conf.int[2] - result1$conf.int[1]) / 2
formatted_result1 <- paste(round(result1$estimate, 4), "±",
round(margin_of_error1, 4))

And is returned along with the Pearson’s correlations score (r) like this:
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> formatted_result1
[1] "0.9649 ± 0.0271"

Which is also the value we report in our Pearson’s correlation results in Sec-
tion 4.3.1. As stated previously, the R-code for calculating Pearson’s correlation is
largely generated by Microsoft CoPilot [20].

The exact R-code used can be found on our GitHub [67] in the "R Correlation
Code" directory.

3.10.2 Method for analyzing SNR results

A qualitative analysis is done, comparing the SNR and DMOS scores on a audio
sample level, to see if the identified 30 dB threshold from [8] and [3] holds up.
The SNR scores of each audio sample are manually compared to their respective
DMOS scores, paying particular attention to the samples that scored poorly on
the DMOS test. We then use these comparisons to assess how likely we deem
the claimed 30 dB threshold for human perception found in the literature to be
correct.

We also pay particular attention to the DMOS rating scale given to our human
participants, that can be seen in Figure 3.4. By doing this we can see if the de-
gradations of a sample that has achieved an SNR score above 30 dB, since higher
SNR scores typically translate to better perceptual transparency [3], is likely to
be perceivable by our human participants. If the participants for instance rank
the degradation of a sample as "Annoying", according to the DMOS rating scale,
and this sample has an SNR score above 30 dB, we can be pretty certain that the
identified threshold does not hold true in all situations.



Chapter 4

Results

This chapter explains the results from our different completed research activities
done to answer our research questions. The chapter starts by outlining the DMOS
results, before moving on to the results measured by our MOS-LQO algorithms.
It then compares the results from all of our three chosen MOS-LQO algorithms
and DMOS separately. It does this by presenting and discussing patterns in our
measured Pearson’s correlation results, mean absolute error (MAE) results and
our various other results. It then goes on to present and discuss the SNR scores,
and compares these scores to our DMOS scores to assess whether the identified
threshold of 30 dB discovered in previous work [3, 8] holds up. Finally, a math-
ematical error found in the paper [19] proposing our implemented TAN audio
steganography method is presented.

4.1 DMOS Results

4.1.1 Participant Demographics

Even though it is not required by the ITU-T P.800 [5] or the P.800.1 [6] recom-
mendations for MOS testing, it seems to be considered best practice in some fields,
such as using MOS testing to determine the naturalness of synthetic speech [58],
to publish listener demographics. We also thought this could be useful information
in the field of audio steganography as many different things can affect a subject-
ive study, which the different elements that can affect speech quality illustrated in
Figure 3.1 is a good example of. We therefore report the listener demographics of
our DMOS test in this Section, excluding the outliers identified in Section 3.9.1.

All 19 listeners are proficient in English, and most of the participants are native
Norwegian speakers. No participants are native English speakers, but the exact
native languages of the participants are omitted for privacy reasons. All audio
samples used in the DCR DMOS test are spoken in English and, as mentioned in
Section 3.4.2, and audio samples that are easy to understand are selected, which
may address concerns that could arise from non-native English speakers being
used as listeners to some degree. Since the listeners are instructed to rate the
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Figure 4.1: The subjective DCR DMOS test participants age demographics.

Figure 4.2: The subjective DCR DMOS test participants gender distribution.
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degradation in audio quality between a high quality reference and a degraded
sample, we think that the listeners native languages probably affect the results less
than if they for example were to rate something like speech quality or naturalness.

The age distribution of the participants of the subjective DCR DMOS test are
reported in a way that respects privacy, by creating age groups with intervals of
ten years from the ages 20 to 79. The age demographics are displayed in the pie
chart in Figure 4.1. The average rounded off age is 42, and the median age is
50. The listeners gender distribution is also shown in a pie chart in Figure 4.2,
showing 63% male and 37% female participants.

4.1.2 DMOS Scores

As mentioned in Section 3.9.2, DMOS scores for female and male samples are
reported along with the concatenated DMOS score of all samples. These scores are
referred to as DMOSF , DMOSM and DMOS respectively. As explained in Section
3.9, DMOS scores are calculated by taking the average of the ratings of all audio
samples, from every one of our participants, for each degradation separately, to
calculate the overall DMOS scores for each degradation. The same thing is done
to the male and female samples separately to calculate the DMOSM and DMOSF
scores. The results of these calculations for each degradation, degradations being
the steganography methods and null-pair test, are displayed in Table 4.1.

Degradation DMOSF DMOSM DMOS

Null-Pair 4.7895 4.7895 4.7895
Steghide 4.7105 4.7895 4.7500

Hide4PGP 4.5921 4.8158 4.7040
GAN Low 2.5658 2.6579 2.6118
GAN High 2.4605 2.7500 2.6053

Table 4.1: The DMOS results from the subjective DCR DMOS test.

A box plot illustrating the distribution of DMOS scores across all male and
female samples separately, for each stego method and the null-pairs, can be seen
in Figure 4.3. Simply put, the boxes of the box plot shows where most of the given
DMOS scores lie, the whiskers show values that deviate from this without being
outliers, the lines through the boxes show the median scores, and the red dots
show outlier scores [109] identified by our Z-test in Section 3.9.1. The box plot
was created with this [110] online tool, and the red outlier ratings were added
manually with this online photo editor [111]. The outlier ratings are taken from
the specific ratings from the two excluded participants that were identified to be
too far outside the norm by the Z-test in Section 3.9.1. Since these participants
were completely excluded from the study, their other ratings are not included in
the box plot. Their outlier scores are simply shown on the box plot to illustrate
how far they deviate from the norm, and to further justify their exclusion visually.
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Figure 4.3: Box plot illustrating the distribution of DMOS scores given by the
participants of our DCR DMOS experiment. DMOS scores are shown on the Y-
axis, and degradation samples (stego methods and null pairs) by gender on the
X-axis.

By inspecting the box plot in Figure 4.3 we can clearly see how the Hide4PGP
results were quite varied across the samples our from male and female speakers,
while the other methods and null pair vary to a lesser degree. This adds more
credibility to the results found in Section 3.9.2 of this thesis, showing that the
DMOSF and DMOSM results are significantly different for the Hide4PGP method
only. It also further shows that reporting DMOS, DMOSF , and DMOSM scores
separately, rather than just reporting the concatenated DMOS scores is likely be-
neficial for the accuracy of our results. More about how we used statistics to come
to this conclusion initially can be read in Section 3.9.2.

The raw DMOS test results and score calculations can be found on our GitHub
in the "Supplementary Materials" directory [67].

4.2 MOS-LQO Algorithm Results

The MOS-LQO Algorithm results refers to the MOS-LQO scores generated by our
chosen MOS-LQO algorithms; PESQ [18], ViSQOL Speech [48], and ViSQOL Au-
dio [48]. Since we want to compare these algorithms to the DMOS scores, using
the DMOS scores as sort of a ground truth for how these algorithms should per-



Chapter 4: Results 59

form, as justified by [12], we will also report male and female sample scores sep-
arately for these algorithms, as well as a concatenated score with the average of
both genders. The MOS-LQO scores are calculated similarly to the DMOS scores
by taking the average of the scores produced for each sample by each algorithm
for both male, female and all samples separately. We will label these MOS-LQO
scores as the name of the algorithm marked by either M, F or nothing to indicate
if its the score for male only, female only or all samples. For PESQ for instance
this would like like this: PESQF , PESQM , PESQ. The results for PESQ are dis-
played in Table 4.2, the results for ViSQOL Speech are displayed in Table 4.3, and
the results for ViSQOL Audio are displayed in Table 4.4. The raw results from the
MOS-LQO algorithms for each sample can be found on our GitHub [67] in the
"Supplementary Materials" directory.

Degradation PESQF PESQM PESQ

Steghide 4.6257 4.6323 4.6290
Hide4PGP 4.6405 4.6391 4.6398
GAN Low 3.9602 3.9690 3.9646
GAN High 3.9580 3.9631 3.9606

Table 4.2: The PESQ results from the objective MOS-LQO testing.

Degradation ViSQOLSpeechF ViSQOLSpeechM ViSQOLSpeech

Steghide 4.4697 4.5143 4.4920
Hide4PGP 4.4987 4.5206 4.5097
GAN Low 3.5624 4.1495 3.8560
GAN High 3.5455 4.1387 3.8421

Table 4.3: The ViSQOL Speech results from the objective MOS-LQO testing.

Degradation ViSQOLAudioF ViSQOLAudioM ViSQOLAudio

Steghide 4.7218 4.7275 4.7247
Hide4PGP 4.7305 4.7282 4.7293
GAN Low 1.9362 2.0022 1.9692
GAN High 1.9450 1.9984 1.9717

Table 4.4: The ViSQOL Audio results from the objective MOS-LQO testing.

4.3 DMOS vs MOS-LQO Results

In this section we will compare the DMOS and MOS-LQO results through different
means to see how well the MOS-LQO algorithms align with the subjective DMOS
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results. We do this comparison, as subjective mean opinion score results are typic-
ally considered the ground truth for MOS testing [12], and our tested MOS-LQO
algorithms appear to have been made to emulate subjective P.800 [5] ACR MOS
tests [12, 15], which share a lot of similarities with P.800 DCR DMOS, as we ex-
aplained in Section 3.2. Our full reasoning for using DCR DMOS instead of ACR
MOS can also be seen in Section 3.2, but quickly said it is mostly because of DCR
DMOS’s increased sensitivity over ACR MOS [5].

4.3.1 Pearson’s Correlation Results

This section presents the Pearson’s Correlation results. As mentioned in Section
3.10.1, the Pearson’s correlation is calculated by using the R programming lan-
guage. Nine scores are generated for the correlation between DMOS and our three
MOS-LQO algorithm scores for; all samples, female samples and male samples re-
spectively. The numerical Pearson’s correlation results are presented in Table 4.5,
along with their respective confidence levels and P-values. Scatter plots with re-
gression lines like the one seen in in Figure 4.4 are also created with R to show the
spread and correlation of the results visually. More information about how this is
done can be found in Section 3.10.1. Figure 4.4 shows the scatter plots generated
for all samples rated by the MOS-LQO algorithms, larger versions of these plots,
as well as isolated plots for male and female samples, can be found in Appendix
G.

Scores compared Correlation and confidence level P-value

DMOS-PESQ 0.9649± 0.0271 < 2.2e− 16
DMOS-ViSQOLSpeech 0.772± 0.1519 2.284e− 07
DMOS-ViSQOLAudio 0.98± 0.0156 < 2.2e− 16

DMOSF -PESQF 0.9555± 0.0556 8.204e− 09
DMOSF -ViSQOLSpeechF 0.8867± 0.1313 4.738e− 06
DMOSF -ViSQOLAudioF 0.9899± 0.0132 2.852e− 13

DMOSM -PESQM 0.9807± 0.0248 2.503e− 11
DMOSM -ViSQOLSpeechM 0.7656± 0.2397 0.0005465
DMOSM -ViSQOLAudioM 0.9745± 0.0326 1.759e− 10

Table 4.5: The Pearson’s correlation values between DMOS and our tested MOS-
LQO algorithms along with their confidence levels and P-values.

As we can see from the results in Table 4.5 ViSQOL Audio clearly correlates
the closest to our subjective DMOS scores across all of our results, with PESQ
coming in closely behind, and ViSQOL Speech falling behind the two others by a
significant amount. In addition to this, ViSQOL Audio appears to have a slightly
more consistent correlation across male and female samples than the two others.
We can also see by the P-values that all the MOS-LQO algorithms had statistic-
ally significant correlations to DMOS for all samples, male samples, and female
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Figure 4.4: These scatter plots show the overall distribution and correlation
between the ratings generated by our three MOS-LQO algorithms and DMOS for
all samples.

samples when setting the significance threshold P-value at 0.05. All P-values are
extremely small, strongly suggesting that the correlation results were not caused
by random chance.

By inspecting the scatter plots in Figure 4.4 we can also see that ViSQOL Audio
appears to consistently score overall stricter than DMOS, while PESQ and ViSQOL
Speech score consistently less strict overall. This is also an interesting result, as it
may go even more in favor of ViSQOL Audio, as we would probably want devi-
ations to be stricter rather than less strict in a security conscious field like audio
steganography.

4.3.2 Mean Absolute Error Results and Manual Observations

This section showcases our mean absolute error (MAE) results between DMOS
and our tested MOS-LQO algorithms; PESQ, ViSQOL Speech and ViSQOL Audio.
As mentioned in Section 3.10.1 the MAE between our DMOS and MOS-LQO scores
show how much the MOS-LQO scores deviate from the DMOS scores on average.
MAE uses absolute values, so we can therefore not see the direction of the de-
viation, but rather all deviations quantified into a single positive metric. We will
therefore be using some manual observations of the MOS-LQO and DMOS scores
from Tables 4.1, 4.2, 4.3 and 4.4 to assess if there is a overwhelming general
direction of these errors.
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When looking at the MAE scores of each MOS-LQO algorithm by itself in Tables
4.6, 4.7 and 4.8, we can see that ViSQOL Audio deviates on average by far the
least from DMOS, this is true for all samples, all female samples and all male
samples separately.

When looking at the DMOS and MOS-LQO results in Tables 4.1, 4.2, 4.3 and
4.4, we can also see that there does appear to be overwhelming general directions
for all of the MOS-LQO algorithms when it comes to the low quality degradations
done by the GAN methods. PESQ and ViSQOL Speech appears to consistently rank
samples way less strict than DMOS for these methods. While the subjective DMOS
scores suggests that these methods on average rank somewhere between slightly
annoying and annoying when looking at the DMOS DCR scale in Figure 3.4, PESQ
and ViSQOL Speech both rank these degradations closer to "Perceptible but not
annoying" on average. ViSQOL Audio on the other hand, ranks these degradations
moderately stricter than DMOS on average, rating them both ever so slightly be-
low "Annoying" on the DCR scale, however it is still about three times closer to
the DMOS rating than the other MOS-LQO algorithms.

For the degradations produced by the other stego methods; Steghide and
Hide4PGP, which if we compare the DMOS results to the null-pairs pretty much
have perfect scores, PESQ and ViSQOL Speech both give slightly stricter scores
than DMOS on average across all samples, while ViSQOL Audio gets very close to
the subjective DMOS scores, being just ever so slightly stricter.

As we can see by these results, ViSQOL Audio appears to align much closer
with DMOS than PESQ and ViSQOL Speech. In addition to this, it ranks the very
audible degradations produced by the GAN stego methods moderately stricter
than DMOS, rather than the far less strict ratings of the other MOS-LQO algorithms.
We would argue that this stricter rating is desirable when it comes to evaluat-
ing the perceptual transparency of audio steganography methods, as you would
probably rather want a stricter rating than a more lenient one when it comes to
technology used to secure secret information.

Stego method MAEPESQF MAEPESQM MAEPESQ

Steghide 0.3638 0.2990 0.3314
Hide4PGP 0.4857 0.2820 0.3838
GAN Low 1.6388 1.5643 1.6015
GAN High 1.7318 1.4750 1.6034

All Methods 1.0550 0.9051 0.9800

Table 4.6: The mean absolute errors (MAE) between DMOS and PESQ for female,
male and all samples.
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Stego method MAEViSQOL−SF MAEViSQOL−SM MAEViSQOL−S

Steghide 0.2078 0.2018 0.2048
Hide4PGP 0.3440 0.1754 0.2596
GAN Low 1.2410 1.7448 1.4929
GAN High 1.3193 1.6506 1.4850

All Methods 0.7780 0.9431 0.8606

Table 4.7: The mean absolute errors (MAE) between DMOS and ViSQOL Speech
for female, male and all samples.

Stego method MAEViSQOL−AF MAEViSQOL−AM MAEViSQOL−A

Steghide 0.4599 0.3942 0.4270
Hide4PGP 0.5757 0.3711 0.4734
GAN Low 0.3852 0.4025 0.3939
GAN High 0.2812 0.5378 0.4095

All Methods 0.4255 0.4264 0.4259

Table 4.8: The mean absolute errors (MAE) between DMOS and ViSQOL Audio
for female, male and all samples.

4.4 SNR Results

This section showcases the SNR results from our study. The SNR results meas-
ured for all audio samples degraded by the stego methods GAN Low and GAN
High, along with the averages across all samples, all female samples and all male
samples can be seen in Table 4.9, along with the DMOS scores from these same
samples for comparison. The sample labels like "F1-S1" in Table 4.9 work like this:
M and F refers to male and female speakers, the number behind this letter serves
to differentiate between the two speakers per gender. The S stands for sample and
serves to label the two samples spoken by each speaker. AV GF/M/All shows the av-
erage SNR scores across all samples, all female samples and all male samples. The
SNR measurements for Steghide and Hide4PGP in a similarly formatted table can
be found in Appendix F.

The reason why only the two GAN methods are shown in this section is because
these are the results needed to dispute a claimed SNR threshold for human per-
ception at 30 dB, which we found in [8] and [3]. We are disputing this threshold
by comparing the SNR scores of these samples to their respective DMOS scores.
By doing this we can check if the sample is audible to human perception and see if
the SNR threshold at 30 dB holds up. It is important to remember that higher SNR
scores are supposed to translate to better audio quality [3], i.e. harder to pick up
by human perception.

The 30 dB SNR threshold is strongly disputed by our data, as all GAN method
samples achieve DMOS scores below 3 and SNR scores above 34 dB. This already
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strongly indicates that the threshold likely cannot be trusted, but when looking at
some specific samples this indication gets even stronger. Sample F1-S2 achieves
an SNR score of 41 dB, which is way above the claimed SNR threshold for human
perception at 30 dB, along with a DMOS score of 2.6316 which, if we look at the
DCR rating scale in Figure 3.4, translates to being somewhere between slightly
annoying and annoying for our participants to listen to. Looking further at Table
4.9 we can also find other similar cases to this for the samples F1-S1, F2-S1 and
F2-S2.

When comparing the average results from male and female samples in Table
4.9, we can also see that the human participants rates the male samples as having
better quality on average than the female samples, while the SNR values suggest
higher average quality for the female samples and lower for the male samples. This
means that SNR and DMOS predicted opposite changes in audio quality between
the male and female samples. Since DMOS is based on human perception [5], this
could indicate that SNR might not align well with human perception, and raises a
question about its suitability for evaluating the perceptual transparency of audio
steganography methods altogether.

Sample SNRGAN Low DMOSGAN Low SNRGANHigh DMOSGANHigh

F1-S1 41.8081 2.8947 41.8448 2.6842
F1-S2 41.0197 2.6316 41.0461 2.5790
F2-S1 40.4620 2.4211 40.4922 2.2632
F2-S2 40.0506 2.3158 40.0529 2.3158
M1-S1 38.9550 2.9474 39.0194 3.0526
M1-S2 37.3718 2.7368 37.3833 3.0000
M2-S1 35.7744 2.5790 35.6228 2.8421
M2-S2 34.6223 2.3684 34.5545 2.1053
AV GF 40.8351 2.5658 40.8590 2.4605
AV GM 36.6809 2.6579 36.6450 2.7500
AV GAll 38.7580 2.6118 38.7520 2.6053

Table 4.9: Our measured SNR results for all GAN Low and GAN High samples,
along with the averages for female samples, male samples and all samples.

4.5 Mathematical Error in TAN Based Method

A mathematical error is discovered when implementing the logistic tan map based
audio steganography method described in [19]. An error where a "+1" to offset
the iterations is omitted from one of the two functions that are part of a two
dimensional logistic tan map used in the method is found. These functions can be
seen to the right of Figure 3.3, and a similar two dimensional sine map function
from [22] that led us to discover this error can be seen on the left, with the "+1"
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omitted from the tan map function marked with red marker. More details about
this error and exactly how it was found it can be seen in Section 3.5.4 of the
method chapter.





Chapter 5

Discussion, Conclusions and
Future Work

This chapter discusses the implications of our results, and uses these discussions to
draw the conclusions used to answer our research questions. It starts by conclud-
ing which one of our three tested MOS-LQO algorithms we deem to be the most
suited for evaluating the perceptual transparency of audio steganography meth-
ods, before moving on to dispute the 30 dB SNR threshold identified in previous
work [3, 8], and questioning the suitability of SNR for measuring the perceptual
transparency of audio steganography methods altogether. The chapter also men-
tions some potential limitations of our study and discusses how likely these are to
have affected our results. The chapter also proposes some potential future work
based on different observations we made while working on this thesis.

5.1 Most Suited MOS-LQO Algorithm

In this section we will discuss which one of our tested MOS-LQO Algorithms;
PESQ, ViSQOL Speech and ViSQOL Audio that appears to be the most suited for
evaluating the perceptual transparency metric in audio steganography, in doing
this we will answer our first research question: "How do the different MOS-LQO
algorithms; PESQ, ViSQOL Speech, and ViSQOL Audio compare to a subjective
DMOS test, when it comes to evaluating the perceptual transparency of our chosen
audio steganography methods, and which one appears to be the best suited?", as
defined in Section 1.2.

Judging from our findings listed in Section 4.3, comparing our MOS-LQO and
Subjective DMOS results, it is quite clear to us that ViSQOL Audio appears to be
by far the best suited MOS-LQO algorithm for evaluating the perceptual trans-
parency of our chosen audio steganography methods. We say this, firstly because
ViSQOL Audio correlates the closest to DMOS in terms of Pearson’s correlation,
with PESQ coming in at a close second, and ViSQOL Speech falling quite far be-
hind the others. And secondly because, ViSQOL Audio deviates way less from the
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others in terms of our Mean Absolute Error (MAE) measurements, deviating about
three times less than the others. Thirdly, we also saw in our visual analysis of the
scatter plots and raw MAE data that ViSQOL Audio appears to have a tendency
to evaluate the perceptual transparency of the tested samples moderately more
strictly than DMOS, for the samples with the most audible quality degradations
according to DMOS. Meanwhile, PESQ and ViSQOL Speech had a tendency to
evaluate considerably less strict than DMOS. We would argue that this moder-
ate strictness of ViSQOL Audio is a clear advantage over considerable lenience
observed in PESQ and ViSQOL Speech for large degradations, when it comes to
picking a suitable MOS-LQO algorithm to evaluate perceptual transparency in a
security focused field like audio steganography.

However, in defense of the other MOS-LQO algorithms, one could argue that
their scores would still have been bad enough that a security conscious actor using
them to evaluate our tested GAN methods in particular, which where the methods
with the largest degradations in audio quality, would have seen that the method
is indeed perceptible and kept looking for alternatives. However, the DMOS test
and manual observations from the author suggests that the GAN methods in ques-
tion were extremely easy to hear. Our two other stego methods; Steghide and
Hide4PGP, achieved DMOS scores close to the null-pairs, suggesting that they are
either impossible or extremely difficult to perceive by a human observer. It would
therefore have been interesting to see future work where our tested MOS-LQO
algorithms are compared in evaluating some steganography methods where the
perceptibility to humans is more borderline, where some of the participants will
hear a clear degradation and some wont, to see what algorithms are able to dif-
ferentiate these borderline cases. For example testing a steganography method
achieving a DMOS score slightly above 4.

In addition to this, ViSQOL Audio also has another clear benefit, being that
it works on all types of audio samples. In contrast to this, PESQ and ViSQOL
Speech can only evaluate the perceptual transparency of speech samples. This is
another distinct advantage of the ViSQOL Audio algorithm, as it makes it more
flexible, and potentially allows it to evaluate more audio steganography methods
than the other tested MOS-LQO algorithms, such as methods made specifically for
embedding information in music. This may prove to be especially beneficial for
testing audio watermarking [112] methods made for the music industry.

Yet another benefit of the ViSQOL Audio algorithm, that it also shares with
ViSQOL Speech, is that it is completely free to use and open source. In Section
2.6.1 we mention the licensing issues of PESQ, and how we interpret its license
terms to not allow for unlicensed evaluation of audio steganography methods,
even academically, unless the main purpose of the study is to evaluate the al-
gorithm itself and not the audio steganography methods. While ViSQOL Speech
shares this benefit, it performs the worst our of our tested MOS-LQO algorithms
overall, getting similar MAE results to PESQ and quite a bit worse correlation
results than the similar results of ViSQOL Speech and PESQ.

Judging from our results and this discussion we deem that ViSQOL Audio is
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very likely the most suited, out of our three tested MOS-LQO algorithms, for eval-
uating the perceptual transparency of audio steganography methods. It performs
by far the closest to our subjective DMOS test, with Subjective MOS tests like this
often being considered the ground truth for MOS testing [12], as well as appear-
ing to have both better license terms than PESQ and increased flexibility over both
PESQ and ViSQOL Speech, by allowing the testing of non-speech samples. While
more work could be beneficial to see if it also performs this well for non-speech
samples, and for other audio steganography methods than tested in this thesis, we
still think that the audio steganography field could benefit from replacing PESQ
with ViSQOL Audio as the "go-to" MOS-LQO algorithm for perceptual transpar-
ency testing of audio steganography methods.

5.2 Previously Assumed SNR Threshold Disputed

In this section we will answer our second research question; "How do the SNR
scores compare to the subjective DMOS scores from our experiments, do the res-
ults support or oppose a threshold of 30 dB for human perception?", as defined in
Section 1.2.

Judging from our signal to noise ratio (SNR) results in Section 4.4, we can
clearly see that the SNR threshold for human perception identified in the literature
[3, 8], claiming that audio with SNR scores above 30 dB is inaudible to humans
does not hold up. This is clear as all tested audio samples achieve SNR values
higher than 30 dB, while simultaneously achieving DMOS scores that suggest that
the audio samples are between slightly annoying and annoying to listen to for a
human observer. We also discuss some even more extreme cases for single samples
in Section 4.4 of the Results chapter. Future work exploring whether such an SNR
threshold for human perception could make sense, and if it does trying to identify
one, could perhaps also be interesting.

5.3 Questioning SNR’s Suitability for Perceptual Trans-
parency Testing

Another interesting finding from our SNR results in Section 4.4 is that the DMOS
scores from the male and female samples from the GAN High method indicate that
the male samples have moderately higher audio quality than the female samples,
while the SNR values indicate the opposite. This inverse correlation makes us won-
der whether SNR is suited for perceptual transparency testing at all. The reason
why we scrutinize SNR rather than DMOS in this case is that SNR is not based on
human perception at all [17], while DMOS is a subjective test based entirely on
ratings from human participants [5].

We can also think of other cases where using SNR as a metric for perceptual
transparency could potentially cause problems. While surveying the literature, we
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came across a subset category of audio steganography methods exploiting weak-
nesses of the human auditory system (HAS), often referred to as tone insertion
methods [2], such as [113] which inserts high pitch tones directly into an audio
file to embed a secret message. We wonder how SNR would work in evaluating
a method like this, and if the high pitch tones will be picked up as noise, poten-
tially resulting in a lower SNR score and giving the impression of poor perceptual
transparency, even though this high pitch tone might not be perceptible to human
listeners.

Because of the things discussed in this section, we would like to see future
work exploring the suitability of SNR for perceptual transparency testing withing
the field of audio steganography as a whole. We would also like to see future work
exploring how suited SNR is to evaluate the perceptual transparency of audio
steganography methods utilizing tone insertion in particular, preferably including
at least one method utilizing high pitch tone insertion.

5.4 Potential Limitations of Our Study

5.4.1 General Limitations of Subjective Testing

Every subjective test like the DMOS test done in this study will likely have vari-
ations due to the large amount of factors that can affect them. A good example of
this is illustrated in Figure 3.1 showing a plethora of things that can affect subject-
ive MOS testing for evaluating speech quality. This paper [55] on MOS limitations
also shows examples of MOS testing for video quality from different labs causing
variations in the results. It is possible that that the fact that we moved around
to different locations during our DMOS tests have caused variations in the res-
ults. However, we did have measures in place, such as using the same equipment,
noise-canceling headphones, and as quiet of an environment as possible at each
location to try to limit these variations. Even so, this inherent weakness of sub-
jective studies could call for future work trying to reproduce our results, in order
to further ensure that ViSQOL Audio is the best of our three tested MOS-LQO at
assessing the perceptual transparency of audio steganography methods.

However, our results are also so strongly in favor of ViSQOL Audio that we find
it unlikely that some potential randomness in the DMOS scores, caused by inher-
ent possible variations of a subjective study like this could account for the entire
benefit towards ViSQOL Audio. We also saw several other studies using some-
where around 20 participants for MOS testing [4, 58], and we think that this is
likely enough to get a valid result. We would there still absolutely suggest that
the audio steganography field change from PESQ to ViSQOL Audio as the "go-to"
MOS-LQO algorithms for perceptual transparency testing within audio stegano-
graphy, despite this potential limitation. Further work replicating our work with a
DMOS test including more participants could probably also be beneficial to further
confirm the validity our results.
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5.4.2 Potential Limitations of Our Chosen Audio Samples

While we tried picking high quality reference audio files with as little disturbances
as possible for our testing, some of our audio samples did still have some small
barely noticeable disturbances. A considerable amount of time was spent trying to
find a suitable dataset, and our audio samples were simply the best we were able
to find within the time-frame of this thesis, that also fulfilled the requirements of
our ITU-T P.800 [5] DCR DMOS test.

We did however try to compensate for these small disturbances in some of our
audio samples, both by using DCR over ACR, so that our participants has a chance
to hear that the disturbances is present in both samples, hopefully causing them
to leave this out of their audio degradation rating, and by choosing to present
each pair of high quality reference and degraded audio samples twice, so that the
participants has several chances to hear if a degradation is present in both samples
or just the degraded one. We think that these choices likely compensated for this
limitation to a high degree, but we still think it is possible that the results could
have been affected to some degree by these small degradations in the high quality
reference audio samples. We do not find it unlikely that some of our participants
may have rated certain samples slightly differently as a result of not noticing that
a degradation was present in both samples. However, we do not think it is likely
to have affected our final DMOS scores to a considerable degree.

We did however, notice a pattern in our raw DMOS data (that can be found on
our GitHub [67] "Supplementary Materials" directory.) where one sample (Sample
M1-S2) achieved a perfect DMOS score (5) across the null-pairs, Steghide and
Hide4PGP. Meaning that all the non-excluded participants gave this sample a per-
fect score across all of these three degradations. When listening to this file over
and over, it appears to be nearly perfect quality with zero audible degradations to
the author’s ears. This pattern of having a perfect score across all of these three
degradations is interesting, and could further suggest that the participants of our
test sometimes rated degradations present in both the high quality reference and
degraded audio samples more harshly than sample pairs that did not have these
degradations in their reference files.

It is also possible that the way the speaker of this sample sounded and/or pro-
nounced his words was just somehow very pleasant to the listeners, and that this
made them ignore degradations that may actually have been there for Steghide
and Hide4PGP. The fact that this sample scores slightly higher than average for
our GAN Low samples and a decent amount higher for GAN High could support
this theory to some degree.

We also think that having the null-pair grounding will account for this poten-
tial limitation to a high degree, by showing us how the participants rate all of our
high quality samples against themselves. As explained in the ITU-T P.800 [5], the
null-pair test serves as a sort of grounding of the scores, showing us what scores
we can expect for a perfect sample. While this likely does not address the entire
limitation, if it is even present, we still think addresses it to a high degree.
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5.4.3 Somewhat Extreme Steganography Method DMOS Scores

As briefly mentioned in Section 5.1, another potential limitation of our study could
be the somewhat extreme results of our tested audio steganography methods. Our
Steghide and Hide4PGP methods achieve very high DMOS scores, that come close
to our null-pair results, suggesting that they are likely imperceptible or extremely
hard to hear for most people. Meanwhile, our GAN methods both end up with
average DMOS scores that fall between "annoying" and "slightly annoying" on the
DCR scale, that can be seen in Figure 3.4.

While it can be difficult to know how audio steganography methods perform
beforehand, and Reyer’s thesis [3] conveys having difficulties finding recently pro-
posed audio steganography methods that can easily be implemented from their
papers, future work testing how different MOS-LQO algorithms perform in meth-
ods that produce DMOS scores that are more on the borderline of human percep-
tion could be interesting. We think that this is likely an important area to get right
for MOS-LQO algorithm, to avoid methods being labeled as imperceptible while
they may actually still be perceptible to a decently large part of the population.
We think that a method achieving a DMOS score of slightly above 4, or slightly
above "audible but not annoying" on the DCR scale (Figure 3.4) would likely fit
these criteria.
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Appendix A

Master Agreement

The master agreement for the project is attached below. This outlines the original
project description. While this is largely unchanged the MOS-LQS term is some-
what inaccurate as we decided to move from ACR (typically labeled MOS-LQS) to
DCR (typically labeled DMOS) during the project. Using the term DMOS instead
of MOS-LQS would therefore be more accurate with this change in mind.

The master agreement is included in both Norwegian and English.
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Masteravtale/hovedoppgaveavtale 
Sist oppdatert 11. november 2020 

 

Fakultet Fakultet for informasjonsteknologi og elektroteknikk  

Institutt Institutt for informasjonssikkerhet og kommunikasjonsteknologi 

Studieprogram MIS 

Emnekode MIS4900 

 

Studenten 
 

Etternavn, fornavn Stormyhr, Henrik Hansen 

Fødselsdato 30.09.1999 

E-postadresse ved NTNU henrhst@stud.ntnu.no 

 

Tilknyttede ressurser 
 

Veileder Tjerand Silde 

Eventuelle medveiledere Emil August Hovd Olaisen, Bor de Kock 

Eventuelle medstudenter  

 

Oppgaven 
 

Oppstartsdato 06.01.2025 

Leveringsfrist 10.06.2025 

Oppgavens arbeidstittel 
A comparative analysis of MOS-LQO algorithms for perceptual 

transparency testing in audio steganography 

Problembeskrivelse  Perceptual transparency testing is highly relevant for evaluating audio 

steganography methods. The perceptual transparency of such methods 

says something about how easy it is for a human observer to hear that a 

secret message has been embedded into an audio file. One way to test this 

is by using Objective Mean Opinion Score (MOS-LQO) algorithms. These 

algorithms try to emulate Subjective Mean Opinion Score (MOS-LQS) 

tests where human participants rate the perceived quality of some  

altered/degraded audio files. However, there exists a plethora of different 

MOS-LQO algorithms and no current work is exploring which one is best 

suited for evaluating the perceptual transparency of different audio 

steganography methods. This study aims to change this by investigating 

how some different MOS-LQO algorithms compare to Subjective MOS 

(MOS-LQS) tests when evaluating the perceptual transparency of some 

chosen audio steganography tools and methods. 
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Risikovurdering og datahåndtering 
Skal det gjennomføres risikovurdering?  

 

Dersom «ja», har det blitt gjennomført? 

Nei 

 

Nei 

Skal det søkes om godkjenninger? 

(REK*, Sikt**) 

Ja 

Skal det skrives en konfidensialitetsavtale 

i forbindelse med oppgaven? 

 

Hvis «ja», har det blitt gjort? 

Nei 

 

 

Nei 

 

*   Regionale komiteer for medisinsk og helsefaglig forskningsetikk (https://rekportalen.no)    

** Sikts meldeskjema for personopplysninger i forskning (https://sikt.no/tjenester/personverntjenester-forskning/fylle-ut-

meldeskjema-personopplysninger) 

 

 

Eventuelle emner som skal inngå i mastergraden 
IMT4110 Scientific Methodology and Communication  IMT4115 Introduksjon til 

informasjonssikkerhetsledelse  IMT4114 Introduction to Digital Forensics  IMT4113 Introduction to Cyber 

and Information Security Technology  IMT4130 Cybercrime Investigation  IMT4133 Data Science for Security 

and Forensics  IMT4125 Network Security  IMT4016 Eksperter i team - Digital Communities and Welfare  

IMT4123 Systemsikkerhet  IMT4210 Computational Forensics  IMT4205 Forprosjekt  IIK3100 Etisk hacking 

og penetrasjonstesting  MIS4900 Masteroppgave informasjonssikkerhet 
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Retningslinjer - rettigheter og plikter 
  

Formål  
Avtale om veiledning av masteroppgaven/hovedoppgaven er en samarbeidsavtale mellom student, veileder og institutt. 

Avtalen regulerer veiledningsforholdet, omfang, art og ansvarsfordeling.  

  

Studieprogrammet og arbeidet med oppgaven er regulert av Universitets- og høgskoleloven, NTNUs studieforskrift og 

gjeldende studieplan. Informasjon om emnet, som oppgaven inngår i, finner du i emnebeskrivelsen.  

  

Veiledning  

Studenten har ansvar for å  
• Avtale veiledningstimer med veileder innenfor rammene master-/hovedoppgaveavtalen gir.  

• Utarbeide framdriftsplan for arbeidet i samråd med veileder, inkludert veiledningsplan.  

• Holde oversikt over antall brukte veiledningstimer sammen med veileder.  

• Gi veileder nødvendig skriftlig materiale i rimelig tid før veiledning.  

• Holde instituttet og veileder orientert om eventuelle forsinkelser.  

• Inkludere eventuell(e) medstudent(er) i avtalen.  

  

Veileder har ansvar for å  
• Avklare forventninger om veiledningsforholdet.  

• Sørge for at det søkes om eventuelle nødvendige godkjenninger (etikk, personvernhensyn).  

• Gi råd om formulering og avgrensning av tema og problemstilling, slik at arbeidet er gjennomførbart innenfor 

normert eller avtalt studietid.   

• Drøfte og vurdere hypoteser og metoder.  

• Gi råd vedrørende faglitteratur, kildemateriale, datagrunnlag, dokumentasjon og eventuelt ressursbehov.  

• Drøfte framstillingsform (eksempelvis disposisjon og språklig form).  

• Drøfte resultater og tolkninger.  

• Holde seg orientert om progresjonen i studentens arbeid i henhold til avtalt tids- og arbeidsplan, og følge opp 

studenten ved behov.  

• Sammen med studenten holde oversikt over antall brukte veiledningstimer.  

  

Instituttet har ansvar for å  
• Sørge for at avtalen blir inngått.  

• Finne og oppnevne veileder(e).  

• Inngå avtale med annet institutt/ fakultet/institusjon dersom det er oppnevnt ekstern medveileder.  

• I samarbeid med veileder holde oversikt over studentens framdrift, antall brukte veiledningstimer, og følge opp 

dersom studenten er forsinket i henhold til avtalen.  

• Oppnevne ny veileder og sørge for inngåelse av ny avtale dersom:  

• Veileder blir fraværende på grunn av eksempelvis forskningstermin, sykdom, eller reiser.  

• Student eller veileder ber om å få avslutte avtalen fordi en av partene ikke følger den.   

• Andre forhold gjør at partene finner det hensiktsmessig med ny veileder.   

• Gi studenten beskjed når veiledningsforholdet opphører.   

• Informere veileder(e) om ansvaret for å ivareta forskningsetiske forhold, personvernhensyn og 

veiledningsetiske forhold.   

• Ønsker student, eller veileder, å bli løst fra avtalen må det søkes til instituttet. Instituttet må i et slikt tilfelle 

oppnevne ny veileder.    
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Avtaleskjemaet skal godkjennes når retningslinjene er gjennomgått. 

Godkjent av   
 

 

Henrik Hansen Stormyhr 

Student 

 

23.01.2025 

Digitalt godkjent 

 

 

Tjerand Silde 

Veileder 

 

23.01.2025 

Digitalt godkjent 

 

 

Hilde Bakke 

Institutt 

 

05.02.2025 

Digitalt godkjent 
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Master`s Agreement / Main Thesis Agreement 
 

 

Faculty Faculty of Information Technology and Electrical Engineering 

Institute Department of Information Security and Communication 

Technology 

Programme Code MIS 

Course Code MIS4900 

 

Personal Information 
 

Surname, First Name Stormyhr, Henrik Hansen 

Date of Birth 30.09.1999 

Email henrhst@stud.ntnu.no 

 

Supervision and Co-authors 
 

Supervisor Tjerand Silde 

Co-supervisors (if applicable) Emil August Hovd Olaisen, Bor de Kock 

Co-authors (if applicable)  

 

The Master`s thesis 
 

Starting Date 06.01.2025 

Submission Deadline 10.06.2025 

Thesis Working Title 

A comparative analysis of MOS-LQO algorithms for perceptual 

transparency testing in audio steganography 

Problem Description 

Perceptual transparency testing is highly relevant for evaluating 

audio steganography methods. The perceptual transparency of 

such methods says something about how easy it is for a human 

observer to hear that a secret message has been embedded into 

an audio file. One way to test this is by using Objective Mean 

Opinion Score (MOS-LQO) algorithms. These algorithms try to 

emulate Subjective Mean Opinion Score (MOS-LQS) tests where 

human participants rate the perceived quality of some  

altered/degraded audio files. However, there exists a plethora of 

different MOS-LQO algorithms and no current work is 

exploring which one is best suited for evaluating the perceptual 

transparency of different audio steganography methods. This 

study aims to change this by investigating how some different 

MOS-LQO algorithms compare to Subjective MOS (MOS-LQS) 

tests when evaluating the perceptual transparency of some 

chosen audio steganography tools and methods. 
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Risk Assessment and Data Management 
Will you conduct a Risk Assessment? 

 

If “Yes”, Is the Risk Assessment Conducted? 

No 

 

No 

Will you Apply for Data Management? 

(REK*, Sikt**) 

Yes 

Will You Write a Confidentiality Agreement? 

 

If “Yes”, Is the Confidentiality Agreement Conducted? 

No 

 

No 

 

*   REK --  https://rekportalen.no/  

** Sikt's Notification Form for personal data in research (https://sikt.no/en/notification-form-personal-data) 

 

Topics to be included in the Master`s Degree (if applicable) 
IMT4110 Scientific Methodology and Communication  IMT4115 Introduksjon til 

informasjonssikkerhetsledelse  IMT4114 Introduction to Digital Forensics  IMT4113 Introduction to Cyber 

and Information Security Technology  IMT4130 Cybercrime Investigation  IMT4133 Data Science for Security 

and Forensics  IMT4125 Network Security  IMT4016 Eksperter i team - Digital Communities and Welfare  

IMT4123 Systemsikkerhet  IMT4210 Computational Forensics  IMT4205 Forprosjekt  IIK3100 Etisk hacking 

og penetrasjonstesting  MIS4900 Masteroppgave informasjonssikkerhet 
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Guidelines – Rights and Obligations  
Purpose 
The Master’s Agreement/ Main Thesis Agreement is an agreement between the student, supervisor, and department. The 

agreement regulates supervision conditions, scope, nature, and responsibilities concerning the thesis.  

 

 The study programme and the thesis are regulated by the Universities and University Colleges Act, NTNU's study 

regulations, and the current curriculum for the study programme. 

 

Supervision 
 

The student is responsible for 
• Arranging the supervision within the framework provided by the agreement.  

• Preparing a plan of progress in cooperation with the supervisor, including a supervision schedule.  

• Keeping track of the counselling hours.  

• Providing the supervisor with the necessary written material in a timely manner before the supervision.  

• Keeping the institute and supervisor informed of any delays.  

• Adding fellow student(s) to the agreement, if the thesis has more than one author. 

 

The supervisor is responsible for 
• Clarifying expectations and how the supervision should take place.  
• Ensuring that any necessary approvals are acquired (REC, ethics, privacy).  

• Advising on the demarcation of the topic and the thesis statement to ensure that the work is feasible within  

agreed upon time frame.  

• Discussing and evaluating hypotheses and methods.  

• Advising on literature, source material, data, documentation, and resource requirements.  

• Discussing the layout of the thesis with the student (disposition, linguistic form, etcetera).  

• Discussing the results and the interpretation of them.  

• Staying informed about the work progress and assist the student if necessary.  

• Together with the student, keeping track of supervision hours spent. 

 

The institute is responsible for 
• Ensuring that the agreement is entered into.  

• Find and appoint supervisor(s).  

• Enter into an agreement with another department / faculty / institution if there is an external co-supervisor.  

• In cooperation with the supervisor, keep an overview of the student's progress, the number 

of supervision hours. spent, and assist if the student is delayed by appointment.  

• Appoint a new supervisor and arrange for a new agreement if:  

• The supervisor will be absent due to research term, illness, travel, etcetera.  

• The student or supervisor requests to terminate the agreement due to lack of adherence from either party.  

• Other circumstances where it is appropriate with a new supervisor.  

• Notify the student when the agreement terminates.  

• Inform supervisors about the responsibility for safeguarding ethical issues, privacy and guidance ethics  

• Should the cooperation between student and supervisor become problematic, either party may apply to the 

department to be freed from the agreement. In such occurrence, the department must appoint a new supervisor  

 

  



   9 av 9 

 

This Master`s agreement must be signed when the guidelines have been reviewed. 
 

Signatures   
 

 

Henrik Hansen Stormyhr 

Student 

 

23.01.2025 

Digitally approved 

 

 

Tjerand Silde 

Supervisor 

 

23.01.2025 

Digitally approved 

 

 

Hilde Bakke 

Department 

 

05.02.2025 

Digitally approved 

  

 





Appendix B

DMOS Rating Paper

This are the papers given to each participant for each audio steganography method
(labeled as "round"). The participants each get five pairs of these papers to give
their ratings for the null-pair and our four chosen audio steganography methods
and fills out a a total of ten sheets of paper by the end of the test.
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Participant age:             .                                                                                                  Volume: 
Participant sex:  Male [     ]  | Female [     ]  Participant number:  

Page: 1/2 
 

DMOS Test - ROUND ___ 
Female Speaker 1 (Speaker 1) 

Female Speaker 1 (Speaker 1) – Sample 1  

Mark an “X” in the box below your perceived audio quality rating (From 1-5).  

5 4 3 2 1 

     

<-Least annoying (better quality)                          Most annoying (worse quality)-> 

Female Speaker 1 (Speaker 1) – Sample 2  

Mark an “X” in the box below your perceived audio quality rating (From 1-5).  

5 4 3 2 1 

     

<-Least annoying (better quality)                          Most annoying (worse quality)-> 

.                                                                                                                                                                                             . 

Female Speaker 2 (Speaker 2) 

Female Speaker 2 (Speaker 2) - Sample 1 

Mark an “X” in the box below your perceived audio quality rating (From 1-5). 

5 4 3 2 1 

     

<-Least annoying (better quality)                          Most annoying (worse quality)-> 

Female Speaker 2 (Speaker 2) - Sample 2 

Mark an “X” in the box below your perceived audio quality rating (From 1-5). 

5 4 3 2 1 

     

<-Least annoying (better quality)                          Most annoying (worse quality)-> 



Participant age:             .                                                                                                  Volume: 
Participant sex:  Male [     ]  | Female [     ]  Participant number:  

Page: 2/2 
 

DMOS Test - ROUND ___ 

Male speaker 1 (Speaker 3) 

Male Speaker 1 (Speaker 3) – Sample 1 

Mark an “X” in the box below your perceived audio quality rating (From 1-5). 

5 4 3 2 1 

     

<-Least annoying (better quality)                          Most annoying (worse quality)-> 

Male Speaker 1 (Speaker 3) – Sample 2 

Mark an “X” in the box below your perceived audio quality rating (From 1-5). 

5 4 3 2 1 

     

<-Least annoying (better quality)                          Most annoying (worse quality)-> 

.                                                                                                                                                                                             . 

Male Speaker 2 (Speaker 4) 

Male Speaker 2 (Speaker 4) 

 Mark an “X” in the box below your perceived audio quality rating (From 1-5). 

5 4 3 2 1 

     

<-Least annoying (better quality)                          Most annoying (worse quality)-> 

Male Speaker 2 (Speaker 4) 

 Mark an “X” in the box below your perceived audio quality rating (From 1-5). 

5 4 3 2 1 

     

<-Least annoying (better quality)                          Most annoying (worse quality)-> 



Appendix C

Consent Form

The consent form used to collect consent from each participant before their parti-
cipation in the Subjective DMOS test can be seen below. The consent form is only
given in Norwegian as this is what was used in the experiment.
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Vil du delta i Masteroppgave om «lyd 
steganografi»? 

 

 

Formålet med prosjektet   
Dette er et spørsmål til deg om du vil delta i et forskningsprosjekt hvor formålet er å 
undersøke hvor godt vi kan vurdere en metrikk kalt «perceptual transparency» innenfor 
lydsteganografi feltet algoritmisk. 
Lyd steganografi er kunsten i å gjemme en hemmelig melding i en lydfil, slik at den ikke kan 
oppdages av uvedkommende. «Perceptual transparency» metrikken sier noe om hvor enkelt 
et menneske kan høre at en lydfil som inneholder en hemmelig melding. 
 
Jeg ønsker derfor å utføre en såkalt «Mean opinion score» test der rundt 20-40 deltakere vil 
rangere lydkvaliteten til forskjellige lydfiler som både inneholder og ikke inneholder 
hemmelige meldinger. Hver deltaker vil rangere noen forskjellige lydfiler fra 1-5 basert på 
opplevd lydkvalitet. Der 1 er dårlig og 5 er glimrende. Gjennomsnittet av rangeringen til alle 
deltakerne for hver lydfil vil utgjøre hver lydfils «Mean opinion score». 
 
Jeg ønsker også å samle inn ditt kjønn og din alder da deltakerne bør være så balansert som 
mulig på kjønn og alder for å få et godt resultat. 
 
I forbindelse med min masteroppgave ved NTNU ønsker jeg å sammenlikne resultatene av 
disse testene med algoritmer som forsøker å emulere de samme testene objektivt. Dette er 
for å finne ut hvor gode forskjellige algoritmer er til å vurdere «perceptual transparency» 
metrikken for forskjellige lyd steganografi metoder. 
  
Hvorfor får du spørsmål om å delta?  
Du får denne forespørselen fordi jeg trenger deltakere fra forskjellige kjønn og aldersgrupper 
for å uføre denne testen. 
  
Hvem er ansvarlig for forskningsprosjektet?  
Institutt for informasjonssikkerhet og kommunikasjonsteknologi ved Norges teknisk-
naturvitenskapelige universitet er ansvarlig for personopplysningene som behandles i 
prosjektet. 
 
Det er frivillig å delta  
Det er frivillig å delta i prosjektet. Det vil ikke ha noen negative konsekvenser for deg hvis du 
ikke vil delta eller senere velger å trekke deg.  
  
Hva innebærer det for deg å delta?  
Varighet ca. 30 minutter. 
Jeg vil først spørre deg om kjønn og alder og notere meg dette. 
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Du vil høre på noen par lydklipp med støydempende hodetelefoner. Etter hvert lydklipp vi 
du bes om å notere ned opplevd lydkvalitet fra en til fem på et ark. 
Jeg vil notere meg disse tallene for hvert lydklipp under ditt kjønn og alder, men jeg vil ikke 
notere navnet ditt eller noen andre personlige opplysninger. 
 
Kort om personvern  
Vi vil bare bruke opplysningene om deg til formålene vi har fortalt om i dette skrivet. Vi 
behandler personopplysningene konfidensielt og i samsvar med personvernregelverket. Du 
kan lese mer om personvern på nedenfor. 
  
Med vennlig hilsen  
  
Henrik Hansen Stomyhr (Masterstudent)    Tjerand Silde (Veileder)   
 
 
Utdypende om personvern – hvordan vi oppbevarer og bruker dine opplysninger  
De eneste som vil ha tilgang til personopplysningene er meg (Henrik Hansen Stormyhr) og 
eventuelt mine veiledere for prosjektet ved NTNU (Tjerand Silde, Bor de Kock og Emil August 
Hovd Olaisen.) 
 
Ditt kjønn og alder vil krypteres med et sikkert passord og lagres på min datamaskin og en 
ekstern harddisk som backup. Ditt samtykke vil oppbevares på et hemmelig og låst sted og 
makuleres når prosjektet er over. 
 
De eneste personopplysningene som kan bli publisert er kjønn og alder. Dette vil 
sannsynligvis bli skrevet noe om med tanke på balansen av deltakeres kjønn og alder.   
 
Hva gir oss rett til å behandle personopplysninger om deg?  
Vi behandler opplysninger om deg basert på ditt samtykke.  
 
På oppdrag fra Norges teknisk-naturvitenskapelige universitet har personverntjenestene ved 
Sikt – Kunnskapssektorens tjenesteleverandør, vurdert at behandlingen av 
personopplysninger i dette prosjektet er i samsvar med personvernregelverket.  
  
Dine rettigheter  
Så lenge du kan identifiseres i datamaterialet, har du rett til:  

• å be om innsyn i hvilke opplysninger vi behandler om deg, og få utlevert en kopi av 
opplysningene, 

• å få rettet opplysninger om deg som er feil eller misvisende,  

• å få slettet personopplysninger om deg,  

• å sende klage til Datatilsynet om behandlingen av dine personopplysninger.  
  
Vi vil gi deg en begrunnelse hvis vi mener at du ikke kan identifiseres, eller at rettighetene 
ikke kan utøves.  
  
Hva skjer med personopplysningene dine når forskningsprosjektet avsluttes?   
Prosjektet vil etter planen avsluttes innen utløpet av Juni 2025. 
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Opplysningene vil da slettes fra min datamaskin og ekstern harddisk. 
Samtykkeskjemaet vil makuleres. 
 
Spørsmål   
 
Hvis du har spørsmål eller vil utøve dine rettigheter, ta kontakt med: 
 
Henrik Hansen Stormyhr (Masterstudent) 
henrhst@stud.ntnu.no 
+47 47615188 
Eller 
Tjerand Silde (Veileder) 
tjerand.silde@ntnu.no 
+47 47301607 
Eller 
Thomas Ørnulf Helgesen (Personvernombud ved NTNU) 
thomas.helgesen@ntnu.no 
+47 93079038 
Hvis du har spørsmål knyttet til Sikts vurdering av prosjektet, kan du ta kontakt på e-post: 
personverntjenester@sikt.no, eller på telefon: 73 98 40 40.  
 

 
------------------------------------------------------------------------------------------------------------------------- 
 
Samtykkeerklæring 
 
 
Jeg har mottatt og forstått informasjon om prosjektet Masteroppgave om «lyd steganografi», 
og har fått anledning til å stille spørsmål. Jeg samtykker til: 
 

 å delta i «Mean opinion score test» observasjon 
 

Jeg samtykker til at mine opplysninger behandles frem til prosjektet er avsluttet 
 
 
----------------------------------------------- 





Appendix D

Information paper for
participants of the Subjective
DMOS test

The information paper given to participants of the Subjective DMOS test is in-
cluded below. The information paper is only available in Norwegian as this is
what was used during the test.
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Forklaring av lydkvalitetstest (DMOS DCR ITU-T P.800 Test) 

I forbindelse med min masteroppgave i informasjonssikkerhet ved NTNU vil jeg utføre en 
test for å sammenlikne forverringen av lydkvalitet forårsaket av forskjellige metoder å 
gjemme hemmelig informasjon i lydfiler. Målet med masteroppgaven er å teste forskjellige 
metoder og algoritmer for å måle kvaliteten på slike metoder (mer spesifikt hvor hørbare de 
er for mennesker) og finne svakheter og styrker ved disse metodene. Testen tar ca. 30 
minutter og jeg setter veldig pris på alle som kan delta.  

Under testen vil deltakerne rangere noen lydfiler fra 1-5 ved bruk av skalaen som kan ses 
nedenfor: 
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Rangeringen vil gis på papir til forskjellige «Samples» som består av to setninger som blir 
gjentatt et par ganger. Avspillingen av disse «samplesene» vil forklares bedre på neste side. 
Rangeringen vil gis ved avkryssning i et skjema utformet som det som vises nedenfor: 
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For hver “Sample” på skjemaet vil det spilles lydklipp av to innspilte setnigner lest opp av 
samme person med 0.5 sekunders mellomrom. Den første gangen disse setningene spilles 
av vil være referenaselyden. Det vil bli holdt opp et skilt der det står «referense» under 
avspillingen av disse. Deretter vil det være en pause på 1 sekund før de degraderte lyd-
filene spilles av. Dette vil være de samme setningene, men de vil være behandlet på en 
måte som kan gi varierende grad av degradert/forverret lydkvalitet. Et skilt der det står 
«Forverret lydkvalitet» vil holdes opp under avspillingen av disse. Denne sekvensen vil 
gjentas to ganger, slik at deltakeren kan være helt sikkert på om det finnes en 
degradering/forverring i lydkvaliteten eller ikke. Deretter vil deltaktren rangere «sampelen» 
fra 1-5 og neste «sample» vil spilles av når jeg ser at rangeringen har blitt gjort. En 
illustrasjon av dette oppsettet kan sees nedenfor (denne vil gjentas to ganger for hver 
«sample»): 

 

 

 

 

 

 

 

 

 

 

Degraderingen/forverringen i lydkvalitet kan noen ganger være veldig hørbar, og noen 
ganger ikke være hørtbar i det hele tatt. Testen går ut på å rangere graden av 
degradert/forverret lydkvalitet fra 1-5 for hver av disse «samplesene». 

Spørsmål vil selvfølgelig bli besvart både før og under testen. 

Testen kan høres komplisert ut, men min erfaring så langt er at de fleste forstår oppsettet 
raskt under selve testen. 

Håper du vil delta!        

Henrik Hansen Stomyhr 

Setning 1 

referanse 

Setning 2 

referanse 

Setning 1 

degradert 

Setning 2 

degradert 

0.5 sekunder 

pause 

0.5 sekunder 

pause 

1 sekund 

pause 

0.5 sekunder 

pause 

1.5 sekunder 

pause 

Illustrasjon av avspillingen av en «sample». Denne sekvensen vil spilles av to ganger: 





Appendix E

DMOS Degradation scale
explanation

The explanation and Norwegian translation of the DMOS degradation scale given
to the participants of the Subjective DMOS test is provided below. The sample
labels like "F1-S1" in the tables work like this: F or M refers to male or female
speaker, the number behind this letter serves to differentiate between the two
speakers per gender. The S stands for sample and serves to label the two samples
per speaker.
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Audio degradation rating scale explanation 
Forklaring av rangeringsskala for nedgang i lydkvalitet 

 

5 
Degradation is inaudible. 
Nedgang i lydkvalitet er ikke hørbar. 

4 

Degradation is audible but not annoying. 
Nedgang i lydkvalitet er hørbar, men ikke irriterende. 

3 

Degradation is slightly annoying. 
Nedgang i lydkvalitet er litt irriterende. 

2 

Degradation is annoying. 
Nedgang i lydkvalitet er irriterende. 

1 

Degradation is very annoying. 
Nedgang i lydkvalitet er veldig irriterende. 

 

 

Scale visualization 

Visualisering av skala 

 

5 ------------------- 4 ------------------ 3 ------------------ 2 ------------------ 1 

<-Least annoying (better quality) ---------------------------- Most annoying (worse quality)-> 

<-Minst irriterende (bedre kvalitet)                Mest irriterende (værre kvalitet) -> 





Appendix F

All SNR Results

Our measured SNR results for all samples and methods can be found in the tables
below.

115





Chapter F: All SNR Results 117

Sample SNRSteghide DMOSSteghide SNRHide4PGP DMOSHide4PGP

F1-S1 67.2744 4.8421 73.7286 4.6842
F1-S2 66.108 4.6842 72.8344 4.6842
F2-S1 60.8266 4.5790 73.2963 4.4211
F2-S2 70.3024 4.7368 75.6877 4.5790
M1-S1 66.3435 4.8947 70.4023 4.7368
M1-S2 69.6100 5.0000 68.8338 5.0000
M2-S1 70.5566 4.6316 67.2012 4.7368
M2-S2 71.6951 4.6316 68.1834 4.7895
AV GF 66.1280 4.7105 73.7286 4.5921
AV GM 69.5513 4.7895 68.6552 4.8158
AV GAll 67.8396 4.7500 71.1919 4.7040

Table F.1: Our measured SNR results for all Steghide and Hide4PGP samples,
along with the averages for female samples, male samples and all samples.

Sample SNRGAN Low DMOSGAN Low SNRGANHigh DMOSGANHigh

F1-S1 41.8081 2.8947 41.8448 2.6842
F1-S2 41.0197 2.6316 41.0461 2.5790
F2-S1 40.4620 2.4211 40.4922 2.2632
F2-S2 40.0506 2.3158 40.0529 2.3158
M1-S1 38.9550 2.9474 39.0194 3.0526
M1-S2 37.3718 2.7368 37.3833 3.0000
M2-S1 35.7744 2.5790 35.6228 2.8421
M2-S2 34.6223 2.3684 34.5545 2.1053
AV GF 40.8351 2.5658 40.8590 2.4605
AV GM 36.6809 2.6579 36.6450 2.7500
AV GAll 38.7580 2.6118 38.7520 2.6053

Table F.2: Our measured SNR results for all GAN Low and GAN High samples,
along with the averages for female samples, male samples and all samples.





Appendix G

All Correlation Scatter Plots

All of the full size correlation scatter plots between DMOS and all MOS-LQO al-
gorithms with regression lines, for all samples, male samples and female samples
can be found below.
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Figure G.1: This scatter plots with a regression line shows the relationship
between the DMOS and PESQ scores for all 32 male and female samples.

Figure G.2: This scatter plots with a regression line shows the relationship
between the DMOS and ViSQOLSpeech scores for all 32 male and female
samples.
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Figure G.3: This scatter plots with a regression line shows the relationship
between the DMOS and ViSQOLAudio scores for all 32 male and female samples.

Figure G.4: This scatter plots with a regression line shows the relationship
between the DMOSF and PESQF scores for the 16 female samples.
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Figure G.5: This scatter plots with a regression line shows the relationship
between the DMOSF and ViSQOLSpeechF scores for the 16 female samples.

Figure G.6: This scatter plots with a regression line shows the relationship
between the DMOSF and ViSQOLAudioF scores for the 16 female samples.
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Figure G.7: This scatter plots with a regression line shows the relationship
between the DMOSM and PESQM scores for the 16 male samples.

Figure G.8: This scatter plots with a regression line shows the relationship
between the DMOSM and ViSQOLSpeechM scores for the 16 male samples.
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Figure G.9: This scatter plots with a regression line shows the relationship
between the DMOSM and ViSQOLAudioM scores for the 16 male samples.
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