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Abstract

This report consider end-to-end encrypted messaging applications,
and study the setting of group conversations. Communication secu-
rity are becoming increasingly mainstream, but even though secure
1-1 communication is a solved problem, encrypted group conversations
are implemented in many flavors, offering different levels of privacy,
integrity, authentication, anonymity and efficiency.

We describe these properties in details and discuss trade-offs be-
tween different solutions. Further, we study some of the mostly used
applications in practice; Signal, WhatsApp, Keybase, iMessage, Crypho,
Wire and Threema - and compare their features.
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1 Introduction

Everyone with a phone, tablet or computer chat or send emails over the
Internet every day, and there are several properties that are important to
the senders and receivers when using these applications. These properties
depend on the situation that the messages are sent, be it in between friends
or family, work-communication, doctor-patient, journalist-source, activism,
police-work, politics or something else. We might want the messages to be
private (that the content is confidential), being able to verify the integrity
of the messages (that they are not altered with), or the make sure that
we are communication with whom we think we are talking to (that we can
authenticate the sender and receiver). Sometimes we only need some of these
properties, other times we need all. But there are also more. We might want
that the services are reliable, that we can send messages whenever we need
to, and that it is efficient. In some cases we might need stronger versions of
the requirements listed, and we’ll discuss them more in detail later.

However, these properties is needed also outside of the two-party setting,
where there are one sender and more than one receiver for each message. In
group communication we need all this, but we must make sure that all the
messages are synchronized, so that every member of the group can partici-
pate in the conversation and receive all the necessary information being sent.
This makes the situation more complex. Groups may be really large, up to
hundreds or thousands of members, and this might influence both the effi-
ciency, scalability and availability of the communication. Many groups are
dynamic; sometimes new members are being added or current members are
leaving. It is not always easy to extend 1-1 communication to this setting.

For privacy, there are three possible situations: 1) all messages are sent
in the clear, 2) the messages are sent over an encrypted channel from the
sender to the application server, and from the server to the recipients, or
3) the messages are encrypted by the sender, and only the recipients can
decrypt and read the messages.

In the fist setting the users have no privacy whatsoever. It might still be
important to verify the integrity of the message and authenticity of the
sender of each message, say, in the case of a national emergency and the
government need to send important but public information to all its citizens.

The second situation is called transport layer encryption, and it makes sure
that no one else that the sender, receiver and application server can read the
messages. However, this means that the parties involved need to trust the
server, as it allows him to read and store all the messages sent. This could
expose the messages in the cases where the police wants access, the server
get hacked or the company running the service have untrusted employees.
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The third situation is called end-to-end encryption (E2EE)(See [CCG+18]
for more details). Here, all the communicating members have a secretly
shared cryptographic key to makes sure that they are the only ones that
can send and receive messages. In particular, this means that the applica-
tion server only forwards messages being sent, but can’t read the content.
Note, however, that this does not mean that the communication is unhack-
able. Now, a hacker must hack a users device to get access to his, but only
his, conversations, instead of hacking the centralized server to get access to
everyones conversations.

All three cases are normal. Email and SMS are in general not encrypted,
unless you are using specialized services. Transport layer encryption is used
basically whenever you connect to a website on the Internet, or when you
send messages via Microsoft Teams or Slack, use Gmail to send emails or
have a video call over Zoom. Lastly, end-to-end encryption are getting more
widespread as we speak, by a lot of effort in this area the past few years
from cryptographers and developers. Examples are Protonmail, Tutanota
and Fastmail for email, Facetime and Skype (opt-in) for video, and Signal,
WhatsApp, Keybase, iMessage, Crypho, Wire and Threema for chat. Some
of these chat services also offer end-to-end encrypted video calls for two
people or small groups. Facebook Messenger and Telegram offer end-to-end
encryption for 1-1 conversations, but not by default, and only offer transport
layer encryption for group communication.

In this project we’ll study all of the previously mentioned properties for
the group-setting, where the minimal requirement is that all communica-
tion are end-to-end encrypted. We will focus on messaging services sending
chat messages over the Internet, like the ones mentioned in the previous
paragraph. As noted earlier, it is not necessarily easy to go from 1-1 com-
munication to group conversations, and the services have all solved these
challenges in different ways. We will look into their design structures, study
their features, and analyze the security of each of the applications. Finally,
also make a short comparison with the ongoing IETF standardization effort
called Messaging Layer Security (MLS).

2 Two-Party End-to-End Encryption

We start by looking at end-to-end encryption for two parties, as explained
and visualized in Figure 1. This is a simplified version of Pretty Good Pri-
vacy (PGP), published by Zimmerman in 1991 [Zim91]. We can achieve a
secure channel based only on public key cryptography, given that the sender
has access to the public encryption key of the recipient and that he has access
to the public verification key of the sender. However, this is not an assump-
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tion we in general can make. When connecting over TLS [Res18] to websites
on the Internet, we have a public key infrastructure (PKI) consisting of sev-
eral companies who’s job is to verify the ownership of each website and their
public keys, so that users safely can connect. This moves the verification
process of a website into trusting these companies to do their job properly.
In messaging applications, each system need some way of authenticating the
individual parties. Some application solve this by assuming that the users
have other ways of communicating as well (e.g in person or via friends, like
in PGP), to be able to verify one another, while other applications assume
trusted third parties to do this process. We’ll look into some of the methods
that are implemented in practice by the applications mentioned earlier.

Alice

PA S1 S2 . . . Sn PB

Bob

m

(c, σ) (c, σ) (c, σ) (c, σ) (c, σ)

m

EB,SA DB,VA

Figure 1: End-to-end encrypted channel between Alice’s phone PA and
Bob’s phone PB, sending a message m from PA to PB as a ciphertext c

together with a signature σ. The ciphertext and signature passes the n
servers S1,S2, ...,Sn on the way from the sender to the recipient. PB verifies
that the signature is valid before giving Bob the decrypted message. Here,
EB and DB are Bob’s public encryption key and secret decryption key, and
SA and VA are Alice’s secret signing key and public verification key. Also,
we assume for simplicity that all the keys are stored in the phones memory.

Further, public key cryptography are slow and consists of a large overhead
of data per ciphertexts. As in TLS, the way to solve this is to use public key
cryptography to agree upon a secret shared key used for symmetric key cryp-
tography, which is way more efficient. Any Authenticated Encryption with
Associated Data (AEAD) [Rog02] scheme would do, removing the necessity
of signatures for authenticating the messages after the key exchange.

However, this might still not be good enough. Assume that someone are
listening in to the conversation and are storing all the ciphertexts being
sent. If one of the devises are being hacked, and the hacker get hold of
the secret key of the user, then the hacker would be able to decrypt all the
ciphertexts ever sent between the two parties. This can be avoided. The
idea of forward secrecy [BG19] is that each key is only used for a short period
of time, being a so-called ephemeral key, before the two parties negotiate a
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new shared secret key used for the next time slot. In this case, the hacker
can only decrypt and read the messages being sent in the current time slot,
which might be as short as only a few minutes long. This way, we only use
slow public key cryptography once per time slot to create a new key, while
everything else is encrypted using fast symmetric key cryptography.

Also, assume that a hacker was able to take over a user’s phone. Will the
user be able to get back in control, or is the conversation poisoned for ever
going forward? If the hacker is in full control of the device, there is nothing to
do. However, if the attacker lose control of the device, say, if some malware
was found and deleted, then the users should be able to agree upon a new
and fresh key, and the conversation would again be private. This is called
post-compromise security [CCG16]. If the users are creating new keys not
only based on the long-term public keys, but also based on the transcript of
messages, then the attacker can not get hold of the new session keys unless
he already had access to everything from the past. This indicates that unless
the attacker gain 100 % control over the user, then he’ll lose control again
whenever the conversation enters a new time slot.

One last property we’ll discuss in detail for the two party setting is denia-
bility [BBG04]. We do want the users to be able to verify whom they are
talking to, but we don’t necessarily want a user to be held responsible for
a message she has sent. Deniability means that the receiver should be able
to verify the authenticity of a received message, but he shouldn’t be able to
convince anyone else about this fact. In practice, this is implemented such
that both parties holds a shared key for authenticated encryption, which
means that both two parties involved could have produced any message in
the conversation. Then both parties can be convinced about the authentic-
ity of the messages, but any third party could only be convince that one out
of the two parties sent a particular message, and hence, the receiver could
himself have produced the message he’s claiming to have received. Note that
we don’t have deniability when using signatures to authenticate messages.

We’ll return to forward secrecy, post-compromise security and deniability
when comparing the messaging protocols. Several of these properties was
first implemented for group conversations in the Off-the-Record protocol
[GUVC09], as a replacement for PGP (which offered none of these proper-
ties), and has been widely adopted by messaging applications since.

3 Challenges in the Group Setting

Let’s consider the group setting. Ideally, we want the group conversations
to inherit the same security properties as described for the two party set-
ting. Some of the main challenges here are how to agree upon keys and
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how to send messages in between all the participants. Let’s take a look at
the three most common settings, and discuss their advantages and disad-
vantages in terms of communication and implementation complexity. We’ll
also discuss how metadata can be handled in different situation, both for
message communication, group structures and lists of contacts.

3.1 Pair-Wise Channels

The simplest solution, in terms of implementation complexity, is to use
pair-wise channels for group communication. Any application supporting
end-to-end encrypted group communication already supports E2EE for 1-1
conversations. By leveraging these channels, and locally keeping track of
who’s in the group and not, we can encrypt each message using the shared
keys earlier exchanged with each of the group members. This is visualized
in Figure 2. Let the group consist of, say, four members, as in the figure.
Then the sender encrypt his message under the shared secret key of each of
the three other group members individually, and send the ciphertexts to the
server, which then forwards the ciphertexts to the intended receivers. Note
that the communication complexity per message in this setting is linear in
the number of group members, which scales poorly for large groups.

Figure 2: E2EE using pair-wise channels. From Signal Blog [Sig14].

It is obvious that in this setting, we inherit all the security properties from
the 1-1 setting. If the 1-1 setting provides forward secrecy, post-compromise
security and deniability, then the group setting does as well. Another advan-
tage is that the server will be unaware about groups, as all communication
looks like 1-1 conversations. It is however aware of the pair-wise channels.
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3.2 Encrypted Message-Keys

The second solution is for the sender to choose a new random key for each
message that he’s sending. A key is most likely smaller than a message.
This way, he can continue by encrypting the message under the new key,
and then encrypt the key itself under using the keys agreed upon via the
pair-wise channels. This way, the sender only have to send one copy of the
encrypted message to the server, while sending a linear number of encrypted
keys. The server then forwards the ciphertext in a fan-out fashion, while
sending the encrypted keys to each individual group member, respectively.
This is visualized in Figure 3. On average, this would lower the communi-
cation complexity of the group conversations, maybe except for very short
messages. The implementation complexity should not increase by very much
compared to only using pair-wise communication channels.

Figure 3: E2EE using encrypted message-keys. From Signal Blog [Sig14].

It is pretty clear that we also in this setting inherit all the security properties
from the 1-1 setting, as the only difference is that we introduce ephemeral
keys for each message, which is then shared via pair-wise channels. However,
this puts more trust into the server. Now that the same ciphertext are being
shared with all members of the group, it is obvious to the server that these
users are having a group conversation.
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3.3 Shared Groups-Keys

The last setting we’ll discuss is group conversations with shared group-keys.
In this case all the group members need to execute a group key-exchange, po-
tentially involving both static and ephemeral public keys from each member
of the group, to agree upon a single shared key. This key is then, implicitly,
used to encrypt all messages sent by any user in the group to everyone else,
as visualized in Figure 4. Now, only one ciphertext is sent to the server,
which then use a fan-out mechanism to send a copy of the ciphertext to
each user of the group. This lower the communication complexity to a min-
imum, it’s actually constant per message, if we ignore the cost of the group
key-exchange. However, the group key-exchange might be expensive both
in terms of communication complexity and implementation complexity.

Figure 4: E2EE using shared group-keys. From Signal Blog [Sig14].

The security properties in this setting follows closely from the group key-
exchange. Both forward secrecy and post-compromise security require the
key-exchange to be repeated frequently, or to have a ratchet mechanism for
deriving new session keys for future time slots. Further, deniability require
the use of authenticated key-exchange protocol without using signatures,
among other things. In this setting, the server also learns the group structure
and the metadata regarding the users who are communicating together.

8



3.4 The Metadata Problem

Another issue in E2EE group communication, or any digital communica-
tion in general, is the leakage of metadata. Metadata is in our setting all
information about the users in the system and the messages being sent. Ex-
amples are ip-addresses, usernames and other profile information, dates and
timestamps for registration and being online, user contacts and social graph,
when and to whom messages are sent and so on. This reveals quite a bit
of information with the application server, and may leak in case it’s being
hacked, subpoenaed or misused by malicious or incompetent hosts running
the servers. Some of the metadata might also leak to third parties control-
ling the infrastructure between the users and the server. This means that
even if a system offer privacy, authenticity and integrity of the messages, it
might not provide any anonymity at all, dependent on how the metadata is
treated. This may or may not be important for the users.

One common way to prevent leaking metadata to third parties is to use TLS
to secure the communication between the users and the client, as visualized
in Figure 5. It still leaks which application is being used by the client,
but it doesn’t leak any information about the client user nor who he is
communicating with via the messaging application.

Figure 5: Protecting E2EE with TLS. From Threema Whitepaper [Thr19].

The other metadata is very dependent on the application structure. Some
applications use phone numbers as usernames, and these are often closely
tied to the real identity of a person. Email-addresses offer more anonymity,
if one creates a new address for this application that can not be tied to a
persons identity or other attributes. However, to be able to find other users
on the application, the user has to share a list of contacts, that be phone
numbers of email addresses, with the server. Hence, you share your social
graph, and this can often uniquely identify all users. Other applications
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allow users to sign up by choosing only a username, but now the user need to
find his friends and contacts by himself. Also, this only provides anonymity
when identical usernames are not used across different applications, in case
some of them ties the user to the real identity somewhere else.

One common way to handle lists of contacts is to hash each user in the list
and send the hashes to the server. The server then compare the hashes with
it’s own list containing the hashes of all users, and returning the intersection.
However, this is not really preserving anonymity; the sever has access to all
users and can easily store a tuple of username and hash together in memory.
Further, if the server only a hash of, say, every user’s phone number, then
one could more easily compare hashes in a secure manner. But also this
approach have a downside, as any phone number doesn’t have more than
ten decimal digits, and one can easily brute force any hash in short time
and extract the list of contacts. This is however the most common way of
finding friends using the same application.

The best anonymity preserving methods are very complex. Private set in-
tersection is an active area of research, and a huge amount of progress is
made throughout the past few years. Unfortunately, most of the published
protocols are still to impractical for most applications comparing huge sets
of data. But there exists a solution: Signal [Sig20] amplifies the use of Soft-
ware Guard Extensions (SGX) for this purpose. The SGX provides a secure
enclave, which means that it can secret key-material and computations that
not even the owner of the machine has access to, use this to decrypt incoming
lists of contacts and do the comparison in a privacy preserving manner. In
addition, the SGX provides remote attestation, which means that we exter-
nally can verify the code that is running on the SGX. Signal has published
the code online, and everyone can then attest that the contact-matching
procedure is working as it should. There are issues of practicality with this
approach as well, but we’ll refer to the documentation [Sig17] for the details.

Finally, lets discuss communication metadata. Initially, one could imagine
that the server needs to know both the sender and the receiver of a message
for it to be sent over the network. This applies both for the 1-1 and the
group setting, but especially the group setting, where a a copy of the message
potentially should be sent to several users at the same time. This is hard to
avoid, and most messaging services allow the server to have access to this
information. However, Signal [Sig19] have a solution to this as well. The
idea of anonymous credentials was introduced by Chaum [Cha86] in 1986, for
use in a system for digital cash, where a user can be assigned credentials at
some point of time, and later prove the possession of some valid credentials
without revealing his identity. This solution is unfortunately not practical,
but more recent work by Chase et al. [CMZ14, CPZ19] for the setting of
messaging applications give a feasible protocol. Here, the server creates
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a message-queue for each conversation in the system, and stores only an
encryption of the list of users in each conversation. The user that created
the conversation obtain credentials linked to the queue, and can ask the
server to generate more credentials on the fly when new users are added or
removed from the conversation. Then, any user with the correct credentials
can prove to the server that he is a part of the conversation without revealing
his identity, are allowed to fetch all unread messages, and can decrypt them
locally. Signal also provides sealed senders [Sig18], where the name of the
sender is encrypted via a public header key of the recipient, so that he can
decrypt the header to find out who the sender is, and then decrypt the
message with the appropriate key. This hides both the sender and recipient
from the server.

4 E2E Encrypted Chat Applications

In this section we’ll describe the features of some of the most used end-to-end
encrypted messaging services.

Signal [Sig20]. An important part of the Signal protocol is the double
ratcheting procedure [ACD19] used for authenticated key-exchange (AKE).
This procedure takes as input a long term key and a short term key from
each participant, and computes a shared key. Further, this key is used in
a key-derivation ratchet procedure, that produces ephemeral session keys.
When combining these procedures, Signal achieves both forward secrecy and
post-compromise security. The AKE uses long term encryption keys, not
signatures, which means that the key is not uniquely tied to the user, and
hence, the protocol offers deniability. Each message is encrypted with a
unique message key, which is derived from the message and the current
session key. In the group setting, the initiator of the group creates a fresh
key and share this key with each member of the group via pair-wise channels.
The session key is a group session key, derived from the shared group key,
and groups also use the double ratcheting procedure to create fresh session
keys. Group keys are updated every time a new member are added to the
group or a old member leaves. This way, the group inherit all the security
properties from the pair-wise channels.

Messaging applications can’t assume all users to be online at the same time,
and hence, need to deal with online-offline key-exchanges. For static keys,
this is easily solved by asking the server for the public keys of all recipi-
ents, but ephemeral key-exchanges inherently need fresh randomness. Sig-
nal solves this by having all users frequently upload one-time pre-keys to
the server that can be fetched by other users. Then the online party can
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perform the key-exchange and start communicating with the offline party.
The offline party complete the key-exchange when getting online, and the
conversation can continue.

Signal allow users to pair-wise authenticate themselves via other channels
using safety numbers and QR codes. Signal offers encrypted backups of all
conversations, with randomly generated passwords of length 30 digits.

As previously explained, Signal empower SGX for private set intersections
so that each users list of contacts stay private to the server. Metadata about
groups are stored in encrypted from on the server, and members use anony-
mous credentials to fetch messages from the queue, where each message are
encrypted in two layers. This hides both the sender and the recipient of
a message from the server. Signal was subpoenaed in 2016 [Sig16], and
all the information they were able to hand over to law enforcements was
ip-addresses and information about when the user signed up and was active.

WhatsApp [Wha17]. Several other messaging applications are using the
double ratcheting procedure from the Signal protocol as a backbone, and
WhatsApp are one of those applications. Similarly, pair-wise channels are
used to create group-keys, which are frequently updated, and hence, What-
sApp also achieve forward secrecy, post-compromise security and deniability.

WhatsApp also allow users to pair-wise authenticate themselves via other
channels using safety numbers and QR codes. WhatsApp offers plaintext
backups of all conversations to be uploaded and stored in cloud services.

One big difference between Signal and WhatsApp is that the WhatsApp
server has access to all metadata; all phone numbers of contacts, group-
memberships, statistics about sent messages etc.

Keybase [Key20]. This application is not based on the Signal protocol.
In Keybase, each user have their own append-only chain of signed public
keys, one key for each device. The chain updates whenever a new device is
added or removed, or the user have created a paper-key for offline storage.
All user chains form a large global Merkle-tree of public keys that are pub-
licly available for everyone to analyze and verify. Each group forms it’s own
chain, and team names are public. Team-members may chose to publish
team memberships on their public Keybase-profile. Group keys are shared
symmetric keys that group admins rotate whenever a team member revokes
a device, leaves the team, is removed from the team or resets his/her ac-
count. Then the group does a ”lazy” update, in the sense that one of the
admins generate a new key and share this with the other group members
whenever he log on after the change in group structure.
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Keybase offer users to send ephemeral exploding messages using one-time
keys, but in general are all key-material static after the key-exchange. This
means no forward secrecy nor post-compromise security. Every message sent
it signed by the users public key, and hence, Keybase offer no deniability. We
also note that Keybase allow the use of public keys to adopt the PGP infras-
tructure, using other channels (like email) to communicate messages, and
using the Keybase client to encrypt and decrypt. This hides the metadata
to the server.

Keybase offer a different way of authentication. They allow users to tie their
account to other online accounts, like Twitter, Github, personal websites
etc., by publishing their public keys and linking them together. This way,
any user can be confident that the Keybase-user they are talking to, are the
owner of these other accounts as well, which allow authentication via their
online social graph. This may or may not break anonymity, depending on
which accounts that are tied together.

As usual practice, the Keybase servers has access to all metadata in the
network. Part of the metadata are even public, as a consequence of the
user-structure, but the server have access to team memberships, users, roles
and statistics about ciphertexts being sent through the network.

iMessage [App20]. Apple made iMessage initially to replace SMS, but
it’s also used as a purely online messaging application. iMessage works
pretty similar to what is described in Figure 1, where each user creates
it’s own public/private-key pairs for encryption and signatures, and uploads
the public keys to the Apple sever. Each user can then ask Apple for the
public keys of another user, and start a conversation. Only static public
keys are used, and hence, there is no forward secrecy nor post-compromise
security. Group messaging is done via pair-wise channels, and is inherently
inefficient. However, iMessage is usually not used for large groups, and in
practice this works out nicely, and also makes the protocol complexity easier
to handle. We also note that when sending multimedia, then iMessage use
fresh message-keys to encrypt the file, upload the file to the Apple cloud,
and send the encrypted message-key to the recipient together with a pointer
to the file.

Apple offer no way of authenticating users, and users need to trust the sever
when they ask for public keys (the so-called TOFU-model). In addition, one
can store a plaintext backup of all conversation in iCloud if preferred.

Crypho [Cry20]. Crypho takes a different approach to generating keys.
Instead of generating them randomly and storing them locally, Crypho let
the user choose a password as secret. The password is input to the hash
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function scrypt, and the output is used as a secret key. The public key is then
derived from this output. This allows for dictionary attacks etc., which they
hope to mitigate by enforcing the user to activate 2-factor authentication
(2FA). On the other hand, this allows for more flexibility for the user, where
he more easily can go in between devices or browsers when using the service.
Users can download and print a one-time key-recovery code in case password
is forgotten or 2FA-device is lost/stolen.

Furthermore, the public keys are used to exchange symmetric keys used
for pair-wise and group conversations, using the Stanford Javascript Crypto
Library [SHB09], and hence, Crypho has implemented the group-key model
for croup communication. However, because of static public keys, it follows
that Crypho doesn’t offer forward secrecy nor post-compromise security. It
may offer anonymity, but that depends on the information individuals users
registered when signing up.

Crypho let users compare safety numbers or QR codes for authentication,
but also allows users to authenticate themselves via Bank ID (for Norwegian
citizens), showing the name and date of birth of the user. This allows for
strong authentication, to the price of anonymity.

Wire [Wir18]. Also this application uses the Signal protocol for key-
exchange. The double ratchet protocol is used to generate session keys for
pair-wise communication, and pair-wise channels are used for group conver-
sations. The server has access to all the metadata about the groups and the
messages being sent.

Wire-users can authenticate each other via safety numbers, and Wire offer
password-protected backups of all messages.

Threema [Thr19]. This application uses the library NaCl [BLS12] for
all cryptographic operations. A user generates secret keys locally, and pub-
lished the public keys at the Threema server. The static keys are used for
encryption and signatures, and hence, Threema offer no forward secrecy nor
post-compromise security, but shared secret keys do offer deniability. All
group communication are sent over pair-wise channels, but multimedia is
only uploaded once and encrypted with a message-key which is distributed
to the recipients via the pair-wise channels.

A user can sign up with username, phone number or email, and may or may
not offer anonymity, based on the users choice. Authentication can be done
by verifying safety numbers, but Threema also offer some trust in the sense
that you can see if other people have verified security numbers with the user
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you are talking to. Users may download password-protected backup files
from all their conversations.

Messaging Layer Security [IET20]. MLS is a new and ongoing initia-
tive from The Internet Engineering Task Force (IETF). As we have learned,
all group messaging applications are designing their own protocols for end-
to-end encryption, with some similarities and some differences. However,
there are no unified way of achieving security in this setting. Also, while the
group-key setting is the most efficient in terms of communication of mes-
sages, it is linear in key-exchange complexity. For large groups, this can be a
bottleneck. The MLS working group are trying to design a new protocol for
group messaging, which have all the best security properties and communi-
cation properties as described earlier in this report, but with more efficient
key-escrow. The goal of this work is to design a provably secure group mes-
saging protocol with only logarithmic communication cost for key-exchange
and key-updates, using binary trees. This work might influence how the
described application will be working in the future.

5 Conclusion

We summarize and compare the applications in Table 1. All services have
implemented end-to-end encryption, but offer different tradeoffs in terms of
more robust privacy, anonymity and efficiency. Signal offer all the strongest
privacy features, but require the users to sign up using phone numbers, which
(often) uniquely ties to your real identity. They are trying to overcome this
issue, but it is hard to do without revealing the users social graph (which
they do keep private). On the other hand, Keybase and Crypho offer the
option of strong authentication, linking the users either to their online social
graph or using third party services like Bank ID. Keybase, Crypho, Wire
and Threema let the users decide which information to share while signing
up, allowing the user to choose their own order of anonymity while using the
services. Note that more anonymity implies the user himself to connect with
other users on the platform, as lists of contacts won’t be helpful anymore.
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Schemes: FS PCS MP D A PWC EMK GK

Signal X X X X 7 X
WhatsApp X X 7 X 7 X
Keybase 7 7 7 7 $ X
iMessage 7 7 7 7 7 X X†

Crypho 7 7 7 7 $ X
Wire X X 7 X $ X

Threema 7 7 7 7 $ X X†

Table 1: Comparing the E2EE group messaging applications. Notation:
FS = Forward Secrecy, PCS = Post Compromise Security, MP = Metadata
Privacy, D = Deniability, A = Anonymity, PWC = Pair-Wise Channels,
EMK = Encrypted Message-Keys, GK = Group Keys, X= YES, 7= NO, $
= Optional. Either PWC or GK communication is implemented, not both.
Encrypted message-keys† are only used when sending multimedia.
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