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Abstract

Research into Unmanned Aerial Vehicle (UAV) swarms has received signific-
ant interest over the last years. A military UAV swarm can perform high-risk
missions with less risk to personnel but introduces a higher risk of an enemy
compromising the drone. The swarm communication requires protection that
can withstand compromise and continue providing secure communications.
Previous work identifies Messaging Layer Security (MLS) as a promising solu-
tion that provides forward secrecy and post-compromise security for messages.

This thesis aims to show how we can implement MLS in a real-world UAV
swarm and documents the development of a proof-of-concept application on
FFI’s Flamingo multi-UAV system. We implement the Totem protocol as a
decentralized Delivery Service (DS) to provide a reliable communication envir-
onment for MLS. After extensive testing, we launch a swarm with two UAVs,
demonstrating that MLS can be successfully employed in a UAV swarm. As
far as we know, this is the first time MLS has ever taken flight.

We identify challenges to address before launching MLS in a larger UAV
swarm. For example, Cisco’s MLS++ library might be too resource-intensive,
especially for application messages. This is a consequence of MLS not being
developed for our specific use case but for messaging systems.
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Sammendrag

Forskning på flyvende dronesvermer har fått betydelig interesse de siste årene.
En militær dronesverm kan utføre risikofylte oppdrag med lavere risiko for per-
sonellet, men introduserer en økt risiko for at fienden kompromitterer dronen.
Svermens kommunikasjon krever beskyttelse som kan tåle kompromittering og
fortsette å sørge for sikker kommunikasjon. Tidligere arbeid identifiserer Mes-
saging Layer Security (MLS) som en løsning som sørger for at meldingenes
fremtidige sikkerhet, og sikkerhet etter en kompromittering, er ivaretatt.

Denne oppgaven har som mål å vise hvordan vi kan ta i bruk MLS i en fys-
isk dronesverm og dokumenterer utviklingen av et konseptbevis på Flamingo
dronesvermen til FFI. Vi benytter Totem protokollen som en desentralisert
leveringstjeneste for å gi MLS et pålitelig miljø for å kommunisere. Etter
omfattende testing, fløy vi med en sverm bestående av to droner, noe som
demonstrerer at MLS kan anvendes i en dronesverm. Så vidt vi vet er dette
første gangen MLS har vært i luften noensinne.

Vi identifiserer utfordringer som må adresseres før MLS kan benyttes i en
større dronesverm. For eksempel er Cisco sitt MLS++ bibliotek sannsynligvis
for ressurskrevende, spesielt for applikasjonsmeldinger. Dette er en konsekvens
av at MLS ikke er utviklet for denne bruken, men for meldingstjenester.
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Chapter 1

Introduction

We increasingly employ UAVs in military operations, with new methods dis-
covered and used as the technology matures. Using UAVs in a swarm has re-
ceived significant interest over the last few years. A UAV swarm is a group of
UAVs collaborating to solve one or more missions. The working theory is that
this is more efficient than using a single UAV to solve the mission. In 2015, re-
searchers launched a swarm containing 51 UAVs [1], showing that large UAV
swarms are feasible. The Norwegian Defence Research Establishment (FFI)
takes an interest in this field and develops its own UAV called Flamingo to
research UAV swarms.

A military UAV swarm can perform high-risk missions with less risk to per-
sonnel. High-risk missions make it more likely and acceptable that the enemy
compromises one or more UAVs. Therefore, they must be secured to ensure the
completion of the mission, even when some UAVs are compromised. MLS [2]
is a newly standardized security protocol identified as a possible solution. The
Naval Postgraduate School (NPS) in the USA tested it on UAV swarms, con-
cluding it is a viable solution [3, 4]. However, they identified several challenges
that require addressing before being deployed. This project aims to solve some
of the identified challenges and create a working prototype for the swarm of
Flamingo UAVs at FFI.

1.1 Problem Statement
A UAV swarm can solve a range of different missions. FFI is currently exploring
two different mission objectives. The first is to function as an Intelligence,
Surveillance, and Reconnaissance (ISR) platform, aiming to locate enemy units
in an area. The other is to function as a means to disable other UAVs by
colliding with the target UAV at high speed. FFI uses different drones for these
objectives, but they often work together, where one drone finds an enemy UAV,
and another drone destroys it by colliding at high speed. There are several
other possible objectives for a swarm, even more if we include the possibility
of UAVs equipped with weapons or explosives.
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2 Emil Marstrander: Use of MLS in a Military UAV Swarm

In a UAV swarm, the drones communicate mission coordination among
each other and report status and observations back to the swarm operator.
The drones receive instructions from the swarm operator. This communication
is mission-critical and requires protection. It is important to protect it from
an enemy eavesdropping, but it is arguably more crucial to protect it from
interference and manipulation by the enemy. Imagine a UAV equipped with
explosives starting to act on commands given by an adversarial actor. This
will have catastrophic results on the mission. On the other hand, the enemy
intercepting observation reports is problematic but not necessarily devastating
to the mission. The security protocol must, therefore, provide authenticity of
messages so that it is possible to verify and be sure of the source. It should also
provide integrity of the information to avoid misleading a swarm operator.

Today’s technology can easily solve the requirements above. The challenge
is what happens when a UAV is compromised. How do we protect the commu-
nication in such a scenario? All previous messages should be protected—this
is called forward secrecy. All future messages should also be protected—this is
called post-compromise security. These two properties are highly relevant for
securing communications in a UAV swarm and ensure that only information on
the drone at the moment of compromise will be lost. The other drones will be
able to continue to communicate securely, with confidentiality, integrity, and
authenticity. Previous communication will also be secure if the information is
no longer present on the compromised drone.

The security must not come at the cost of significantly reduced opera-
tional capability of the UAVs. Therefore, the introduced security mechanisms
should consume as little of the UAV’s resources as possible and produce ac-
ceptable communication overhead. It should also be robust against attacks
and protocol failure. An important factor is that the resource consumption
and communication overhead do not significantly increase when adding new
group members. Current security protocols, like Signal, create secure bilat-
eral connections between all pairs of nodes [5]. When doing this, the number
of direct links from a node grows proportionally with the number of nodes.
The resource consumption and communication overhead also grow at the same
rate, which is highly inefficient for large groups.

MLS is a promising solution to all the abovementioned challenges. Instead
of creating pairwise secure connections to all members, it creates a group with
shared secrets. This makes it more scalable to large groups. MLS guarantees
forward secrecy and post-compromise security and has integrity and authentic-
ation properties. However, the protocol design favors a system providing cent-
ralized services, which is not beneficial for a UAV swarm. The entire swarm
might be affected if the central node fails or becomes unavailable. This project
investigates ways of implementing MLS without centralized services.

When Leon and Britt [3] and Dietz [4] implemented MLS on the unmanned
systems at NPS, they did it without implementing the required services. The
result was unstable group operations where nodes failed to be a part of the
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group. This resulted in testing only being performed on the ground, with
no actual swarm operations performed. This project will take this one step
further by implementing a reliable communication scheme to ensure stable
group operations, with the goal of using MLS during a swarm operation in
flight.

1.2 Scope
We only consider using MLS in this project without analyzing alternatives.
Such an analysis has been performed by Leon and Britt [3], and this project
further investigates their conclusion. The focus is developing a functioning
proof of concept that illustrates the feasibility of using MLS in UAV swarms.
When developing the solution, we envision a scenario where the swarm can
operate independently of the swarm operator on the ground. This means that
the solution has to be independent of the Ground Control Station (GCS),
which otherwise could have played the role of a centralized service.

The Authentication Service (AS) is essential to the MLS protocol opera-
tion. It is responsible for verifying the authenticity of the credentials provided
by the clients. Without implementing this service, the MLS protocol will not
be secure because nodes will have no way of verifying each other. Practical
implementations of this service are beyond this project’s scope, but we will
describe theoretical considerations for implementing an AS.

Post-quantum security is also a requirement for communication in future
military UAV swarms. The MLS standard does not currently contain this prop-
erty but can provide post-quantum security by replacing the cryptographic
functions with post-quantum secure versions. How this affects resource con-
sumption on a UAV is unknown. Solutions and further elaborations on this
challenge are beyond this project’s scope.

1.3 Research Questions
This project aims to shed light on the broader question of how to achieve
secure and efficient communication in a military UAV swarm. We do this by
investigating how well the MLS protocol performs in this scenario. Therefore,
we present the following main research question:

Can we implement MLS to achieve secure and efficient communic-
ation in a military UAV swarm?

To answer this, we address the following questions:
1. How can we implement MLS services in a UAV swarm?
2. What parameters of MLS give sufficient security compared to the re-

source consumption on the UAVs?
3. How does MLS affect the performance of the UAV swarm?
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Question 1 is about how we can fit the MLS services into the operational
environment of a UAV swarm. The MLS standard assumes that both the
AS and DS are available. Without them, the UAVs cannot authenticate each
other, and we cannot guarantee that message delivery is in the same order for
all nodes, disrupting MLS operation.

Question 2 is about investigating what MLS parameters are optimal to use
when considering both security and resource consumption. Important para-
meters are how often we should update the key material and what crypto-
graphic algorithms we should use. These parameters can influence both secur-
ity and efficiency.

Question 3 is about how the MLS implementation affects the swarm oper-
ations. If the resource consumption is too high, we might need to adjust the
communication rate, affecting the swarm’s ability to communicate and make
decisions.

1.4 Our Contributions

This project provides the following contributions not yet documented in the
research literature:

• Combining MLS and Totem to provide order of handshake messages
• Implementing a secure communication protocol on the Flamingo UAV
• Using MLS on a launched UAV swarm demonstrating a successful im-

plementation
• Discussing efficiency and security benefits and drawbacks of implement-

ing MLS in the Flamingo UAV swarm

1.5 Thesis Organization

Chapter 2 reviews the most essential concepts for understanding this thesis.
This includes UAV swarm operation, MLS, distributed systems, and the re-
lated work by students at NPS. Chapter 3 outlines different concepts for using
MLS in a UAV swarm, both how authentication should work and how to agree
on key material. Chapter 4 describes the software development process and
presents the Flamingo MLS software. Chapter 5 presents the results from test-
ing Flamingo MLS in a simulated environment, using containers and the same
hardware architecture as the Flamingo UAVs. Chapter 6 presents how the
software performed on the actual UAV swarm and how the program became
ready for testing in flight. Chapter 7 discusses this project’s most important
lessons and results before Chapter 8 concludes the thesis and provides recom-
mendations for future work.
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Chapter 2

Background

This chapter provides the background information necessary for understand-
ing this thesis. We start with an introduction to UAV swarms and their op-
eration, which is important for understanding the context in which we are
implementing MLS. Then, we review the essential aspects of MLS to provide
a high-level overview of how it works. After this, we present general theory
from the field of distributed systems and the primitive Total Order Broadcast.
A drone swarm is a distributed system, and when implementing MLS, we face
challenges already solved in the literature. Lastly, we review related works on
implementing MLS in unmanned systems.

2.1 UAV Swarm Operation

An Unmanned Aerial Vehicle (UAV) swarm is a group of UAVs collaborating
to solve a specific task. The idea is that the swarm can simplify several tasks
and perform them more efficiently and robustly. Such tasks could be searching
for missing people or providing network coverage. In a military setting, a
drone swarm could, for instance, solve tasks within Intelligence, Surveillance,
and Reconnaissance (ISR) or be equipped with weapons. A common task used
in research projects is to search a specified area for particular objects.

Engebråten et al. [6] argue that the control should be decentralized to
achieve the full benefit of a UAV swarm. Decentralized control means that the
swarm should always be able to solve tasks without having a communication
link to the Ground Control Station (GCS). It is still essential for the operator
to have an overview of the swarm and be able to control it. The operator
should not have to operate individual drones but instead give commands to
the swarm. The position of the GCS is typically at the location of the launch.
However, other concepts are also possible, such as switching to a GCS at
another location during a mission.

Dietz [4] presents the following features for a properly configured UAV
swarm:

7
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Survivability The mission can continue even if a drone malfunctions or is shot
down.

Scalability The range of operations for a mission can increase by adding more
drones to the swarm.

Speed The mission can be accomplished in a shorter period because UAVs
work in parallel.

Autonomy To function as a swarm typically requires on-board automation.

Cost Missions can be executed more cost-efficiently by leveraging economies
of scale.

2.1.1 The Flamingo UAV Platform

Nummedal [7] presents the Flamingo UAV platform developed at the Nor-
wegian Defence Research Establishment (FFI). The four-motor quadcopter
UAV is continuously being developed to facilitate research activities in the
autonomy research project. One of these activities is research on autonomy in
UAV swarms. They conduct most of the research on aerial systems focusing
on ISR operations. Using multiple UAVs provides better situational awareness
than a single UAV. The Flamingo platform is developed for generic UAV op-
erations and can operate in a swarm using the Valkyrie swarm system, also
developed at FFI. Note that we present the most current specifications in this
section, and some deviate from those presented by Nummedal. The research
team working on the Flamingo UAV provided the most current specifications.

The standard ISR-swarm configuration of the Flamingo platform weighs
2.8 kg and has an operational flight time of 35 minutes. This configuration
includes a thermal camera and a Rajant Breadcrumb DX2 mesh radio. This
radio makes it possible to extend the range in-between drones (and the GCS)
by using the drones as radio-relay. It uses frequencies of 2.4 GHz and 5 GHz.
The maximum data rate at the physical layer is 300 Mbps, but the expected
data rate is considerably lower, especially at longer distances. The network
throughput is not expected to be a limiting factor when implementing a secure
communication protocol because of the high data rate.

The companion computer for the latest generation of drones is the Jetson
Xavier NX, which has a high performance compared to its size. The com-
puter is capable of running autonomy- and sensor processing applications. The
Nvidia website [8] states specifications of 8 GB RAM and a six-core Nvidia
Carmel 64-bit ARMv8.2 CPU. The operating system is Linux for Tegra, a
Linux-based distribution for the Tegra processor series. The processors and
operating system are based on an ARM architecture and use the ARM in-
struction set. The sensor processing software uses most of the computational
resources, and the secure communications protocol can only use the remain-
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ing resources. It is, therefore, limited mainly by the amount used by other
processors and not necessarily by the total processing capability.

All drones in the Flamingo swarm communicate with each other and the
GCS. Telemetry data is frequently shared and contains information about
drone internal operations, its location, and observations, to name a few. The
drones distribute this information to all other drones and the GCS as multicast
packets using the Battle Management Language (BML) format. The GCS
controls the swarm by sending individual commands to the drones.

The drones and GCS have detection mechanisms for link failure. A drone
will return if it has not received a heartbeat message from the GCS in the
last ten seconds. This safety feature ensures that the operator does not lose
control of the drone. The swarm still performs the autonomy independently
from the GCS. A drone can also send a video feed from its thermal camera.
The video is sent separately from the telemetry data and only to the GCS.
Sending full-motion video from all drones simultaneously is very demanding
on the radio network, so it is often turned off to reduce the bandwidth used.
The drones then perform sensor reporting by sending pictures of the relevant
objects.

2.2 Messaging Layer Security
Messaging Layer Security (MLS) is a protocol created to provide end-to-end
security for a group of users. MLS is not intended as a complete messaging
protocol but to be implemented as a part of an application. One of the driving
forces for this specification is to provide a standardized way of communicating
in groups so that different applications can interoperate at the cryptographic
level. MLS underwent a standardization process over the last years and was
specified in RFC9420 [2] in July 2023. This specification describes the protocol
operation, and an informational document draft by the IETF [9] describes the
architecture of MLS. This section uses these sources as references.

Forward secrecy and post-compromise security guarantee the security of
messages sent before and after a compromise and are important security re-
quirements guaranteed by MLS. We imagine an adversary currently comprom-
ises a user’s key material. Forward secrecy will then ensure that all previous
messages are protected and not accessible to the adversary. MLS achieves this
by deleting the key material used to encrypt messages, which makes the key
material and the messages inaccessible to the adversary.

Post-compromise security will ensure that all future messages are protected
and inaccessible to the adversary. MLS achieves this by updating the key
material so the adversary no longer possesses the current keys. To guarantee
this when the adversary has compromised all key material is impossible. The
adversary would then be able to impersonate the compromised user and get a
hold of the new key material as well. Therefore, we assume that the group can
perform one operation before the adversary is able to take action. Another way
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to look at it is that forward secrecy protects messages from future compromise,
while post-compromise security protects messages from a potential previous
compromise.

Many messaging applications provide the same security guarantees as MLS.
Cohn-Gordon et al. [5] describe popular messaging applications providing this
for a pairwise connection, i.e., between two users. Some examples presented are
WhatsApp, Facebook Messenger Secret Conversations, Apple iMessage, and
Signal. These applications use Signal’s Double Ratchet algorithm to ensure
secure pairwise connections, providing forward secrecy and post-compromise
security. To ensure the same properties for groups, the protocol must establish
bilateral connections between all pairs of nodes, which is inefficient.

A common strategy to make it more efficient is distributing sender keys
over the bilateral channels and using them to encrypt group messages. The
solution ensures forward secrecy, but providing post-compromise security is
challenging because updating key material for all the pairwise channels is
resource-consuming. An adversary with access can often eavesdrop indefinitely
since the keys are not updated. MLS provides a more efficient way of deriving
shared symmetric encryption keys. The solution relies on tree structures, which
makes the cost of the key derivation scale with the logarithm of the group size.
Pairwise connections scale linearly with the group size. This means that for
an increase in group size from 10 to 100, MLS would double its cost, while the
cost of pairwise connections would be ten times larger.

2.2.1 MLS Architecture

The MLS architecture consists of an Authentication Service (AS), a Delivery
Service (DS), and the clients. The AS is responsible for issuing and verify-
ing credentials that attest to bindings between identities and signature key
pairs. The service must be trusted and secure to allow clients to verify each
other’s messages and credentials. A compromised AS will make it possible to
impersonate other clients and get illegitimate access to the group.

The DS is responsible for routing messages between the clients participat-
ing in a group. An essential requirement for the DS is that the order of hand-
shake messages are the same for all clients to avoid different clients having
inconsistent views of the MLS group. The DS is also responsible for deliver-
ing the initial public key material required for the group establishment. The
information processed by the DS is already protected, so it is not required to
be a trusted service. However, faults in the DS will affect the availability of
the communications. Figure 2.1 shows the setup for a simple MLS system.

The services in the MLS architecture are abstract and only specify what
tasks the services have to do. It is up to the application to implement the
services in a way that satisfies the requirements. The standard solution is to
implement them as centralized servers, where the clients send verification re-
quests to the AS and route all messages through the DS. Distributed solutions
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Figure 2.1: The architecture for a simple MLS system [9].

are also possible, where server and client components collaborate to fulfill the
services.

2.2.2 Protocol Operation
MLS functions as a continuous authenticated group key exchange. The pro-
tocol ensures that the participants agree on common secret values and can
verify each other’s identities. MLS sessions are organized into groups and
epochs. A group represents a logical collection of clients that share common
secret values. The group evolves through epochs over time. The group mem-
bers agree on values used to exchange messages in each epoch. The group state
is consistent throughout an epoch and changes between epochs. The secret val-
ues always change between epochs, providing post-compromise security. Other
parameters can also change, such as adding or removing group members. MLS
ensures that only the members of the epoch have access to the secrets, and
therefore, only the members can send and receive messages.

The clients send both application- and handshake messages during an
epoch. An application message is an encrypted message carrying information
specified by the application, for example, text messages in a messaging ap-
plication. Handshake messages, on the other hand, are messages controlling
state and epoch changes. Commit and proposal messages are the two types
of handshake messages. A proposal message suggests a change in the current
state of the protocol, for example, the addition or removal of clients. The state
changes after sending a commit message referencing the proposals, and the en-
tire group acts on the changes specified. The group then moves to a new epoch
using the new state information.

MLS supports several different proposal messages. The following are the
most important for this thesis:

Add Adding a new member to the group based on a key package for the client

Remove Removing a member from the group
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Update Updating the key material of the client

When adding new clients to the MLS group, the key package of the client is
required. The key package describes the client’s capabilities and provides key
material for adding the client to the group. The DS functions as a repository
for key packages, but it is also possible that the system allows for requesting
the key package from the clients directly. The clients use the key package when
generating the add proposal. The committer sends a welcome message to the
new client containing the key material necessary for communicating with the
group. The first client initializes the group, creating a group with itself as the
only member. It then gathers key packages for the joining clients and adds
them to the group.

2.2.3 Ratchet Tree

At the heart of the MLS protocol is the ratchet tree. This tree consists of key
pairs and secrets and generates secrets known to the entire group. The tree
structure allows it to be efficiently updated to reflect changes in the group.
The design makes encrypting messages to the entire group or subsets possible
and efficient. When removing a member from the group, the committer can
send new keys to all other members by doing log N operations, where N is
the number of members in the group. In contrast, N − 1 operations would be
required if new keys have to be sent directly to all other members.

The ratchet tree consists of nodes. A node without descendants (no nodes
beneath) is called a leaf. The leaves represent the group members, and the
number of leaves decides the tree size. The tree is binary, meaning every node
(except leaf nodes) has precisely two descendants. Every node is either blank
(containing no value) or contains an asymmetric key pair with some associated
data. The leaves also contain a credential provided by the represented client.
Figure 2.2 shows an example tree.

Every group member knows the asymmetric public keys associated with
every node. However, private keys are only known by some. A node’s private
key is known to the leaf nodes in the subtree of that node. This means a
member knows all private keys in a line from its own leaf node’s parent to
the root node. However, there is an exception to this. A node will not initially
know all these values when it joins the group. It is then known as an unmerged
leaf. Figure 2.3 shows an example of public and private trees. All nodes know
the private keys of the root node, but only nodes A and B know the private
keys of node AB.

The clients mainly use the asymmetric keys from the ratchet tree for en-
crypting key material when moving between epochs. The ratchet tree structure
allows new keys to be efficiently encrypted so that only the rightful receivers
can decrypt them. The encryption uses the public keys of the nodes in the
ratchet tree. By encrypting a message with the public key of the node, only
the descendants of that node can decrypt it. For instance, if we encrypt a
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Figure 2.2: Example of a ratchet tree. Nodes represented by underscore are
blank. The leaf nodes A, B, E, F, and G represent the group members. [2]

Figure 2.3: Example of ratchet tree with public and private trees [2].

message with the public key of node AB in Figure 2.3, only A and B can
decrypt it. However, all members can decrypt if we encrypt with the public
key of ABCD. In this way, we can encrypt to subsets of the group. If the node
has an unmerged leaf as a descendant, we will have to encrypt separately to
that member using the leaf’s public key.

We update the tree for every commit. The changes depend on the proposal
messages sent during the epoch. If we add members, they replace blank leaf
nodes. If no leaf nodes are blank, the tree expands to the right. If we remove
members, the leaf nodes representing those members become blank. If possible,
the tree shrinks. If a member sends an update proposal, it updates its leaf node
with a new key pair and blanks all nodes above the leaf node. This process
provides post-compromise security. When sending a commit message, the client
updates its leaf with new key pairs and creates new key pairs for the blank
nodes it is a descendant of. It sends the private keys of these nodes to the
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descendants using keys from the previous ratchet tree.

2.2.4 Key Schedule

The key schedule of MLS generates keys for multiple purposes, including en-
cryption of message metadata, application messages, handshake messages, and
more. We derive these keys from the epoch secret, derived from the ratchet tree
for the current and previous epoch.

We use the encryption secret to create a secret tree, which provides key
material for encrypting MLS messages. This secret tree has the same structure
as the ratchet tree, and the same leaf nodes are related to the same members.
In the tree, all leaves contain a secret derived from the encryption secret, which
we use to create two sender ratchets, one for application messages and one for
handshake messages. These ratchets consist of hash chains, where we derive a
key and nonce for every hash value. The secret tree dedicates a key and nonce
to the encryption or decryption of a single message. When sending messages,
a client uses a specific key and nonce from the ratchet. The receivers of the
message derive and use the same values for decrypting. MLS uses a symmetric
authenticated encryption scheme for this operation.

An essential part of the key schedule is the deletion of old and used keys.
Deletion of keys is a necessity to provide forward secrecy. When a message
is encrypted or decrypted, the client deletes all keys involved in deriving the
encryption key and nonce. This includes the encryption secret, parts of the
secret tree, and the proceeding hash values.

2.2.5 Security and Reliability

MLS achieves confidentiality of messages through symmetric encryption using
keys from the secret tree. Only members have access to the secrets necessary to
derive these keys. Knowing the initial secret shows that the client was a mem-
ber of the previous epoch. Knowledge of the commit secret shows a successful
calculation of the private secrets of the ratchet tree. A joining member receives
these values through a welcome message. MLS supports multiple symmetric
authenticated encryption cipher suites. AES-128-GCM, AES-256-GCM, and
CHACHA20-POLY1305 are currently specified.

MLS achieves two forms of authentication. The first is that group members
can verify that the message originated from a group member. The authentic-
ated encryption algorithm guarantees this, as described in the previous para-
graph. The second form of authentication is that group members can verify
that the message originated from a specific group member. Every message has
a digital signature created using the signature key of the sending client. Other
members can verify this signature with the AS and trust that the claimed
identity sent the message. It is, therefore, not possible to impersonate mem-
bers. MLS supports multiple cipher suites for signatures and hash algorithms
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that can be chosen based on the required security level. Digital Signature Al-
gorithm (DSA) using different elliptic curves is currently specified, together
with hash algorithms SHA-256, SHA-384, and SHA-512.

The deletion schedule achieves forward secrecy in MLS. After sending a
message, the client deletes the symmetric encryption key and every key used
to derive it. If every member does this correctly, forward secrecy is achieved
for every message. If a member is compromised, no previously used keys are
present; therefore, the adversary cannot decrypt any previous messages.

MLS achieves post-compromise security through update, remove, and com-
mit messages. These messages replace or remove the compromised key material
to ensure the security of messages after a compromise. All clients in an MLS
group regularly update key material by creating update proposals or generat-
ing a commit. The application decides how often to perform this, specifying the
window of opportunity for compromised keys. Updating key material will not
create a secure state if the client and not only the keys are compromised. Then,
removing the compromised client from the group achieves post-compromise se-
curity.

The confidentiality of some message metadata fields is not protected. This
will allow anyone eavesdropping to learn about the group state and member-
ship. This information can, for instance, allow for Denial of Service (DoS)
attacks that target specific clients based on the information available in the
message metadata. To avoid this type of attack, the standard recommends car-
rying MLS messages over a secure transport such as Transport Layer Security
(TLS).

The order of messages is essential for MLS operation. The DS is responsible
for ensuring that everyone receives the messages in the correct order. Misorder-
ing application messages is not a problem since MLS marks every application
message with a generation number and sender ID specifying the key to use.
On the other hand, some handshake messages require that all members agree
on the order. A client can receive proposal messages in any order as long as it
receives them before the commit message. However, commit messages received
in different order will make the members commit different states, creating in-
consistencies in the group. The clients derive different keys, dividing the group
into subgroups unable to communicate with each other.

2.3 Distributed Systems
Singhal and Shivaratri [10] give a general overview of agreement protocols in
distributed systems and present two main classes of systems: synchronous and
asynchronous systems. In synchronous systems, the nodes run in a lock-step
manner, inherently synchronized against each other. In asynchronous systems,
every node can send and receive messages and perform computations at any
time. Agreement problems are not solvable in an asynchronous system if there
are nodes that fail.
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In a distributed system, the different nodes must agree on specific values.
They agree based on communication between them. The communication link
or the nodes themselves might be faulty, creating challenges. This is called an
agreement problem. The literature generally classifies these into three types
of problems.

The Byzantine Agreement Problem Also called the Byzantine Generals Prob-
lem. An arbitrary node broadcasts a value. The goal is for all non-faulty
nodes to agree on this value.

The Consensus Problem Every node broadcasts its initial value. The goal is
for all non-faulty nodes to agree on a common value.

The Interactive Consistency Problem Every node broadcasts its initial value.
The goal is for all non-faulty nodes to agree on common values.

These problems are closely related because we can use a solution to The
Byzantine Agreement Problem to derive solutions to the other problems.

2.3.1 Total Order Broadcast
Défago et al. [11] introduce a primitive called Total Order Broadcast. The goal
of this primitive is to ensure the delivery of messages in the same order to
all participants. The article overviews different ordering mechanism classes,
surveys sixty published Total Order Broadcast algorithms, and presents the
following general ordering mechanisms.

Fixed Sequencer A single node has the role of sequencer. When sending a
message, the sequence number is coordinated with the sequencer node
to ensure correct ordering.

Moving Sequencer A set of nodes has the role of sequencer, and the work is
distributed among these nodes.

Privilege-based A node can only send when given a token. This token circu-
lates among the senders.

Communication History Messages are given timestamps to determine the or-
der.

Destination Agreement The destination nodes receive the messages and must
agree on the order.

Total Order Broadcast algorithms have to make assumptions about their
environment. An important assumption is how reliable the underlying channel
is. Some algorithms rely on a communication layer that takes care of message
loss. Another assumption is how and if nodes in the system can fail. The article
presents three main categories of failure: crash failures, omission failures, and
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Byzantine failures. Crash failure is when a process crashes and ceases to func-
tion forever. Omission failure is when a process omits to perform some action
but continues to contribute after the omission. Finally, a Byzantine failure can
change message content, duplicate messages, or even maliciously try to break
down the system. The article defines a correct process as never doing any of
the faulty behaviors mentioned.

An algorithm can also assume that the system is partitionable. When links
between nodes in the network break down, the group splits into several isol-
ated subgroups. The algorithm is partitionable if all members can continue
communicating within their subgroup. The alternative is that only a primary
partition can continue sending messages.

The algorithms can ensure several different properties. Agreement is one
such property and ensures that all correct processes receive all broadcasted
messages. Total order is another property that ensures all correct processes
have the same order of received messages. Both these properties can be uniform
or non-uniform. Uniform applies to all processes, correct or not. This is the
strongest guarantee and is more robust against process crashes. The non-
uniform properties only apply to correct processes.

The total order property only considers the order at the destinations and
does not ensure the correct order based on which node sent the message first.
First In, First Out (FIFO) order guarantees that the order at the destina-
tions equals the order in which the clients sent the messages. Causal order is
similar to FIFO order but is a weaker guarantee. Instead of using absolute
time to make the ordering decision, causal order uses the relationship between
events to decide if the sending of a message “precedes” the sending of another
message. If we establish this precedence, the order of messages reflects this. If
not, the message delivery is in an arbitrary order.

Most algorithms include fault tolerance mechanisms. Two types of failures
are process failure and communication failure. Group Membership Service is
a mechanism that can detect process failure by managing the membership of
processes in the group. The membership view is updated and communicated to
the remaining processes if a process crashes. For communication failure, the de-
tection mechanism can use positive and negative acknowledgment. When using
positive acknowledgment, the nodes acknowledge the reception of messages.
The nodes only report missing messages when using negative acknowledgment.

2.4 Related Work
Implementing MLS in unmanned systems is a research topic of interest at
the Naval Postgraduate School (NPS) in the USA, which has produced two
master’s theses on the subject. Leon and Britt [3] did a qualitative study of
security requirements for a communication protocol in unmanned systems.
They then identified MLS as the most suited protocol and implemented it on
two unmanned systems. Dietz [4] compared different secure communication
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protocols and argues that MLS was well suited for use in a UAV swarm. They
then implemented the protocol on the Advanced Robotic Systems Engineer-
ing Laboratory (ARSENL) Unmanned Aerial System (UAS) and performed
ground testing on a swarm with up to 12 UAVs.

2.4.1 Security Requirements for Unmanned Systems and Implement-
ation of MLS

Leon and Britt [3] performed a qualitative study to identify several security
properties advantageous for a secure communication link between unmanned
systems. They interviewed military and civilian field experts, both cyber se-
curity and unmanned systems experts. The study identified the following re-
quirements:
• Security of data before and after a compromise (forward secrecy and

post-compromise security)
• Ability to detect a compromise occurrence in real-time
• Asynchronicity—not all parties need to be online at the same time
• Scalable overhead when the number of participants increases
• Software-defined protocol to avoid sensitive cryptographic material
• Interoperability—it is possible to install the protocol on any device
They then evaluated the following secure messaging protocols based on

these requirements: Open Pretty Good Privacy (OpenPGP), Internet Pro-
tocol Security (IPSec), Transport Layer Security (TLS), MLS, Signal, Wickr,
Cisco Webex, and Joint Range Extension Applications Protocol (JREAP).
Of these, only MLS and Cisco Webex satisfy all the abovementioned require-
ments. Wickr and Signal satisfy all requirements except for scalable overhead
when participants increase. Cisco Webex uses MLS for key exchange and man-
agement, so they conclude that MLS is the best-suited security protocol.

Leon and Britt [3] implemented MLS on the CASSMIR Unmanned Surface
Vehicle (USV) and the ScanEagle UAV using Cisco’s implementation of MLS
draft 12. They sent telemetry data between the CASSMIR and the ScanEagle,
demonstrating that MLS can provide secure communication between different
unmanned systems. They also sent a turn-rate message between the GCS and
the ScanEagle.

The implementation lacked an AS, meaning there was no authentication of
group members and messages. The ScanEagle performed the DS functionality,
but no concurrency measures existed. It also used Transport Control Protocol
(TCP) as the transport layer protocol, which is disadvantageous because of
the lack of broadcast and multicast features, among other things.

During the testing, they experienced problems with key updates not being
processed in sequence, causing the MLS session to break. They argue that the
cause of this problem was messages being sent and received at the same time
as add and commit messages were processed. Their solution was to reduce the
sending rate of messages and found one hundred messages per second optimal.
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A DS, either centralized or decentralized, was identified as a solution to this
problem.

They determined the cost of different parameters with the following result.

Encryption overhead Depending on the cipher suite used, the message size
increased between 171 and 277 bytes. It seemed like the hash generated
accounted for the difference.

Setup times The group initialization times ranged from 4 ms to 6 ms for
five out of six cipher suites. The cipher suite P521-AES-256-GCM-SHA-
512-P521 performed significantly worse with approximately 18 ms setup
time.

Message Handling Times Measuring the time used for sending 1000 messages
with five update messages showed that most cipher suites performed
relatively equally. X25519-AES-128-GCM-SHA-256-Ed25519 and P256-
AES-128-GCM-SHA-256-P256 had worse performance than the rest.

Leon and Britt [3] conclude that MLS is suited as a secure communication
protocol following the requirements identified. The use case testing shows that
MLS is a viable solution for secure data exchange and control of different
unmanned systems. The developed application works as a proof of concept
and is not ready for real-world usage. The authors identify the following future
work for the MLS application:
• More extensive and realistic testing of the MLS application
• Development of an AS, either centralized or decentralized
• Development of a DS, either centralized or decentralized

2.4.2 Implementation of MLS on the ARSENL UAV Swarm System
Dietz [4] implemented MLS on the Advanced Robotic Systems Engineering
Laboratory (ARSENL) UAV swarm system and tested it using Mosquito Hawk
quadcopter UAVs. The software used Cisco’s implementation of MLS draft 11.
The work does not include the development of an AS or a DS. They evaluated
the solution in a simulated environment and on grounded UAVs. The thesis
provides an overview of different group and pairwise communication protocols.
Based on this, they argue that MLS provides a lightweight way of scaling secure
group communication and is well suited for use in a UAV swarm.

In the solution, they perform a handshake between the joining node and
a group member prior to adding the member to the group. This handshake is
necessary to ensure the member notices the key package. This process took at
most 58 ms. The group’s initial creation by the first node took less than 5 ms.

In the simulation testing, they used between five and ten UAVs. They var-
ied between issuing an update message every 50, 150, and 250 messages and
sending no updates. At least one UAV failed or dropped out of the group com-
munication for all tests. The identified reasons for this are unprocessed update
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messages or missed commit messages. Update every 250 messages successfully
sent and received the most messages and had the lowest UAV failure rate
(of course, no update messages performed better). More than 250 messages
between updates are likely even better, but there is a security concern with
longer update intervals.

They experienced the same issues while testing on UAVs on the ground.
Only when using three UAVs in the swarm did they not experience node
failure. They tested with up to twelve UAVs. The failing node rate shows the
need for a DS or some mechanism to deal with packet loss and out-of-order
messages.

The thesis concludes that MLS can perform well in a swarm, but we must
develop mitigations for the unreliable communication scheme. They also iden-
tified the following for future work:
• Additional testing to determine the best update interval
• A solution that enables the recovery from dropped MLS packets
• Better error handling so that recovery from failure is possible
• Mechanism for reliable update operations
• AS implementation
• Protocol to decide when to classify a UAV as compromised
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Concepts for Using MLS in a
UAV Swarm

This chapter presents conceptual solutions to the identified issues when imple-
menting MLS in a UAV swarm. We have not found previous work on this use
case, so we have no sources for solving the presented challenges. Therefore, we
developed the conceptual solutions during the project. This applies primarily
to Sections 3.1 and 3.3. Section 3.2 uses sources from the distributed systems
literature to solve the challenges.

For some of the presented problem areas, there is not only an issue of
making a reliable solution but also security concerns. For instance, if a drone
loses connection to the group, it might be because of a compromise. If this
is the case, we should keep it from joining the group. This chapter focuses
on making functional solutions without considering these security concerns,
which we address in Section 7.3.

3.1 Authentication Service

The MLS specification requires an Authentication Service to be present in
order to guarantee the security requirements but does not specify how to im-
plement it. The main tasks are to issue credentials and enable clients to verify
the credentials. The credential attests to the binding between identities and
signature key pairs. The architecture informational document by the Internet
Engineering Task Force (IETF) [9] gives some examples of how to do this:

• Using Public Key Infrastructure (PKI). Issuing would be done by a Cer-
tificate Authority (CA), and the clients would verify certificates.
• Users verify each other’s key fingerprints. Issuing would be the generation

of a key pair. Verification would be an application functionality that
enables clients to verify keys.
• End user Key Transparency. Issuance would be to insert a key into the

Key Transparency log under the user’s identity. Verification would be to

21
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verify the key’s inclusion and monitor the Key Transparency log.

The most basic way of implementing the AS is to use a PKI, which is
widely used today and, therefore, simple to implement. The MLS specification
also includes X.509 certificates as a standard credential type, a PKI standard.
One downside of a PKI is that it usually requires a connection to a centralized
infrastructure for issuing and verifying credentials. This is disadvantageous in
a UAV swarm since we want it to operate autonomously. We present proposed
solutions to this problem in the rest of this section.

In a PKI, the CA is responsible for issuing certificates for public keys the
clients generate. The CA signs these certificates with their private key. The
client signs its messages using its private key and provides the certificate to
prove its claimed identity. This proof includes its certificate and a certificate
chain to a trustworthy CA. In Internet PKI, this is the root CAs, and all
clients have preinstalled their certificates. In a swarm environment, we can use
a similar method. Even though the signing CA is not a root CA, its certificate
can be preinstalled on the nodes to make the CA trusted. The advantage of
this is shorter certificate chains that only contain the client’s certificate.

The operations requiring a connection to the CA are issuing certificates
and checking the revocation list. Certificate issuance can be handled pre-flight
and is not of a concern after that in most cases. In the case of compromised
keys, there is a need to establish a secure channel to generate new keys and a
certificate, which is difficult in flight.

Checking against the revocation lists is challenging because it requires a
connection to the CA. We can implement this in a few ways:

• The GCS has a revocation list, and swarm members ask the GCS for
this.
• There is an agreement in the swarm on the revocation list. A node asks

the swarm if the certificate is valid. Since the member presenting the
certificate is also a swarm member, we must ensure it cannot manipulate
the process.
• The GCS is responsible for the revocation list and distributes a signed

version to all swarm members. Members can ask each other for the most
current version of this list.

The maintenance of a revocation list has many similarities to the mainten-
ance of a list of compromised nodes. A compromised node would likely also
be on the revocation list because that is a node we do not trust. However,
a drone can lose its private key without the drone itself being compromised.
For instance, if the drone is physically recovered after the compromise and
reinstalled with new keys. In such a situation, we revoke the certificate, but
the node would not be on the list of compromised nodes. Another solution
could be to create a new ID for the drone when reinstalling. The revocation
list and list of compromised nodes would remain equal since we keep the old
ID on the list of compromised nodes. The lists are usually equal; therefore, we
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should combine these functionalities to ensure efficient and secure operation.
The job of the certificate is to provide an identity to a public key. This

is the node’s public signature key in this setting, and we can, for instance,
represent the identity as a name, email address, or domain name. How we
represent the identity is not critical for the certificate’s security. However, all
nodes and the CA must interpret the identity similarly. For instance, if we
represent the identity as “drone1”, “drone2”, and so on, the CA must ensure
that certificates are issued to correct identities and that two nodes do not claim
the same identity. Manual transfer of public keys, identities, and certificates
between drones and CA is one way to ensure the identities are correct. It might
also be possible to achieve in a closed wired network, but we must ensure no
adversaries are present.

We can also use the identity to identify different roles in a UAV swarm. We
could, for instance, have a leader drone with the identity “leader”. However,
in such a setup, it is vital to ensure that arbitrary drones cannot claim the
identity of “leader”. It is also possible to do this with GCSs. For instance,
“gcs1”, “gcs2”, and so on. For both these setups, we can have logic on the
drones that specific commands are only acted on when they come from the
leader or GCS.

How we implement the PKI depends on how we set up the swarm system.
We consider two main system setups in the following subsections. The first is a
system where each swarm functions as a standalone system, and the second is
a system where we interconnect multiple swarms in a joint system. We propose
AS implementations for both systems.

3.1.1 Each Swarm as a Standalone System

In this system, a small set of GCS (typically one or two) can communicate with
a dedicated swarm. The swarm operates independently of all other swarms and
cannot communicate with other GCSs. This setup is the simplest case for a
UAV swarm; therefore, creating an independent PKI is a possible solution.
Implementing a solution where a GCS functions as a CA is straightforward
in this system. The GCS is less likely to be compromised than the drones, so
CA compromise is not the most significant concern. The signature verification
process is simple and requires little network resources if we store the CA
certificate on every drone. We can then trust the CA certificate.

Even though the signature verification process is straightforward, handling
revocation and revocation lists is still challenging. We use revocation lists to
revoke certificates with a compromised private key. It is tough to detect the
occurrence of such a compromise. How can we ensure the rest of the drone is
not compromised? In most cases, we would have to assume that the drone is
compromised if its private key is compromised. Therefore, this issue is closely
related to the detection of compromised drones. The simplest solution would
be to assume that the private key is lost if a drone is compromised and vice
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versa. Of course, there are exceptions, but it would be beneficial to make this
assumption to ease the complexity of the implementation.

Even if we somehow detect that a drone has lost its private key in flight
but is not compromised, it is still challenging to restore trust. A new certificate
cannot be issued over the air because another entity can impersonate the drone
using its private key. Therefore, the drone must return to the GCS for a new
certificate. In these scenarios, there is little benefit in distinguishing between
compromised nodes and compromised private keys.

For efficiency, it is unnecessary to maintain both a revocation list and a list
of compromised nodes, especially since they mainly present the same nodes.
Which list is maintained is not very important. If the system maintains the list
for many operations, it introduces unnecessary complexity when checked. To
avoid this, we can reset the system after missions where compromises occur. We
can do this by re-keying the CA, invalidating all previously issued certificates.
We must then issue new certificates and distribute the CA certificate to all
drones.

To provide more robust post-compromise security, we can take this one
step further and re-key the drones. This will ensure that the system is secure,
even if the compromise of a private key is not detected. Since compromise
detection is difficult, performing regular re-keying would be beneficial.

A solution for a standalone swarm system can be to avoid implementing a
revocation list altogether. During a mission, we maintain a list of compromised
drones. This can be manually updated by the swarm operator or by swarm
members. Revocation of certificates during a mission is not necessary. After a
mission where a drone is lost or compromised, we perform a re-keying process
as described in the previous paragraphs.

3.1.2 Multiple Swarms in a Joint System

For a more dynamic setup, we have a pool of drones and a pool of GCSs.
These should be able to work together, be organized in numerous ways, and
still validate each other. We can have multiple swarm operations performed
simultaneously, and if they are operating in the same area, they can commu-
nicate securely.

We need a shared PKI infrastructure to handle the certificates, identity,
and revocation of such a large and complex operation. A solution could be
to use the same strategy as in Section 3.1.1 and preinstall all CA certificates
on the drones. However, this is a security risk since a more extensive system
is more likely to have a compromised CA. A compromised CA will make the
entire system vulnerable. If another UAV swarm team is physically comprom-
ised, their GCS and CA are compromised, affecting the operations of other
UAV swarm teams.

Another solution is to add a central CA to the system, which functions as
a root CA. This CA could issue all certificates or allow the GCS to issue local
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certificates. The most user-friendly way is having the controller issue local
certificates. Then, we can re-key the drones without connecting to central
infrastructure. Revocation of the CA at the GCSs can be performed with this
solution, which means that a compromised swarm team does not compromise
the entire system. The root CA and its private key must be sufficiently secured
because the entire structure falls apart if compromised. We must store the root
CA certificate on the drones and GCS so the nodes trust the root CA.

In this scenario, updating and distributing the revocation list to UAVs in
flight is necessary. This is because compromises could happen often if multiple
units perform large-scale swarm operations. We can imagine a scenario where
a drone was compromised many hours or even days ago, but the revocation
list did not update until after the UAVs launched.

3.2 Ensuring Agreement for Handshake Messages
A reliable DS is an essential component of the MLS architecture. One of its
tasks is ensuring all nodes receive messages in the same order, which is essential
for handshake messages. If two drones handle commit messages in different
order, they will create different MLS states and cannot communicate. This
scenario can happen when two nodes issue commit messages at approximately
the same time.

It is only necessary to receive proposal messages before the corresponding
commit message. The order does not matter. If they are not received when
the commit arrives, the message handling will produce an error because the
node does not recognize the proposals referenced by the commit message. All
drones must, therefore, agree on the order of handshake messages. Once this
is in place, the MLS standard ensures all nodes agree on the new state.

Dropped handshake messages are also challenging. The node can no longer
communicate with the group if a commit or proposal message is lost. There-
fore, implementing mechanisms for ensuring that all nodes receive the same
handshake messages is essential.

The straightforward solution is to implement the DS as a central server
that receives all messages and sends them to their recipient. This solution is
disadvantageous in a UAV swarm because it generates substantial traffic when
sending messages to and from the central server. In addition, if the server goes
down, all communication is lost. If this server is, for instance, implemented on
a single drone, all communication would be lost if that drone is taken out.

There are ways of using a central DS more efficiently. The order of applic-
ation messages is not vital for MLS operation, so we do not have to send them
through the DS. This removes the asynchronous part of MLS because nodes
must be online to receive application messages. The benefit is decreased net-
work load since handshake messages are infrequent compared to application
messages. A solution is to use the GCS as a centralized DS. This requires the
swarm to be in communication range of the GCS when exchanging handshake
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messages.
We can choose the DS based on the available nodes to avoid being de-

pendent on a single DS. This is similar to the moving sequencer ordering
mechanism, where we distribute the sequencing among the selected nodes. If
the drone acting as DS becomes unavailable, another drone will take the re-
sponsibility, and the swarm can continue communicating. The challenge is to
figure out a mechanism for selecting the drone to act as DS. This requires
agreement between the nodes.

Instead of reinventing the wheel, we can use the Total Order Broadcast
mechanisms from Défago et al. [11] presented in Section 2.3.1. The privilege-
based ordering mechanism presents the most desirable solution to this chal-
lenge. It is the only mechanism where sending is synchronized between the
nodes. This prevents cases where two nodes send commit messages simultan-
eously, removing unnecessary computational load. The sender also decides the
order of messages, which ensures the delivery of a proposal message before the
corresponding commit message. Even though all mechanisms could provide
a working solution, privilege-based ordering reduces the complexity by syn-
chronizing the communication between the nodes.

The swarm communication uses User Datagram Protocol (UDP), an unreli-
able transport protocol. The privilege-based order algorithms must be adapted
to this and tolerate communication faults. Based on these requirements, we
identify the following algorithms from the work of Défago et al. [11]:

• Train
• Totem
• Token-Passing Multicast (TPM)
• RTCast

The Train algorithm [12] uses a token that functions as a train and moves
between the participants in the group. The members send messages by adding
them to the train, and messages are received by reading them from the train.
This process functions well to control handshake message flow. However, in a
broadcast network where everyone can communicate at all times, using this
train to communicate messages is inefficient. In MLS, we would have to wait
for the train to pass all members before they updated their key material and
entered the new epoch. Updates should ideally be done simultaneously by all
participants. For this reason, the Train algorithm is not suited for our use case.

The Totem algorithm [13] is designed for partitionable systems, which is
positive for a UAV swarm since we can imagine scenarios in future research
where the swarm splits into different groups. Totem uses a membership pro-
tocol to maintain a ring that the token traverses. This protocol detects process
failure, partitions, and token loss and ensures all nodes receive every message.
Totem is a complex algorithm, but pseudocode is provided in the paper, mak-
ing it manageable to implement.

The TPM algorithm [14] operates similarly to Totem but does not support
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group partition. It also provides uniform agreement and total order, while
Totem provides both uniform and non-uniform agreement and total order.
According to the Totem authors, TPM requires two and a half rounds to
ensure safe message delivery, while Totem only requires two.

The RTCast algorithm [15] is designed for real-time systems and focuses
on high performance. It guarantees atomic ordered delivery of messages within
one round, compared to two rounds for Totem. However, while technically cor-
rect, RTCast guarantees this in one round because if a node fails to receive
messages, it takes itself out of the group. To simplify the protocol, RTCast
assumes synchronized clocks between nodes. Although we can guarantee syn-
chronized clocks in a UAV swarm, it is not desirable to implement measures
to ensure this. High performance is not essential when implementing MLS in a
UAV swarm. We require a reliable protocol focusing on maintaining the group.
RTCast’s focus on performance, with a low threshold for members leaving, is
undesirable for this operation.

Based on this analysis, Totem is the protocol we will implement in this
project. Train and RTCast have undesirable properties for supporting MLS
operations in a UAV swarm. Totem and TPM are similar in operations, but
Totem has more desirable properties. The main drawback of Totem is that it
is a complex protocol, which will be challenging to implement. TPM seems to
be more straightforward. However, the Totem authors provide pseudocode in
the paper, which should make the implementation process more streamlined1.
We present Totem in more depth in Section 4.2.

3.3 Reestablishing Synchronized MLS Groups

During MLS operation, there is always a possibility that the group state
between one or many nodes becomes unsynchronized. The likely cause is pro-
posal or commit messages that were not delivered correctly. The messages were
not delivered at all, delivered in incorrect order, or corrupted in transmission.
Totem, the algorithm proposed in the previous section, should prevent these
faults, but errors could still occur because of high packet loss or loss of network
connectivity.

Regardless of the cause, there should be mechanisms for reinitializing the
connection to the group. The first step in such a mechanism is to detect that
a node has lost synchronization with the group. A node can detect this when
trying to decrypt messages. The message encryption uses an authenticated en-
cryption scheme, meaning we use both encryption and authentication. When
checking the Message Authentication Code (MAC), we will know whether we
have the correct key material. Incorrect key material means we have lost syn-
chronization with the message sender. An update that has not yet reached

1In retrospect, the Totem pseudocode seemed better at first glance than what it actually
was.
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the receiver could also cause this behavior. We, therefore, have to wait an ap-
propriate amount of time or messages before concluding that synchronization
with the node is lost.

After determining that we are unsynchronized with another node, we need
to determine if there are other nodes to which we are unsynchronized. We
follow the same procedure as the first one, ultimately creating an overview
of our synchronized and non-synchronized nodes. We use this information to
determine if we need to initiate a resynchronization or wait for other nodes to
do so.

There are multiple ways of performing the resynchronization. We have
identified three main possibilities:

• Restore the old connection to the group by resending the necessary in-
formation
• Asking a member to add the node to the group
• Using MLS functionality such as reinitialization proposal and external

proposal

We can restore the old connection by resending the missing commit and
proposal messages. The unsynchronized node can then calculate the correct
group state. This requires storing old messages or states, and the most obvious
place to store them is on the drones. Storing old states breaks the principle of
forward secrecy because an adversary can use the state information to decrypt
old messages. Storage of encrypted messages is acceptable because only group
members can decrypt them.

The unsynchronized node can ask the group to add it again. It can do this
by sending a message saying it would like to join the group, including its key
package. It can send the message to all members but should only send it to one
to avoid multiple members adding it. After joining the group, the old version
of the node should be immediately removed using a remove proposal to keep
the MLS state current.

MLS provides additional features that can be useful in this setting. We
can use the reinitialization proposal to reinitialize the group and the external
proposal to let the node add itself to the group. Although these methods
are possible, we have implemented the most straightforward solution in this
project. This is the solution where the unsynchronized node asks to be added
to the group again.

For all resynchronization methods, the nodes must know when to initiate
it. The simplest case is if there are few unsynchronized nodes. These unsyn-
chronized nodes can then ask to be added by a synchronized member of the
MLS group. With many unsynchronized nodes, it becomes more difficult be-
cause we cannot be sure of the group composition. There could be multiple
subgroups that are only synchronized internally. If we try to join the group of
another node, we risk joining only a subgroup.

Imagine a scenario where we have three subgroups. The subgroups have
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synchronization internally but not with each other. For these subgroups to
merge into a single synchronized group, we require an agreement between the
nodes of who is joining whom. If the nodes join other groups randomly, we risk
ending up in the same scenario, only with a different subgroup composition.
A node cannot detect this situation because it can only see two groups: those
with synchronization and those without. This makes it even more challenging
to have the nodes agree on a solution.

An ideal solution would make the nodes agree on what subgroup to join,
and then all nodes would join the same group. However, since this is challen-
ging to achieve, we will only implement a simple solution in this project. A
node will initialize the resynchronization procedure if it detects synchroniz-
ation with half of the nodes or less. This threshold ensures that we perform
resynchronization procedures for all situations with an unsynchronized group.
There will always be a subgroup containing half the nodes or less.

The disadvantage of the solution is that it works poorly when multiple sub-
groups only have internal synchronization. All the subgroups probably contain
less than half the nodes. In that scenario, all nodes will try to join the MLS
group of the other subgroups. This creates a chaotic situation but should even-
tually converge on a stable, synchronized group by chance. The advantage of
the solution is that we never end up in a deadlock situation where no nodes
initiate any action. At least one node will meet the criteria if the group is not
synchronized. Therefore, this solution will usually work, giving the group a
fighting chance to become resynchronized.

A possible scenario during swarm operations is getting two separate groups
out of each other’s communication range. This could be intentional because of
the mission requirements or unintended. The scenario is quite similar to having
unsynchronized nodes. The difference is that these groups cannot reestablish
the MLS group since they are out of communication range. These groups can
continue to communicate internally when out of range because both Totem
and MLS support partitioned groups.

The challenge is what happens when the subgroups are within commu-
nication range of each other again. Then, the subgroups should merge so all
members can communicate. The same procedures as for unsynchronized nodes
will provide a solution. The primary difference is that the groups need to know
the total number of nodes to decide who should initiate the merger. The smal-
ler group joins the larger one. Totem provides the number of nodes since it
uses a group membership protocol. It will register all nodes within the com-
munication range.

It is also helpful to have a mechanism for the initial setup of the MLS
group when the UAVs are getting ready for flight. This will allow for a faster
launch time than manual setup. Dietz [4] performed the setup by having the
UAV with ID 1 establish the group, and all other UAVs join by asking the
UAV with ID one number above them. As Dietz says, this only worked in
a simulation environment because, in realistic operations, we cannot be sure
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that the drone with ID 1 participates, and we cannot rely on every node being
a part of the swarm. We need a more dynamic and flexible solution than this.
Ideally, the UAVs should be turned on and automatically set up the group.
Totem provides a good foundation for implementing a mechanism because it
creates a group of all nodes within the communication range. A new node can
use the list of group members to ask to be added to the MLS group.



Chapter 4

Development of Flamingo MLS

We name the software Flamingo MLS and use this term to refer to the program
we develop in this project. The source code is available on GitHub1. In the
following chapters, we use different fonts to give specific meanings to expres-
sions. Sans Serif specifies program- or protocol-specific names, and Typewriter
specifies command line output.

4.1 Software Development and Structure

Flamingo MLS uses MLS for secure communication in a group of distributed
nodes. We use the Totem protocol to ensure the agreed order of handshake
messages to keep the nodes in MLS synchronization. The nodes regularly ini-
tiate the MLS update procedure. Flamingo MLS provides automatic group
setup and restores the MLS group when failure occurs. The software consists
of three main components:

• Cisco’s MLS++ library implementing MLS
• The implementation of Totem
• The main program integrating the components and adding communica-

tion with the UAV system

This project develops a software implementation of the Totem protocol and
integrates it with the MLS library in the main program. Figure 4.1 outlines
the message flow. When MLS receives application messages from the drone
system, it encrypts them and sends them directly to their destination through
the drone’s radio interface. When receiving application messages from the ra-
dio, MLS decrypts them and sends them directly to the drone system. MLS
generates the handshake messages without communication with the drone sys-
tem. These messages are not sent directly to the radio but through the Totem
module. This is to ensure that all nodes agree on the order of the handshake
messages and can apply them correctly to avoid corruption of the MLS session.

1https://github.com/emilmarstrander/Flamingo-MLS
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Figure 4.1: The message flow in Flamingo MLS

Figure 4.2 shows a technical overview of the different modules of Flamingo
MLS and how they interact. The modules use MLS through the MLS session
object. All modules, except for Proposal creation, are realized as threads to al-
low for parallel operation. Application and handshake traffic is distinguished
based on UDP port numbers. The Handshake message handler, Proposal cre-
ation, and Totem communicate through memory objects. We briefly describe
the modules below and provide more details in the following sections.

Handshake message handler Responsible for setting up the environment, ini-
tializing the other modules as threads, and handling handshake messages
for the MLS protocol.

Totem Runs the Totem protocol, which transmits and receives MLS handshake
messages. When the Totem token is received, this thread also runs the
Proposal creation module.

Proposal creation This module is responsible for creating proposal messages
for MLS and transmitting them to Totem.

Local receive Receives application messages from the drone system, encrypts
them using the MLS session object, and transmits them to the radio.

Local transmit Receives application messages from the radio, decrypts them
using the MLS session object, and transmits them to the drone system.

Software development is a central part of this project. We use modular
programming, developing different modules independently and then integrat-
ing them. This method makes it possible to change modules if necessary. For
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Figure 4.2: Technical overview of Flamingo MLS. All solid lines use UDP,
while dotted lines represent communication through memory objects.

instance, if we discover a more suited Total Order Broadcast algorithm, we
can easily replace Totem. One challenge with this methodology is to create
clean and functional interfaces between the different modules, allowing them
to communicate orderly and efficient. These interfaces are essential in order
to swap modules easily.

We started the development process by learning how the MLS library
worked and experimenting with different features. Then, we created a pro-
totype for the main program, which simulated communication with the drone
and used the MLS library to implement MLS functions. Next, we developed
the Totem protocol in software and tested it independently. After this, we
integrated the Totem implementation into the main program.

The development of MLS and Totem started with clean and ordered inter-
faces between the modules, but these clean interfaces degraded over time. After
building the program’s foundation, it was more complex to implement new
features using the existing interfaces. For instance, MLS and Totem only com-
municated through the functions transferring messages. When MLS needed
information about the Totem state in other situations, we needed to make an
additional interface. Ultimately, this resulted in several unorderly structured
interfaces that are difficult to understand. A more comprehensive planning of
the software at the beginning of the project could have prevented this.

4.2 Implementation of Totem
The Totem Single-Ring Ordering and Membership Protocol ensures the total
order of broadcast messages. It ensures the order by allowing nodes to send
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Figure 4.3: Overview of Totem states and operation [13].

only when given a token that circulates among the members. The sender marks
the messages with a sequence number retrieved from the token, which ensures
a unique sequence number for all messages. The protocol handles system re-
configuration with failures, restarts, and when network partitions and merging
occur. In this section, we will go through the most essential concepts of Totem
before describing how we implemented it in software.

Amir et al. [13] published the protocol in 1995. The technology has ad-
vanced significantly since the paper’s publication, meaning arguments regard-
ing high transfer rates and efficient mechanisms might not be relevant in
today’s high-speed wireless networks. However, this project will only use the
Totem protocol on MLS handshake messages. These are sent infrequently to
avoid excessive computational and network load. The main requirement is,
therefore, reliability, not speed. Network equipment is more reliable today
than in 1995, so we argue that a protocol that provides reliable operations in
1995 would perform even better today.

Totem delivers messages in an agreed order, which guarantees delivery to
the application in a consistent total order. A message is only delivered if all
previous messages have been delivered. Totem does not guarantee the deliv-
ery of all messages but the agreed order of all delivered messages. Since the
environment allows for node failures, it is not certain that a node is available
to receive the message.

Figure 4.3 shows an overview of Totem operation and the different states
of the protocol. The operational state is where messages are sent and delivered
in agreed order. Totem enters the other states when it detects a failure. In the
operational state, the nodes transmit the token in a ring, and members can
send messages when they have received the token. When the node has reached
the maximum number of sent messages or the input buffer is empty, the node
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forwards the token to the next member on the ring.
The operational state provides a retransmission feature. When a node re-

ceives the token, it checks whether it has received all messages up to the
current sequence number. If not, it adds the missing sequence numbers to the
retransmission field in the token. When the next node receives the token, it
checks the retransmission field and retransmits the messages. For this to work,
all nodes must buffer received messages until we are confident that every node
has received every message. Totem detects this using the all-received-up-to
field in the token, which specifies the highest sequence number received by
all nodes. If this value equals the sequence number for more than one round,
every node has received all messages, and the nodes can empty their buffer.

The operational state continues to provide agreed delivery of messages
until a failure occurs. Totem detects failures by token loss using timeouts. The
node retransmits the token when the token retransmission timeout occurs and
continues to retransmit until the token loss timeout occurs. Then, the protocol
enters the gather state to recover from the token loss.

The purpose of the gather state is to detect all other nodes that should
be a part of the ring. The state ends when there is a consensus between the
nodes. Information is shared using join messages containing information about
detected and failed nodes. The nodes keep track of this information and update
when it receives a join message. They then broadcast a join message with this
newly updated state. When the node has received a join message equal to its
own state from every node that should be a part of the ring, it is ready to
move to the next state.

In the gather state, there are timeouts that ensure this process eventually
converges. The join timeout occurs when the node does not receive a join
message for the specified time and triggers the sending of a new join message.
The consensus timeout occurs when the nodes do not reach consensus within
the specified time. The node records what nodes it disagrees with, and the
gather state restarts. Totem also uses the gather state to allow new nodes to
join the group. We detect other nodes by receiving messages from unknown
nodes, so-called foreign messages.

When the nodes reach consensus, Totem moves to the commit state. The
node with the lowest ID initiates the transition. This node sends a commit
token through the new ring. Every member updates the token with information
about the old ring ID, received messages, and the need for retransmission. The
purpose of the commit state is to ensure all members are committed to the
new ring and to gather the node information. The token is transmitted for two
rounds before the nodes enter the recovery state. The nodes detect token loss
in the same way as for the operational state.

The recovery state aims to retransmit missing messages from the previous
ring. The node initiates the state when receiving the commit token for the
second time. The commit token is converted into the regular token with an
additional field and keeps track of what messages need retransmission. New
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ring members should not need to receive messages from the old ring. When
all messages have been retransmitted and received, the protocol moves to the
operational state and continues to provide agreed delivery of messages.

4.2.1 Implementation

We implement the Totem protocol using the C++ programming language.
Even though the protocol is well documented in the paper of Amir et al. [13],
some parts had to be interpreted during the development. We describe the
relevant parts later in the section.

We did not implement all Totem features because we considered them
unnecessary for this application. The configuration change message is a fea-
ture to communicate configuration changes to the application. Communica-
tion between Totem and the rest of Flamingo MLS instead uses memory. The
advantage is that it is easier to program and more efficient since both the
application and Totem will be part of the same process. The authors describe
flow control mechanisms intended to optimize the protocol for high message
throughput. Since the high throughput of MLS handshake messages is of no
concern, we chose not to implement the feature. Still, Flamingo MLS contains
some simple flow control mechanisms, such as a maximum number of messages
each node can send before forwarding the token.

In Flamingo MLS, we implement the different messages and tokens as
classes. When sending a message over the network interface, we represent it
as a text string generated by the serialize() method of the message- or token
class. The function serializes the messages by converting the value to text and
separating the values with a “|” symbol. It uses “,” and “!” when the values
consist of multiple sub-values that need separation. The position in the string
decides the value’s interpretation, which changes for every message type. The
first value is always the message type, which determines how to interpret the
rest of the message. The following string is an example of a commit token:
5|8|4|0|0|0|1,0,0,0,0!2,0,0,0,0|0.

The serialization solution is inefficient, but we use it to simplify the de-
velopment in this project. The generated packets are larger than necessary
because of the separator, and every character is treated as an 8-bit character.
Most of the values do not need an 8-bit representation. The message type only
has seven different values, which means that three bits would be enough to
represent it. We could also remove the separator and instead use the exact
location of every value at the bit level. The overhead for a regular message
is approximately twenty bytes, and the regular token is approximately thirty
bytes. An MLS handshake message can be larger than one thousand bytes.
The overhead generated by this inefficient solution is therefore not significant
and not a priority to solve in this project. However, it is still beneficial to
produce less overhead, and we identify improving this serialization as future
work.
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The Totem class contains the protocol implementation and all methods and
values necessary for protocol operation. A critical method in this class is the
receive() method, which takes the message in string format as input. When
receiving a message, it decides the type and converts it to the appropriate
object. It then invokes functions specific to the state and message type.

The Totem protocol transmits the token as soon as the messages are sent.
This benefits high throughput systems because the channel is idle for as short
a time as possible. However, it is not necessarily beneficial for handshake
messages in MLS, where the goal is reliable operation. Therefore, we add a
delay before sending the token to the next member, which slows down the speed
of the operation, making faults less likely and reducing resource consumption.
The functionality creates a new thread that sleeps for the delay duration before
transmitting the token.

We implement the Totem timeouts by recording the time the timer starts
and regularly checking for timeouts based on the recorded time. We found this
to be the most reliable solution. A disadvantage is that the timeout trigger
could be more precise. However, it varied by only a couple of tens of milli-
seconds, which did not significantly affect protocol operation. Earlier in the
implementation, we used threads, locks, and conditional variables to achieve
the functionality. This created many faults and was challenging to debug.

The duration of the timeouts is configurable and depends on several para-
meters. Token retransmission and token loss timeouts are closely related. The
retransmission timeout should give the protocol a second chance to succeed in
the operational state by retransmitting the token. When this does not work,
the token loss timeout should initiate the gather state to restore the proper pro-
tocol operation. Therefore, the token retransmission timeout should be smaller
than the token loss timeout. The difference decides how many times we re-
transmit the message. Based on experience in this project, two retransmissions
are suitable before initiating token loss procedures. Both timeouts should be
larger than the expected turnaround for the entire ring. If not, timeout will
regularly occur and hamper protocol operation. The timeouts’ value depends
on the number of members, latency for the channel, and the delay added when
sending regular tokens.

Join and consensus timeouts are also closely related. As for the retransmis-
sion timeout, the join timeout gives the protocol a second chance to achieve
consensus in the gather state by having every node send another join message.
If this does not work, the consensus timeout is triggered, adding the nodes
that did not achieve consensus to the failure set. The join timeout should,
therefore, be smaller than the consensus timeout. Based on experience, two
join timeouts before consensus timeout is a reasonable value. We can set these
values lower than the token loss and token retransmission timeouts because
they do not depend on the ring. The factors determining the values are the
latency of the channel and how often we expect packets to be lost. The val-
ues should be set larger than the highest expected latency. If there is a high



38 Emil Marstrander: Use of MLS in a Military UAV Swarm

packet loss, more join timeouts could be allowed before the consensus timeout
is triggered.

When implementing the Totem protocol based on the descriptions of Amir
et al. [13], it was not always clear how the protocol should behave. Therefore,
we made some assumptions and adjustments based on what was reasonable
during development. We document most changes here, sorted by what opera-
tion or state they affect.

Shift to gather Resetting the consensus array. The array contains outdated
information from the old gather state, which is not valid anymore.

Shift to commit Added resetting of my_token_aru to 0. Since it is a new ring
with a new ID, resetting the token’s all-received-up-to value is logical.
old_ring_aru and high_delivered are set to the same value in memb_list
in the commit token. The all-received-up-to value and highest sequence
number delivered are the same in all cases analyzed in this project.
Therefore, we treat them the same in the implementation.

Shift to recovery Setting the sequence number of the commit token to 0. Since
it is a new ring with a new ID, resetting the token’s sequence number is
logical.

Shift to operational We do not deliver configuration change messages to the
application.

Operational state We update my_aru when messages are delivered. There-
fore, my_aru is both a measure of received and delivered messages.
The specification says the retransmission request list should be updated
whenever a message is received. Instead, we do this when receiving the
token because this is when we use the list.

Gather state When a token loss timeout occurs, Totem specifies to perform
consensus timeout and shift to gather functionality. However, shift to
gather might also be performed in the consensus timeout function. There-
fore, we make sure to run the shift to gather procedure only once. When
only a single node is part of the network, Totem does not provide a way
to move to the next state. However, delivering messages with only one
member is necessary in Flamingo MLS. To solve this, we added a con-
ditional statement to the consensus timeout procedure, which checked if
only one member was part of the group. In that case, Totem continues
to the commit state. We also added a feature that ensures the node does
not put itself in the fail set. If that happens, there is no mechanism for
reversing it, and the node will no longer be operational.

Commit state We removed functionality for join timeouts because they should
not occur in the commit state.
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1: m← received from handshake message socket
2: if m.type = regular message then
3: if m.seq = next sequence number then
4: Deliver m
5: Deliver buffered messages if correct order
6: else
7: Buffer m
8: else if m.type = regular token then
9: Invoke Proposal creation module

10: Retransmit lost messages
11: Transmit messages added to input buffer
12: Transmit token to next member after delay.
13: Reset token retransmission and token loss timeouts
14: else if m.type = join message then
15: Shift to gather state
16: Send join message
17: else if m.ring_id = incorrect and m.sender_id ̸= id in member list then
18: Shift to gather state
19: Send join message

Figure 4.4: Pseudocode for the operational state in the Totem module

Recovery state Totem uses a regular token in the recovery state, with an
added value of retrans_flg. We implement this as an own type of token,
the recovery token. The token converts to a regular token when shifting
to the operational state. This simplifies the program development.

Figure 4.4 shows the pseudocode for how the Totem module functions when
Totem is in the operational state. The code runs in a continuous loop.

4.3 Implementation of MLS
Since MLS only recently became an official standard, no complete implementa-
tions exist. However, multiple implementations are available, developed along-
side the MLS drafts. The MLS Working Group GitHub repository2 maintains
a list of current implementations and their versions. When this master’s pro-
ject started in January 2023, only the following four implementations were
available:

• MLS++ [16]
• OpenMLS [17]
• MLS-TS [18]
• GO-MLS [19]

2https://github.com/mlswg/

https://github.com/mlswg/
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Both MLS-TS and GO-MLS were outdated and did not have a full imple-
mentation of MLS. They are now marked as outdated by the MLS Working
Group. The only usable implementations were MLS++, developed by Cisco
in C++, and OpenMLS, developed by Phoenix R&D and Cryspen in Rust.
They were both quite similar in implemented features. For the use cases in this
project, the only relevant feature missing in OpenMLS is that it only supports
basic credentials. It cannot use certificates, so testing the certificate concepts
described in Chapter 3.1 will be challenging. MLS++ supports X.509 certi-
ficates but does not have a way of verifying the certificate chain. We perform
some practical testing of AS concepts in this project but do not prioritize it
because of a lack of implementation support. It could, however, be useful in
later projects.

Besides credential support, the implementations have little technical dif-
ferences except for the programming language. The individuals involved in
the development had a greater familiarity with C++ compared to Rust, mak-
ing MLS++ the more straightforward choice. It is also the library used by
Leon and Britt [3] and Dietz [4] at the NPS. The project started with using
this library, and considerable familiarity was established before venturing into
other possibilities. Therefore, we chose MLS++ as the library for this project.
One downside with MLS++ is its lack of documentation, while OpenMLS had
documentation available on its website. This has, in retrospect, been identi-
fied as a significant shortfall and made the development more complicated
than necessary. Therefore, OpenMLS should be considered for future work.

The final version of Flamingo MLS contains a version of MLS++ down-
loaded from Cisco’s GitHub repository3 on 13th August 2023. The repository
continuously updates, but we did not implement newer versions to ensure the
version’s reliability before the scheduled testing. MLS++ uses the Session class
as the basis for all MLS operations. This class interacts with the rest of the
library to provide the required services. We use the following methods of the
Session class in this project.

protect(plaintext) Encrypts application messages and returns the encrypted
message.

unprotect(ciphertext) Decrypts application messages and returns the decryp-
ted message.

add(key_package_data) Creates an add proposal message for the node in the
provided key package data and returns the encrypted add proposal.

remove(index) Creates a remove proposal message for the member specified by
the given index and returns the encrypted remove proposal.

update() Creates an update proposal message and returns the encrypted up-
date proposal.

3https://github.com/cisco/MLSpp

https://github.com/cisco/MLSpp
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commit() Creates a commit message for the currently handled proposals and
returns the encrypted commit.

handle(handshake_data) Handles the commit or proposal message provided as
handshake data. A message does not take effect before the program runs
this method on the message. It returns a boolean value based on whether
it handled the message correctly.

The Client object initiates the session. The client requires a cipher suite,
a private signature key, and a credential. It can then create a new session
or generate a key package to join an existing session. Flamingo MLS uses
the cipher suite P256-AES-128-GCM-SHA-256-P256. This is one of the cipher
suites Leon and Britt [3] found to perform worst for time used when handling
messages. We chose this particular suite because it is the only one using the
P256 curve, which was more accessible to manipulate in the OpenSSL library.
This made it easier to create and manipulate X.509 certificates.

A challenge with MLS++ is that there is no simple way of retrieving
information about the MLS messages. It is, for instance, not trivial to dis-
tinguish between application and handshake messages. Since we must insert
the message into the correct method of the Session object, it is essential to
know what message type is received. In order to achieve this, we use different
UDP ports for application and handshake messages. The handshake messages
themselves must also be distinguished. It is irrelevant for proposal and com-
mit messages since the handle() method can handle both. The challenge is
for key packages and welcome messages. We need to insert them using special
methods and, therefore, be able to distinguish them. The solution in Flamingo
MLS, inspired by Dietz [4], is to add a number at the start of each handshake
message, symbolizing what kind of message it is.

A security consideration when using MLS++ is that it is possible to de-
crypt messages from old epochs as long as they have not been received before.
According to the MLS standard, it is up to the application to define a policy
for how long to keep unused nonce and key pairs from older epochs. We have
yet to find an obvious way of specifying this limit in MLS++. Therefore,
MLS++ keeps the unused values for the duration of the session. Keeping old
keys is useful when messages are delivered late but affects the forward secrecy
of the application. If a node is compromised, it could still have keys and nonces
for older messages not yet received, which means those old messages are not
forward secret.

Flamingo MLS uses credentials with X.509 certificates. We do this by re-
trieving the public key from the SignaturePrivateKey object. Since no AS is
present in the system, Flamingo MLS signs the certificate using a randomly
generated signature key pair. It also adds a corresponding AS certificate to
the certificate chain (der_chain). Every node will produce different AS keys
and certificates, and cannot verify each other’s chains. However, the program
still works since MLS++ does not verify the last certificate in the chain. This
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Table 4.1: Size of MLS messages

Message type Size Comment
Update 750 B
Commit 400 B
Add 1100 B
Welcome 1700 B 2 members, no certificate
Welcome 19 000 B 10 members, no certificate
Key package 800 B no certificate
X.509 certificate 2600 B

means that we cannot be sure of the identity of the nodes, so anyone can create
a fake certificate chain and join the MLS group. It is possible to make some
changes to the source code of MLS++ to improve security. A simple solution
could be to add a check of the last certificate in the chain and compare that
to the list of root certificates of the host machine.

Table 4.1 gives an overview of the expected sizes for different MLS messages
in MLS++. We obtained these values by running MLS++ and recording the
message sizes. The values are only valid for the parameters used and only
intend to give a rough estimate of the sizes. We used two members if nothing
is specified, and the cipher suite was the same as specified earlier. The size of
the handshake messages is generally between 400 and 1100 bytes, except for
welcome messages, which could become significantly larger. Certificates add
substantial size to key packages, add proposals and welcome messages when
used. The handshake messages are large and could generate notable overhead
if sent frequently.

An overall experience when implementing MLS is that using both propos-
als and commits is unsuitable for a high-speed environment. During testing,
updates occurred approximately every 100 ms, and there were many situations
where having to process both caused handling errors. These can easily be sup-
pressed and do not cause a problem for the protocol operation. However, it is
unnecessary to use computational and network resources to handle messages
that are not valid. When updating at this speed, a node is unlikely to col-
lect proposals from other members before committing. Therefore, the benefit
of proposal messages diminishes. It is more beneficial to commit immediately
after creating the proposal message, which is how Flamingo MLS does it.

The MLS++ library has two main flaws discovered during development.
We reported both as issues at the MLS++ GitHub repository but without
response. The first is that it produces the following error message when com-
mitting update proposals: Invalid proposal list. This indicates that there
is an error in the creation of the update proposal. This was not an issue in the
MLS++ build from December 2022. The workaround in Flamingo MLS is to
avoid creating an update proposal and instead create a commit message that
references no proposals, an empty commit. This will update the committer’s
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1: Receive message from drone
2: Protect message
3: Broadcast protected message over the radio

Figure 4.5: Pseudocode for the Local receive module

1: Receive message from radio
2: Unprotect message
3: Transmit unprotected message to drone

Figure 4.6: Pseudocode for the Local transmit module

contribution to the group and provide post-compromise security with regard
to the committer.

Another problem occurs when reducing the MLS group to a single member.
It produces the following error: Malformed UpdatePath. This indicates that
something goes wrong when trying to update the ratchet tree. It is unknown
whether this is a flaw or simply an unrealistic scenario since reducing an MLS
group to a single member in a messaging system is usually pointless. Why have
a secure group with no one to communicate with? The solution in Flamingo
MLS is to create a new session containing a single member.

We made some changes to the MLS++ source code to make the program
more straightforward to develop and avoid errors. One change was creating
a way to initialize an empty Session object as a global variable. We added a
default constructor to the class in session.h and session.cpp.

By default, MLS++ keeps the state information for all previous epochs
indefinitely. This can consume much unnecessary memory4. To improve this,
we restrict the number of epochs that the Session can store. We insert this
restriction in the handle() function by deleting excess elements from the history
vector in session.cpp. We create the size_of_history variable of the Session
class in session.h to decide the new max size.

We now move on to the four different modules that run MLS in Flamingo
MLS: two handle application messages and two handle handshake messages.
Figures 4.5 and 4.6 show the pseudocode for the Local transmit and Local
receive modules. These modules run as threads listening to dedicated UDP
ports and handle application messages. They receive a message, protect or
unprotect it, and then pass it to the destination.

The Proposal creation and Handshake message handler modules create and
process handshake messages. The Proposal creation module is the only mod-
ule that creates and sends proposal messages and commits. Flamingo MLS
invokes the module after receiving the Totem token, which synchronizes the
sending of handshake messages with the token. Early in the development, the
working solution was to send handshake messages as soon as possible and then

4We demonstrate this in Section 5.3.
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1: if members to remove then
2: Create and handle remove proposals for all members to remove
3: Broadcast remove proposals
4: Create commit of the proposals
5: Broadcast commit message
6: else if received key package then
7: Create and handle add proposals for all received key packages
8: Broadcast add proposals
9: Create commit of the proposals

10: Transmit welcome message to the joining members
11: Broadcast commit message
12: else if time since last update > update interval then
13: Create and handle update proposal ▷ Not supported by MLS++
14: Broadcast update proposal ▷ Not supported by MLS++
15: Create commit of the proposal
16: Broadcast commit message

Figure 4.7: Pseudocode for the Proposal creation module

let Totem deal with ordering and delivery of the messages. This method in-
duced a number of errors. When node A generated handshake messages, it was
unaware that node B had already generated the same type of messages. Node
B had not sent them because it was still waiting for the token. This resulted
in two different commit messages created for the same epoch. If everything
works as intended, this is unproblematic and will only generate error mes-
sages. However, we experienced several faults because of this, so we changed
to have more synchronization between the Totem token and the broadcasting
of handshake messages. The node does not transmit the token before both
proposal and commit messages are broadcast. This leaves less room for error
since only one node has active proposals at a time.

The Proposal creation module checks whether it is necessary to create re-
move, add, or update proposals before generating the appropriate messages.
It first checks if it should remove any members. Flamingo MLS implements
four reasons to remove members:

• Member has not updated in a long time
• Member is no longer in the Totem group
• Member is not sending application messages
• There is a duplicate of the node in the MLS group

We can configure what reasons to use in the configuration file. The Proposal
creation module checks for stored key packages and adds the nodes to the
group. Lastly, it checks the time since sending the last update message to
decide if a new update is necessary. Figure 4.7 shows the pseudocode for the
Proposal creation module.



Chapter 4: Development of Flamingo MLS 45

1: m← received from Totem
2: if m.type = key package then
3: Add key package to object containing received key packages
4: else if m.type = commit message then
5: Handle commit
6: else if m.type = proposal message then
7: Handle proposal

Figure 4.8: Pseudocode for the Handshake message handler module

The Handshake message handler receives and handles handshake messages
based on the type. For add, update, remove, and commit messages, the mod-
ule handles them using the handle() method of Session. When key packages
are received, they are stored until processed by the Proposal creation module.
Figure 4.8 shows the pseudocode for the module.





Chapter 5

Testing in a Simulated
Environment

One of the most critical parts of software development is to evaluate how it
performs. Many ideas work well in theory but fall short in practical use. In this
chapter, we evaluate how Flamingo MLS performs in a simulated environment.

A simulated environment allows for controlled measurements of the per-
formance of Flamingo MLS. We can easily monitor and adjust network and
program parameters to support measurements of essential features. The inten-
tion is to evaluate the performance of the software with different parameters
and under different circumstances. Resource consumption is the main focus.
With limitations in size and weight, the drones are a resource-constrained
environment. The drones need the resources to perform their mission, and
therefore, Flamingo MLS should consume as little as possible. The most relev-
ant resources for this project are CPU time, RAM usage, and network usage.
We do not test network usage because the onboard radio is the bottleneck for
network traffic and is not available for the simulated testing. However, since
the overhead for MLS and Totem is relatively small, it will not significantly
increase network bandwidth.

One Jetson Nano Developer Kit was available for the duration of testing.
This is functionally the same hardware that runs on the Flamingo drones,
with reduced performance because of a slower CPU and less available RAM.
We make the resource consumption measurements on the Jetson Nano to get
measurements that are as realistic as possible. We simulate the rest of the
nodes using Docker containers [20]. A Docker container runs an operating
system instance in a closed environment on a physical host. The host can
run multiple containers which can use all the available resources at the host.
Ideally, the Docker containers should run Linux for Tegra, the operating sys-
tem used on the drones, using an ARM processing architecture. This was the
original setup, but the Flamingo MLS application could not run properly on
these Docker images for unknown reasons. The program terminated because of
runtime errors, like bad_optional_access and Unexpected index. We used

47
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(a) Physical (b) Logical

Figure 5.1: Test setup

images running Ubuntu instead. This should not impact the test results since
we are performing the measurements on the Jetson Nano.

Figure 5.1a shows the physical setup for the tests. The Jetson Nano is con-
nected to the Ubuntu machine using an ethernet cable. The docker containers
run on the physical Ubuntu machine. We use the following equipment:

• Jetson Nano Developer Kit
• HP EliteBook 840 G6 running Ubuntu 23.04

Figure 5.1b shows the logical network topology. Using the macvlan network
driver in Docker, the containers are placed on the same Local Area Network
(LAN), meaning they are on the same IP subnet and can communicate directly
without going through a router. This is the same logical setup as when the
drones communicate over the radio channel.

We use the Top utility for measurements of resource consumption. Top
is a tool for monitoring processes running on the machine and can provide
processor and memory usage. We use the following command for the measure-
ments:

top -c -p $(pgrep -d’,’ -f flamingo_mls) -n 2 -b -S -d
↪→ #INTERVAL#

This command searches for all instances of the flamingo_mls command
and produces two measurements on that process. INTERVAL determines the
time difference between the measurements. The second measurement is the
most valid and shows the average resource consumption in the specified inter-
val. This is usually five seconds, but sometimes we need a larger interval to get
a more accurate average, for example, when sending update messages every
twenty seconds. Then, the measurement is performed over twenty seconds to
include the update message. We use -S to activate Cumulative Timer Mode,
which means that Top lists each process with the CPU time of itself and its
dead children.

Figure 5.2 shows an example output from Top. The measurement would
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Figure 5.2: Output from the Top command

be 21.0 % CPU and 0.5 % RAM. The CPU percentage is for one core, so the
maximum for the Jetson Nano with four cores is 400 %. Information on the
Top command can be found in the manual [21].

We use the Multi-Generator (MGEN) Network Test Tool to simulate ap-
plication traffic. MGEN is a tool developed by the United States Naval Re-
search Laboratory [22] to measure and analyze the characteristics of a network.
It is used by configuring a sender and a receiver. In the tests, MGEN sends
UDP packets, and we use message interval and size as test parameters. The
receiver generates a log file of the received packets.

The sender uses the following command. FLOW is an identification number
used to identify the sender. FREQ and SIZE are the frequency and size of
the packets. 127.0.0.1/4100 is the destination address, which is the address
configured to receive application messages in Flamingo MLS.

./mgen event "ON #FLOW# UDP SRC 5001 DST 127.0.0.1/4100
↪→ PERIODIC [#FREQ# #SIZE#]" output log_send.drc txlog

The receiver uses the following command. 4000 is the port used to receive
application traffic from Flamingo MLS.

./mgen event "listen udp 4000" output log_recv.drc

Tests 1 through 4 aim to measure resource consumption on Jetson Nano
during different scenarios. The goal is to see how different parameters affect
resource consumption. We perform most tests multiple times and present the
average measurement. Test 5 investigates how resource consumption is dis-
tributed throughout the application. Test 6 performs testing under varying
network parameters. Tests 1 through 4 evaluate the following Flamingo MLS
parameters.

UPDATE_INTERVAL How often each node generates MLS update messages.

TOKEN_SEND_INTERVAL How long a node keeps the Totem token before
sending it to the next node.

HEARTBEAT_INTERVAL How often each node sends application heartbeat
messages to prevent other nodes from removing it. Note that we only
send heartbeat messages if no other application messages have been sent
in the interval.
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LOG_LEVEL Determines how many program operations are written to the log
files.

MAX_EPOCH_STATE_HISTORY_SIZE Determines how many previous MLS
epoch states are stored. We refer to this as max epoch states in this
chapter.

In addition, two configurations significantly affect performance: the number
of nodes in the network and how much application traffic they each send.

Some of these parameters and configurations depend on each other to have
an effect. For instance, there is no point in having an update interval lower than
the token send interval because the node only sends updates after receiving
the token. Another example is that the heartbeat interval is only relevant if it
is lower than the interval between application messages sent.

The parameters also depend on other program parameters, but they are
not in focus in these tests. For instance, if the token send interval is too high, it
will trigger the token retransmission timeout without the token being lost. To
avoid this situation, we set relevant parameters to the necessary values. This
does not affect the resource consumption measured but enables the program
to function as it should during testing. We provide the entire configuration file
for the test along with the source code at the GitHub repository presented in
Chapter 4.

We choose the frequency and size of messages to fit the traffic character-
istics of the UAV swarm. The developers of the Flamingo UAV stated that
the frequency can be between two and fifty packets per second, and the size
can be between 1 kB and 50 kB. Unfortunately, MGEN has a maximum UDP
packet size of 8192 B. The simulated traffic, therefore, cannot test all scenarios
but gives a good indication of how Flamingo MLS works under different traffic
parameters.

5.1 Test 1: Parameter Testing
The parameters of Flamingo MLS impact resource consumption, and in Test
1, we measure how much effect they have. The setup consists of two nodes,
and application packets are sent once per second with a size of fifty bytes. We
turn off application packets when testing the heartbeat interval. We evaluate
one parameter at a time and set the other variables to the standard values in
Table 5.1.

Table 5.2 shows the results when varying the update interval parameter.
There is a significant difference of almost 5 pp between 400 ms and 2 s and an
almost 2 pp difference between 2 s and 20 s. However, there is no significant
difference between 20 s and 40 s, which means we do not gain performance
benefits above 20 s. Since two nodes are present, an update will happen every
10 s in this case. If more nodes are present, updates will be more frequent when
using the same parameter value, and we must adjust the value accordingly.
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Table 5.1: Standard parameter values

Parameter Value
UPDATE_INTERVAL 40 s
TOKEN_SEND_INTERVAL 50 ms
HEARTBEAT_INTERVAL 20 s
LOG_LEVEL 2
MAX_EPOCH_STATE 10

Table 5.2: Update interval results

Update interval CPU usage
400 ms 24.8 %

2 s 19.0 %
20 s 17.3 %
40 s 17.4 %

Table 5.3: Token send interval results

Token send interval CPU usage
50 ms 17.4 %

500 ms 15.5 %
5000 ms No result

Table 5.3 shows the results when varying the token send interval parameter.
There is a reduction of almost 2 pp when going from 50 ms to 500 ms. This
is a slight reduction, and as long as the update interval is sufficiently large, a
token send interval of 50 ms is unnecessarily short. A larger interval will make
changes to the group happen more seldom. For instance, if a member would
like to add or remove a node, it would have to wait to receive the token to make
the changes take effect. However, making these changes more often than every
few seconds is rarely necessary. The token send interval could be even larger
than 500 ms, but because of a bug in the software, the test with 5000 ms did
not produce valuable results. The nodes did not manage to establish a group
with this value. There were issues with forming a group at 500 ms, but we
could eventually establish the group. Despite this, we still manage to produce
reliable measurements.

Table 5.4 shows the results when varying the heartbeat interval parameter.
There is a reduction of 6.5 pp when increasing the heartbeat interval from
200 ms to 2 s. The reduction was below 1 pp when increasing it further to
20 s. The heartbeat interval determines how quickly we detect corrupt ses-
sions and can deploy measures. It is, therefore, important to have a low heart-
beat interval. It should be closer to 2 s than 20 s, but not much lower than
2 s. The drones continuously send application messages during operations,
so they should rarely need the heartbeat. The parameter must exceed the
interval between application messages to avoid extra messages and resource
consumption. The minimum message frequency of the drones is two messages
per second, so a heartbeat interval between 1 s and 2 s is fitting. However,
because of the resource consumption measured, it should be closer to 2 s unless
we need a rapid detection of corrupted sessions.

Table 5.5 shows the results when varying the log level parameter. There
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Table 5.4: Heartbeat interval results

Heartbeat interval CPU usage
200 ms 22.8 %

2 s 16.3 %
20 s 15.5 %

Table 5.5: Log level results

Log level CPU usage
0 16.9 %
2 17.4 %
5 38.1 %

is a minimal difference between log levels 0 and 2, but a more than 20 pp
increase when using log level 5. This is because log level 5 writes to the log
files for every line of code in some functions, which is very resource-intensive.
This is only necessary when debugging tricky bugs. If not, the logging will
have a significant effect on the performance. Log level 0 only reports error
messages, while log level 2 logs program operations such as epoch changes,
addition and removal of members, and Totem operations. Most faults do not
result in error messages but rather unexpected program operations. Hence,
it is necessary to have program operations logged with log level 2. Since the
difference between 0 and 2 is very small, we can use it for all experimental
activity without significantly affecting performance.

5.2 Test 2: Time-based Resource Consumption
It is not sufficient to measure resource consumption only when the program
starts. The consumption can change over time. Test 2 measures how much this
changes over thirty minutes. We perform the test multiple times with different
update intervals, with and without application traffic. We use the same base
parameters as in Test 1, except for the heartbeat interval, which we set to 2 s.
When using application data, we send 100 packets per second containing 2 kB
each and set the update interval to 20 s.

Figure 5.3 shows the results for Test 2. We found no significant increase
when using an update interval of 20 s and with application data. However,
with an update interval of 400 ms there was an increase of 34.2 pp over thirty
minutes. An explanation could be that the program needs more CPU power
in higher epochs. To explore this further, we performed a test where the nodes
started at epoch 5000, see Figure 5.4. In the blue plot, we use a third node
to create a session with epoch 5000, before nodes 1 and 2 joined. Node 3 then
left the session. The goal is to see if this affected the resource consumption
over time. The result shows no difference from the results in Figure 5.3, so
the epoch does not seem to influence consumption. In the red plot, node 2
has an update interval of 400 ms, while node 1 has an update interval of 20 s.
We perform the measurements at node 1. The values change between nodes 1
and 2 in the green plot. The results show that creating update packets more
frequently is more resource-intensive than just receiving them.

We also measured RAM usage in this test. All measurements were at 0.2 %,
except when the update interval was 400 ms. Then, it measured 0.7 % after
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Figure 5.3: Results showing resource consumption over time
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thirty minutes. Even though this is a significant increase, it is unlikely to affect
drone operations because the RAM consumption in total is minimal.

5.3 Test 3: Stored Epoch States

We discovered an issue with resource consumption during the development of
Flamingo MLS. The source of the problem was too many old epoch states
stored. The MLS++ library has no limitations, so we altered the source code
to limit this. Test 3 demonstrates the need for this feature and helps determine
what value to set. The only parameter changing is the maximum number of
epoch states stored. We perform measurements after 1000 epochs and use an
update interval of 100 ms to make the test faster to execute. The token send
interval is 50 ms, the heartbeat interval is 2000 ms, and application messages
are disabled.

Table 5.6 shows the results when varying maximum epoch states between
10 and 1000. When more epoch states are stored, there is a slight decrease

Table 5.6: Results for maximum epoch states stored

Max epoch states CPU usage RAM usage
10 49.2 % 0.3 %

100 47.9 % 0.7 %
1000 47.4 % 2.8 %
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Figure 5.4: Further investigation of resource consumption over time
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in CPU consumption. This was unexpected but could be explained by fewer
computations needed to delete the stored states. The RAM usage increased
significantly when storing more epoch states. However, the increase is not
proportional to the increase in states stored. With ten times as many states
to store, we would think closer to 7 % RAM would be used, but we measured
only 2.8 %. One hundred stored states might be ideal because it provides low
CPU and RAM consumption.

Figure 5.5 shows what happens when there are no limitations to the number
of stored epochs (10000 epochs in practice). The figure shows how CPU and
RAM consumption increase as the program progresses through the epochs. It
then consumes significant portions of the system resources. At epoch 6642,
it consumed so many resources that the program crashed. This shows why
limiting the number of epoch states stored when using MLS++ is essential.

5.4 Test 4: Group Size-based Resource Consumption

It is useful to see how Flamingo MLS works in a controlled environment with
only two nodes, but the real magic happens in larger groups. Test 4 invest-
igates this by measuring how group size and message volume affect resource
consumption. First, we sent no application messages and set the update inter-
val so that updates happened every two seconds for the entire group, see blue
graph in Figure 5.6. For three members, this means using an update interval
of 6 s. Then, we set the update interval to five minutes so as not to influence
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Figure 5.5: Results when storing all epoch states
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the rest of the test and sent application messages at a rate of once per second,
with 5 kB per message. Figure 5.6 shows this in red.

CPU consumption marginally decreases when the number of nodes in-
creases, with an update message sent every two seconds. An explanation is
that the update interval per node increases when group size increase. Each
node has to create update messages more infrequently, and as we saw in Test
2, it is more demanding to create rather than handle update messages1. When
sending application data, CPU consumption increases with the group size.
Every node receives more data in larger groups since all send the same amount.
One would expect this trend to linearly increase CPU consumption when the
number of nodes increases. Based on the graph, it is not perfectly linear, but it
is close. The discrepancy is likely a result of uncertainty in the measurements.

The rest of Test 4 was supposed to investigate how different application
packet sizes and frequencies affected resource consumption. However, when
performing this, we discovered a significant packet loss. This happened both
when sending to and from the Jetson Nano. Table 5.7 shows the only results
achieved without significant packet loss. High CPU consumption is likely the
reason for the packet loss. Strangely, this results in packet loss instead of in-
creased latency, which we should investigate further. One reason might be full
input buffers because of the high processing time for each packet. Regardless
of this, the test shows an important point: it is more efficient to send fewer
packets with larger sizes. Both the lines in Table 5.7 use the same data rate,

1We show this in Table 5.9 as well.
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Figure 5.6: Results of resource consumption when group size increases
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but there is almost a 40 pp difference in CPU usage. One explanation for this
is that some processes are performed once per packet, regardless of size. Sig-
nature creation is one example of this. Having such processes performed more
infrequently is beneficial for resource consumption.

After discovering packet loss during the testing, we changed the goal to
find how much application data could be processed by Flamingo MLS before
experiencing packet loss. The test used two nodes, and only one node was
sending. We set the max size of 8192 B at the sender, and the frequency was
changed to see how much traffic could pass through. Since sending large pack-
ets is beneficial for maximum throughput, this test should show the maximal
rate that can be achieved with Flamingo MLS. The result was that the Jetson
Nano could receive at a frequency of 90 Hz, a data rate of 5.9 Mbps. The CPU
consumption was then at 100.9 %. It could send at a frequency of 120 Hz, a
data rate of 7.9 Mbps. It then had a CPU consumption of 94.9 %.

Table 5.7: Results when sending application data

Frequency Size CPU usage RAM usage
100 Hz 800 B 102.5 % 0.2 %
10 Hz 8000 B 63.2 % 0.2 %
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(a) Based on threads (b) Based on ELF objects

Figure 5.7: CPU distribution in Flamingo MLS

5.5 Test 5: CPU Consumption Analysis
After seeing that Flamingo MLS consumes significantly more resources than
expected, we seek to find an explanation. This is especially true when sending
and receiving large amounts of application messages. To understand why this
happens, we need to investigate how the CPU consumption is distributed in
the program. We use Valgrind with the Callgrind [23] tool to track how many
CPU cycles each function uses and create profiling data for Flamingo MLS.
The command for doing this is:

valgrind --tool=callgrind ./flamingo_mls

Valgrind creates an output file that other programs can analyze, and we
use QCachegrind [23] to analyze the data. The screenshots in this section come
from QCachegrind.

We use two nodes: the Valgrind command runs one node, and the other
runs normally. We use Ubuntu, and not the Jetson Nano, since the program
runs similarly on an x86 and an ARM processor. The update interval is 40 s,
and application data is sent five times per second, with 1000 bytes per message.

We create Figure 5.7a by searching for “thread” and “main” among the
recorded function calls in QCachegrind, combining the searches into a single
figure. It shows the distribution between the different program threads. The
local transmit function, responsible for decrypting messages, uses 47.73 % of
the total CPU cycles. The local receive function, responsible for encrypting
messages, uses 34.47 % of the total. Based on the numbers, Flamingo MLS
uses more CPU cycles to handle incoming messages than outgoing ones. In
comparison, the main thread and the Totem receive thread use very few CPU
cycles. This is as expected since the update interval is high.

Figure 5.7b shows functions grouped by ELF object. The Flamingo MLS
object comprises everything this project created, including the MLS++ library.
The remaining objects are libraries referenced in the program. libcrypto.
so.1.1 is the OpenSSL library MLS++ uses for all cryptographic operations.
Since we find only 19.69 % of operations in this object, cryptographic compu-
tations are not the most resource-consuming part of the program.

Figure 5.8 shows a call graph generated by QCachegrind for the local re-
ceive and transmit threads. protect_data() and unprotect_data() are called 177
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Figure 5.8: Callgraph for the transmit and receive functions

and 178 times, respectively. This means the number of messages sent and re-
ceived are almost the same, and the results for encrypting and decrypting mes-
sages are comparable. The function calls on the last line are all MLS++ func-
tions. Since they add up to 79.02 %, Flamingo MLS uses only about 3 %, while
MLS++ and the libraries it calls use the remaining resources. The conversion
to and from hexadecimal format uses almost 10 %, which is much for such a
simple operation. It should be possible to improve this. mls::Session::protect()
uses 27.79 %, while mls::Session::unprotect() uses 41.34 %. These are the func-
tions responsible for protecting and unprotecting messages.

When protecting messages, MLS does the following cryptographic opera-
tions:

AEAD encryption Authenticated Encryption with Associated Data (AEAD)
is symmetric encryption and authentication of the message.

Key derivation The derivation of the next key from the secret tree, used for
AEAD encryption.

Signature creation Creating an asymmetric signature for the message.

The hpke::AEADCipher::seal() function performs the AEAD encryption.
This function uses 0.22 % of the CPU cycles. Figure 5.9 shows the call graph
for the key derivation process. The hash ratchet uses a Hash-based Message
Authentication Code (HMAC) to derive new secrets. The function is both
called from the protect and unprotect functions. The only part doing cryp-
tographic operations is the hpke::Digest::hmac() function in the bottom left
corner. Since the protecting and unprotecting functions have an equal share,
0.38 % is used by each.

Figure 5.10 shows the call graph for the signing process. Flamingo MLS
calls the mls::SignaturePrivateKey::sign() function in two situations: signing the
GroupInfo-object and signing a message. In addition, only two of the three func-
tions shown as called at the bottom are doing cryptographic operations. These
two functions add up to 6.06 %. The middle function is doing TLS marshal
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Figure 5.9: Callgraph for the key derivation process

operations. The path in the upper right corner is for protecting application
messages, while the left is for GroupInfo-objects. Signing application messages
are 87.4 % of all signatures created with this function. Therefore, the cryp-
tographic operations used to perform the application message signing equals
5.3 % of the total cycles used.

By summing up the numbers for AEAD encryption, key derivation, and
signature creation, the protecting function uses 5.9 % of the total CPU cycles
for cryptographic operations. The signature process uses 5.3 % and is the
most resource-intensive part. This amounts to 21.2 % of the computational
load used by the protect function. Table 5.8 summarizes this.

When unprotecting messages, MLS does the following cryptographic oper-
ations:

AEAD decryption Symmetric decryption and verification of the message’s au-
thenticity.

Key derivation The derivation of the correct key from the secret tree, used
for AEAD decryption.

Signature verification Verifying the asymmetric signature of the message.

The hpke::AEADChipher::open() function uses 0.21 % of the CPU cycles.
The key derivation usage is the same as for the protect function. Figure 5.11
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Figure 5.10: Callgraph for the signing process

Figure 5.11: Call graph for signature verification

shows the call graph for the signature verification function. The two functions
at the bottom row to the right are the only functions doing cryptographic
operations. These add up to 10.84 %. In total, cryptographic operations equal
11.43 % for unprotecting messages. This is 27.6 % of the unprotect function
total.

Table 5.8 summarizes resource consumption for cryptographic operations
in the unprotect and protect functions. In total, Flamingo MLS uses 17.33 %
for cryptographic operations out of 69.13 % in total for the two functions,
which amounts to 25.1 %. The cryptographic functions used in this configura-
tion are AES-128-GCM for AEAD, SHA-256 for hashing, and the P256 curve
for signature and Hybrid Public Key Encryption (HPKE) operation. After
this analysis, we are left with the question: what are all the remaining CPU
cycles used for?

To answer this, we have to look at the functions that are not doing the
cryptographic operations. Many of these functions are called something re-
lated to “TLS marshal”. Marshaling is the process of changing the memory
representation of an object into a format more suitable for transmission or
storage [24]. This is an important part of preparing the messages before and
after protecting and unprotecting.

Figure 5.12 shows the CPU usage of the most resource-consuming functions
having “marshal” in the function name. All functions are part of different call
stacks, except those with 7.45 and 6.61 as usage. This means that we can
add the contributions from these functions to get the total usage of marshal
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Table 5.8: Summary of cryptographic operations for the protect and unprotect
functions. “CPU total” is the cycles used compared to the total program cycles
used. “% of function” is CPU consumption as a percentage of the protect or
unprotect function.

Operation CPU total % of function
Protect:
Protect function total 27.79 %
AEAD encryption 0.22 %

5.90 %
0.79 %

21.23 %Key derivation 0.38 % 1.37 %
Signature creation 5.30 % 19.07 %
Unprotect:
Unprotect function total 41.34 %
AEAD decryption 0.21 %

11.43 %
0.51 %

27.65 %Key derivation 0.38 % 0.92 %
Signature verification 10.84 % 26.22 %

and unmarshal functions. The functions with 7.45 and 6.61 are part of the
same call stack as mls::unmarshal_ciphertext_content() at line 3. The marshal
functions add up to a total of 46.2 %. This shows that Flamingo MLS uses a
significant amount of the program resources for marshaling processes.

It is also interesting to know how different operations of MLS++ compare
to each other regarding resource consumption. This is calculated by dividing
the function’s resource consumption by the number of times it was called.
By doing this, we can make a relative comparison between the functions, see
Table 5.9.

Figure 5.12: Marshal functions
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Table 5.9: Comparison of CPU consumption for MLS++ functions

Function name CPU usage
protect 0.16 %
unprotect 0.23 %
commit 0.98 %
handle 0.58 %
add 0.56 %

Table 5.10: Default parameter values for network testing

Parameter Value
UPDATE_INTERVAL 400 ms
TOKEN_SEND_INTERVAL 50 ms
TOKEN_RETRANSMISSION_TIMEOUT 1000 ms
TOKEN_LOSS_TIMEOUT 2500 ms
JOIN_TIMEOUT 200 ms
CONSENSUS_TIMEOUT 500 ms

5.6 Test 6: Network Testing
It is essential to know how Flamingo MLS functions under different network
scenarios. The drone communication is often high speed, with low latency,
packet loss, and jitter. However, in some scenarios, these parameters can
change, for instance, when the drones are at the edge of the radio cover-
age. Test 6 looks into how Flamingo MLS functions when these parameters
are varied. Other parameters, such as bandwidth restrictions and duplicate
packets, are also relevant but were not prioritized in this test.

We configure the network parameters using the Linux Traffic Control (TC)
tool. This tool worked out of the box on the Ubuntu machine but not on the
Jetson Nano or the Docker containers. The test setup was, therefore, altered
to use multiple instances of Flamingo MLS running on the same machine
and connecting them to the Jetson Nano. The TC tool only affects outgoing
traffic, affecting the traffic from the instances on the Ubuntu machine, but not
from the Jetson Nano. We used the following commands to create the network
conditions:

tc qdisc add dev eth0 root netem delay #DELAY# #JITTER#
tc qdisc add dev eth0 root netem loss #LOSS#

Table 5.10 shows the default parameters set in this test. We tested static
and dynamic group operations. In static group operations, no members left
or tried to join, while for dynamic operations, one node left the group and
joined again. We tested with the node rejoining immediately after leaving and
rejoining after the group found out the member had left and removed it.

We used the same general method when testing for latency, jitter, and
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Table 5.11: Results when varying network parameters

Parameter Scenario With Jetson node Without Jetson node
Latency Static 525 ms
Latency Dynamic 450 ms
Jitter Static 50 ms 1000 ms
Jitter Dynamic 50 ms 900 ms
Packet loss Static 3 % 6 %
Packet loss Dynamic 4 % 8 %

packet loss in static group operations. The value started low and increased
until it affected the program’s operation. Such an effect could be that a node
lost synchronization with the group. At this value, we used lower increments to
find the threshold. The goal was to find a value that could sustain operations
for five minutes. Members could leave as long as the group managed to recover.
We did not always reach the five minutes but still recorded the value as an
appropriate threshold.

We used the same procedure for dynamic group operations but made a
group member leave the group and then rejoin. There is no leave function
in Flamingo MLS, so this was done by terminating the program and then
starting it again when the node should join. When a node stops forwarding
the token, the other nodes remove it from the group after waiting for the token
loss timeout period. It is, therefore, important to test what happens when the
node joins before and after this timeout has expired. We test both of these
scenarios with the values in the results.

Table 5.11 presents the results. Testing with the Jetson Nano node some-
times gave anomalous results. The results are, therefore, presented with and
without this node for some of the tests.

The results for latency were as expected. When having 525 ms latency in
the static test, one round of the token ring takes 2350 ms.2 This is just below
the token loss timeout value and avoids Totem reinitializing the group. Any
higher value would initiate the token loss procedure, making it impossible to
maintain a Totem group. The same principle applies to the dynamic test. The
value is just below the consensus timeout value of 500 ms. A node must receive
join messages from the remaining nodes before this time to reach a consensus.
With a fixed latency close to this value, it will never receive a join message
before reaching this timeout.

We did not expect that the response to jitter would be so different with and
without the Jetson Nano node. Jitter has two effects on Totem: it increases
latency by a random amount and, by doing this, also changes the order of
messages. Ordering messages should not be a problem because that is Totem’s
specialty. We would expect results similar to those of the latency test for the
latency contribution. Therefore, the results without the Jetson Nano are more

2525 ms times four nodes and 50 ms token delay times five nodes
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accurate. Why it failed with the Jetson Nano node is unclear. The network
setup could be one explanation. We only applied jitter to outgoing traffic at
the Ubuntu nodes, which could cause irregular behavior. Another reason could
be that we created a unique network setup for this test. Flamingo MLS expects
that either all nodes use different addresses on a LAN or all are on the same
host. A combination of these is not part of the program; it is only created for
this test. This is not well tested and might have affected the results somehow.

Flamingo MLS can sustain higher levels of jitter than latency. This is due
to the random nature of jitter. A constantly high latency will affect Totem
operations, while a sporadic high latency does not affect in the same way. If
the latency becomes too high for one packet, it can be considered a lost packet,
which can be dealt with as long as it does not happen too often.

We did not expect that the response to packet loss would be so different
with and without the Jetson Nano node. The same potential reasons as for
jitter might apply. It is not easy to say which is more realistic based on the
values in this case. However, based on these and jitter testing results, there
is likely something wrong with the Jetson Nano setup. Therefore, the results
without the Jetson Nano node are likely more accurate in this case as well.

Totem can be adjusted to be more robust against network conditions by
adjusting Totem’s timeout parameters. We give some examples we tested in
this paragraph. When increasing the token loss timeout value to 5000 ms,
the program could sustain static operations with a 1000 ms latency compared
to 525 ms before. When increasing the consensus timeout value to 1000 ms,
the program could sustain a 900 ms latency compared to 450 ms before. For
packet loss, we can adjust the retransmission and join timeouts to have more
retransmissions when packets get lost. With a token retransmission timeout
reduced to 300 ms, the program could sustain static operations with a 5 %
packet loss with the Jetson Nano node, compared to 3 %. With a join timeout
reduced to 50 ms, the program could sustain dynamic operations with a 5 %
packet loss compared to 4 % before.

During the testing, we documented the program faults that happened.
These often occurred when Flamingo MLS did many operations quickly, for
example, with a network parameter at the limit and group operations happen-
ing. The faults are related to memory operations and are not easy to trace.
We developed Flamingo MLS as a proof-of-concept application, so we expect
errors, and it is not a big deal at this point. However, for a production-ready
application, these issues must be fixed. We experienced the following error
messages:

terminate called after throwing an instance of ’std::bad\_alloc’
Segmentation fault (core dumped)
free(): invalid pointer
double free or corruption (out)
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Table 5.12: Optimal values for Flamingo MLS

Parameter Value
UPDATE_INTERVAL 100 s
TOKEN_SEND_INTERVAL 500 ms
HEARTBEAT_INTERVAL 2000 ms
LOG_LEVEL 2
MAX_EPOCH_STATE_HISTORY_SIZE 100

5.7 Discussion of Results

The results show that the program parameters can significantly affect resource
consumption. However, reducing consumption does have consequences in the
form of decreased performance or security. Table 5.12 shows values that bal-
ance resource consumption against performance and security for the program
parameters. These are the optimal values derived from the results. The update
interval and token send interval should vary based on the group size, which is
not possible in the version of Flamingo MLS used during simulated testing3.
We base the values in Table 5.12 on a group size of ten nodes. In that scenario,
every node would have to process an update every ten seconds and update its
key material every one hundred seconds. This has a low resource consump-
tion and leaves a window of one hundred seconds for using compromised key
material. This will be sufficient for most drone operations. The token would
complete one round every five seconds, which means updates to the group
would take effect no later than after five seconds. This provides a low resource
consumption, and a compromised node would be removed from the group five
seconds after it is detected, which is an acceptable time frame.

It is clear from the results that sending and receiving application messages
will be the most resource-intensive part of Flamingo MLS in practical use.
We can adjust the program parameters for small resource consumption with
minor security and performance drawbacks. Application messages, however,
are an essential part of drone operations, and reducing the rate and size would
significantly impact the operational performance. The minimum requirement
of two packets of 1 kB per second is feasible. Figure 5.6 shows that 15 nodes
sending 5 kB packets every second had a CPU consumption of about 33 %.
This is similar to the performance for the minimum requirement and is an ac-
ceptably low resource consumption. The maximum requirement of 50 packets
of 50 kB per second is not feasible. The maximal receiving rate achieved in
Test 4 was 8192 bytes 90 times per second, with a CPU consumption of over
100 % of one core. This was from only one other node, using a quarter of the
processor capacity. The rate would have to be drastically reduced when hav-
ing multiple other nodes. The achievable data rate is closer to the minimum

3The final version of Flamingo MLS changes the token send interval into a token round
interval that specifies the time interval for the token to make one round in the group.
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requirement than the maximum since we need to leave enough resources for
other applications.

Reception of messages is the limiting factor in this setup since the number
of messages increases proportionally with the increase in group size. Unfortu-
nately, the results show that receiving a message is more resource-consuming
than sending a message, as shown in Test 4. Test 5 confirms this since the
receiving thread used more CPU cycles than the sending thread.

The results show that MLS++ uses more resources than expected. Test
5 shows that MLS++ only uses about one-fifth of all operations for doing
cryptographic operations. In addition, there are some cases where MLS++
consumes almost all resources available. One example is keeping all previous
epoch states, which shuts down the program at around epoch 6000. Another
example is the increase in resource consumption when using a low update in-
terval in Test 2. This shows that MLS++ is not made for a high-performance
environment, which is logical since MLS is supposed to be a group messaging
protocol, not a high-performance communication protocol. A messaging ap-
plication sends messages more infrequently, and it is, therefore, possible to rely
on a less effective message-handling process. MLS++ is also not designed for
the resource-constrained environment of a UAV.



Chapter 6

Flamingo MLS Takes Off

Only with UAVs in the air can we fully evaluate how MLS performs in a UAV
swarm. To achieve this, we performed testing and troubleshooting of Flamingo
MLS running on the Flamingo UAVs at FFI. As a result, the UAVs could take
off and perform a flight using MLS to protect the communication. We believe
this is the first time MLS has ever been airborne.

We experienced interesting behavior when performing this experiment. The
testing revealed numerous challenges, and we implemented solutions to many.
The experimentation took one week and was mostly in FFIs location at Kjeller.
The week started with multiple minutes before the MLS group was reestab-
lished, and at the end of the week, we were down to below half a minute.
This chapter outlines the experiences from the process and describes meas-
ures taken to enable Flamingo MLS to take flight. We were limited to three
Flamingo drones this week.

6.1 Ground Testing with Stable Network
The first challenge was to get Flamingo MLS working correctly on the ground
with a stable network link. We used two Flamingo drones and one Ground
Control Station (GCS). The Flamingo MLS program was pre-compiled using
Docker and could be transferred to the drones and run. The GCS is running
Ubuntu, and we needed to compile the program on the machine due to lib-
rary incompatibilities. The instances could communicate with each other and
establish an MLS group. They operated for one hour without any issues.

Valkyrie, the program controlling the drones, had to be configured to use
Flamingo MLS as its communication link. We switched off the multicast func-
tionality, enabled unicast, and set the unicast address to the local machine
address using the same transport port number as Flamingo MLS for trans-
mission and reception. This forces the traffic through Flamingo MLS, which
then multicasts it to the network. This solution allowed telemetry data and
commands to be shared between the drones and the GCS. The setup was veri-
fied by monitoring the telemetry data at the GCS and sending commands to

67
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Figure 6.1: Some of the Flamingo drones used during testing

the drones. We did not verify the communication between the drones, but it
should function the same way as between a drone and the GCS.

Video streams and other sensor streams use a different communication
setup and are not easy to integrate with the current version of Flamingo MLS.
Each drone streams to the GCS, transmitted using different port numbers
from the telemetry data. The ports are hardcoded and used to determine
from which drone the stream originated. Flamingo MLS currently only handles
one data stream using one port number. We can solve this in the future by
enabling multiple data streams. Every drone would need multiple streams, one
for telemetry and one for each video or sensor stream, while the GCS would
need to be able to receive all streams from the drones.

However, video streaming is an optional part of the operational procedure
of the swarm. The drones usually operate with the video stream turned off
to save radio bandwidth. If the drone makes an observation, pictures are sent
through the same channel as the telemetry data. Therefore, we prioritized
using MLS on telemetry data, but use on sensor streams is still relevant for
future work.

The telemetry packets from the drones had a size of approximately 700 B.
When still images were included, it reached about 1000 B per packet. These
packets were sent ten times per second. After adding another Flamingo to the
swarm, we measured the total data between 16 kB and 18 kB. Theoretically,
it should be approximately 21 kB. The difference could be because of inaccur-
ate sending frequency in Valkyrie or Flamingo MLS. The reason is not very
important because the goal is to show how much data was sent and handled
by Flamingo MLS. The measured values translate to between 128 kbps and
144 kbps.

With this setup, the CPU consumption was 10.5 % of one core. Since
the Flamingo drone uses a six-core processor, the usage is 1.8 % of the total
computational capacity. Flamingo MLS cannot use more than 25 % of the
total CPU consumption before disrupting drone operations since the drones’
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Table 6.1: Comparing CPU consumption on Jetson Nano and Jetson Xavier
NX

Update interval Heartbeat interval Nano Xavier NX
400 ms 2 s 24.0 % 8.9 %

4 s 20 s 16.6 % 2.7 %

autonomy and sensor processing software use approximately 75 %.
The CPU on the computer used with the current generation of Flamingo

drones is not the same as during the testing in Chapter 5. We used Jetson Nano
for the simulated testing, while the drones used Jetson Xavier NX. According
to Nvidia, it provides up to 25 times the performance of the Jetson Nano1.
It has a CPU with a higher clock rate and six cores, compared to four on
the Jetson Nano. Therefore, we expect the Flamingo drones’ performance to
be better than what we observed during testing in Chapter 5. To verify this,
we performed a test with the same parameters as the simulated testing, see
Table 6.1. We used no application traffic and transmitted the token every
50 ms.

In this experiment, we see that Jetson Xavier NX is two to six times as effi-
cient as Jetson Nano per core. This means that the limitations in performance
measured in Chapter 5 do not necessarily apply to the Flamingo drones.

A ping test between the drones showed latency averaged at 6 ms for a
round trip. When the radio link has poor quality, the latency could increase
to 150 ms for sporadic packets. This affects Totem operations, which assume
a low latency. The join timeout is 100 ms, meaning it expects to receive a join
message within 100 ms of sending its join message. If the latency is 150 ms,
no join messages will meet this limit, and Totem will send many unnecessary
join messages. However, since higher latency only occurs when the radio link
quality is poor, we can keep the 100 ms join timeout and accept sending more
join messages when the link quality is poor.

6.2 Unreliable Network
An unreliable network connection can happen when a drone travels far away
from the other drones, resulting in a weak radio link. It is crucial to investigate
how Flamingo MLS responds to this scenario. To simulate this behavior while
keeping the drones on the ground, we carried the drone to a place where we
observed an effect on the network connection. We observed high packet loss,
latency, and jitter. The location created significant attenuation so that the
signal-to-noise ratio got sufficiently low. We used the same location for every

1The Nvidia website states that Jetson Xavier NX has more than ten times the perform-
ance of Jetson TX2 [8]. It also states that Jetson TX2 has up to 2.5 times the performance
of Jetson Nano [25]. This is a general statement of the entire machine, not just the CPU and
RAM.
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Figure 6.2: Ground testing arrangement with three Flamingo drones and one
GCS at the laptop to the right

test to recreate the same network conditions for each test. Even though we
cannot recreate the exact network conditions, it is good enough to see how
Flamingo MLS behaves during poor network conditions.

In the test setup, there was a problem with nodes not receiving handshake
messages, even when the network connection was stable2 and after multiple
retransmissions. The reason is that the Rajant radio handles multicast and uni-
cast packets differently. The nodes received Totem token transmissions, which
use unicast packets. MLS handshake and application messages use multicast
packets. One node with a weak radio link seemed to trigger the behavior, res-
ulting in high packet loss for multicast between two nodes with a good radio
link.

When the fault occurred, it created a situation where some nodes ad-
vanced to the next epoch without the other nodes. This situation creates false
situational awareness for the operator of the GCS because it only allows for
one-way communication. The node with the newest epoch can decrypt mes-
sages from older epochs but not vice versa. For instance, the GCS could receive
telemetry messages but not send commands to the drones.

To mitigate this problem, we altered Flamingo MLS to use unicast for all
messages. Instead of sending multicast messages, we sent unicast messages to
the address of every individual node. This is a less efficient solution because
we send the same packet multiple times, but since it is far more reliable, it is

2Determined using the ping command
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worth the cost. We implemented this solution in the later stages of testing, so
observations described later in this section might be affected by the multicast
error.

One key insight discovered during testing is to make as few changes to the
MLS group as possible when there is a node with poor network connectiv-
ity. Flamingo MLS can remove members in various situations, depending on
the configuration, and when using all the features, we will quickly remove
a member from the MLS group. When developing Flamingo MLS, this was
considered an advantage: remove the node as quickly as possible so that the
rest of the group can function correctly. However, we discovered arguments for
the opposite case during testing. If we remove the member, it will also have
to rejoin the group when the network connectivity improves. The feature for
rejoining an MLS group is the most delicate feature of Flamingo MLS since it
received the least attention. This can further disrupt the MLS group.

When removing a member from the MLS group, it will quickly try to
rejoin the group if it is still receiving messages and is part of the Totem group.
This happens despite the unstable network link since some messages will come
through. Then, we are in a situation where the nodes try to reestablish the
MLS group when the unstable network provides high latency, packet loss, and
jitter. This is a receipt for unstable MLS groups due to a high probability
of losing proposals or commits. We experienced that the situation could lead
to members leaving the original stable group, either to join the node with an
unstable connection or to create its own group. We could then end up in a
situation with three different groups, which is difficult to merge under the best
of circumstances. Flamingo MLS is not yet able to solve this efficiently.

Until the nodes resolve the situation, almost all communications break
down, even though only one node has a poor network connection. This must
not happen since a communication breakdown compromises the entire mission.
A node having a poor network connection should only affect the communic-
ations to that node. Therefore, we focused on ensuring this does not happen
during the testing. Avoiding making changes to the group during poor network
connections is an essential factor in avoiding this.

What happens to application messages in this scenario? If the MLS group
immediately removes the node, it cannot communicate with anyone. Poor
network stability does not mean that we cannot send any packets. Therefore,
many of the application messages will still come through. This is even more
important when a node has a poor connection since it is far from the rest of the
group and needs to communicate with them or the GCS to return. We need
to configure the system to enable the passage of as many application messages
as possible by minimizing alterations to the group. Ideally, the group makes
no changes, and no advances in epoch occur. The ideal situation is if MLS
does not detect the poor connection at all. This happened on some of the
tests, and the only time the GCS did not receive the telemetry data was when
the network connection was too poor to send anything through. We could not
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distinguish this from normal operations by just monitoring MLS.
We made configuration and programming changes to Flamingo MLS to

achieve this behavior. We turned off removing nodes that are no longer part
of the Totem group. This feature removes nodes quickly when they experience
a weak network connection, which is undesirable in this scenario. We also set
a 60-second threshold for removing nodes from which we have not received
messages. If not a single message gets through in this period, it is safe to
assume it is not just an unstable network link that is the problem. It is more
likely that the node is so far away that all radio communications have shut
down or the node is lost altogether. It is then safe to remove it as it will not
sporadically interfere with the MLS handshake process. The reasoning behind
this strategy is that it is better to have one member too many rather than one
member too few, at least for system performance. This benefits the system’s
availability, but we must balance this with confidentiality and integrity, which
is more vulnerable the longer a compromised node stays in the group. However,
the probability of exploitation within 60 seconds is minimal.

Increasing the update interval to 600 seconds decreases the likelihood of
sending update messages during unstable network conditions. However, more
is needed to ensure its prevention. To decrease the chance, we also introduced
a procedure to check for unreliable network connections to avoid sending up-
date messages at the wrong time. This procedure ensures that all nodes have
sent a message within the last five seconds and that MLS and Totem agree on
the group composition. The measures ensure that the group nodes are active
and have a sufficiently good link to maintain the Totem group. In addition,
the procedure checks if the MLS group state is corrupt. It determines this by
checking the MLS handling error count, which counts the number of messages
received that cannot be decrypted. It also counts if the node receives mes-
sages from an old epoch. When the group state is corrupt, it is not beneficial
to continue advancing the group state. It will only make the recovery more
complex.

During the testing, we focused on achieving the best possible performance,
which often comes at the cost of security. Infrequent updates of key mater-
ial will reduce the post-compromise security of the application by leaving a
larger period for exploiting compromised key material. Features that prohibit
the removal of members also reduce post-compromise security since the nodes
might not be sending due to a compromise. The longer the node stays in the
group, the longer the communication will be exposed to adversarial exploit-
ation. This does not affect forward secrecy since the ratcheting procedure in
the secret tree of MLS prevents the decryption of old messages.

As the use of MLS in UAV swarms is still in the early stages of develop-
ment, we focus on making as few interruptions to normal communications flow
as possible. However, it is critical to consider the consequences of performance
optimization and find a balance between performance and security. An ex-
ample is setting a cut-off for members not updating their key material. This is
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essential to keep the system post-compromise secure, but we must balance this
with prematurely removing members from the group, which we experienced
multiple times.

Another challenge with the update interval being too high is that it is
one of the only multicast messages Totem sends. The messages are one of the
mechanisms for detecting nodes not part of the Totem group. Reception of a
foreign message triggers a shift to the gather state, which starts the joining
process for new members. During testing, the lack of these messages sometimes
prevented members from joining the Totem group and the MLS session. A
solution to this challenge is regularly introducing a “dummy” multicast packet,
which functions as a foreign message for the node and allows it to join the
group. This feature is implemented in Flamingo MLS and sends the packet
every time it receives the Totem token.

6.3 Ready for Take-off
After a week of troubleshooting and testing at FFI, Flamingo MLS was ready
for take-off. Having the Flamingo UAV swarm use Flamingo MLS while in the
air is a substantial milestone in this project. The final version of the program
is very stable during reliable network connections and has proven to handle
unreliable network connections as well. Testing on the ground produced enough
confidence in its operation to advance to drones in flight. An error in Flamingo
MLS in flight could make the swarm operators lose control of the drone, making
them resort to their fail-safe mechanisms. The confidence in its operation is
therefore essential.

We performed the in-flight testing using two Flamingo UAVs at Rena on
16th October 2023. We believe this is the first time MLS has ever been used
on airborne drones. The flight was successful, with the drones sending reports
to the GCS and the GCS sending commands to the drones. The drones were
airborne for approximately ten minutes. Figure 6.3 shows the view of the GCS.
We can see the path flown and the observations made. The swarm operator
tasked the drones to different locations during the flight.

The communication was flawless for the first five minutes of the flight.
After this, the swarm operator experienced having to send commands to the
drones multiple times before being accepted. The packets were lost somewhere
between the GCS software and the drone software. Packet loss on the radio
interface is possible but unlikely because of the short distances. The drones
were less than 550 meters from the GCS at the maximum, well within the
expected radio coverage. It is also possible that a fault in Flamingo MLS
caused the packets to get lost. The log files from the flight do not show any
signs of this. MLS on the drone was able to decrypt all messages it received.
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Figure 6.3: View on GCS during testing in flight



Chapter 7

Discussion

After many hours of research, development, and testing, we have produced
numerous results and experiences. We start this chapter by discussing the
results and connecting them to the research questions. Then, we justify how
the implementation of Totem does not affect the security of MLS. Lastly, we
share thoughts on the neighboring challenge of addressing compromised UAVs
in the swarm.

7.1 Use of MLS in a UAV Swarm
Our experience is that there are many challenges when implementing MLS on
UAVs. We experienced the downsides of using MLS since it was developed for
a different use case in chat and messaging services. These services have lower
demand for throughput and latency, and expect more available resources than
a UAV swarm can provide. When sending messages infrequently, it does not
matter how resource-demanding it is to protect the message. However, when
sending messages multiple times a second, the resource demand becomes a
significant issue. This likely affects the implementations of MLS as well and is
presumably why we see high resource consumption in Cisco’s MLS++ library.
The developers did not design it for a resource-constrained environment on a
UAV.

The application messages in MLS++ consumed more resources than ex-
pected and are currently the limiting factor for how well MLS++ performs in a
UAV swarm. We assumed that producing and processing handshake messages
would be most resource-consuming, but this was wrong. While significantly
affecting resource consumption, we can easily adjust handshake messages us-
ing longer intervals between update messages. However, we cannot do that
for application messages without significantly reducing the UAVs’ ability to
communicate. The bottleneck is the number of messages we send and not the
number of members as initially hypothesized. With the MLS++ implementa-
tion, we lose much of the gain in efficiency by using most of the resources on
marshaling instead of cryptographic operations.
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We now recount and answer the research question based on the results
obtained in this project.

Q1: How can we implement MLS services in a UAV swarm?

We demonstrated how to use a decentralized Delivery Service (DS) to
ensure agreement of MLS handshake messages in a UAV swarm. The Totem
protocol achieves this, and the results indicate it creates a reliable environment
for MLS to agree on the order of handshake messages. Delivery of key packages
is also a part of the DS, which we implemented by asking the node for its
package. We did not implement the Authentication Service (AS) but examined
how to use the service conceptually. We recommend an AS at the GCS for the
most straightforward configuration. This creates a centralized service in the
network but is unproblematic since the only in-flight communication is to
check the revocation list. The service going down is disadvantageous but of
little consequence.

Q2: What parameters of MLS give sufficient security compared to
the resource consumption on the UAVs?

In Chapters 5 and 6, we investigated how different parameters affect the
performance of MLS and discussed how the choice of parameters affected the
system’s security. Precise security measurements are impossible, so we can
only do an educated estimate. We identify the following parameters as the
most essential for the security of the swarm:
• Cryptographic functions
• Update interval
• Removal of MLS members
Leon and Britt [3] show the performance of the available cryptographic

functions, and we must compare this to the cryptographic protection. We have
not performed the comparison in this project. The simulated testing concluded
that the optimal update interval is every 100 seconds, which has low resource
consumption and allows for only a short period to exploit the system. Remov-
ing members is important for keeping the system post-compromise secure, but
removing members too quickly disrupts the system’s availability. Removal is
most critical for a compromised member, but we have not developed a way of
detecting this. Removing members who are not updating their key material is
also important. This prevents the system from being exploited by comprom-
ised key material, keeping it post-compromise secure. However, we have yet to
investigate the optimal threshold for when the removal should occur.

Q3: How does MLS affect the performance of the UAV swarm?

When working correctly, MLS did not affect the performance of the UAV
swarm during testing. However, we used only a few drones and did not protect
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the video, making resource consumption less realistic. The simulated testing
results indicate that with more drones and the protection of more data, re-
source consumption will increase significantly. With limited available compu-
tational resources on the drones, this can limit swarm operations. We identified
inefficiencies in Cisco’s MLS++ library as the cause and recommended testing
other libraries. OpenMLS is an obvious choice for further research. We require
more research and testing to determine if MLS will affect the performance of a
UAV swarm. More testing on the Jetson Xavier NX should also be performed
since most of the testing in this project was performed on the weaker Jetson
Nano.

Main research question: Can we implement MLS to achieve secure
and efficient communication in a military UAV swarm?

This project shows that reliably implementing MLS is possible, but further
research is needed to decide whether it can provide efficient communication in
a large UAV swarm. The implementation lacks the AS, an essential security
service. We must show we can implement the AS before declaring our solution
secure, but based on the conceptual work in this thesis, it should be achievable.

Since the current version of MLS is not adapted for the distributed nature
of a UAV swarm, we should consider developing a version of MLS better suited
for this use case. Both MLS and Totem create and maintain separate groups.
Instead of trying to keep both groups synchronized, we can implement the
mechanisms of Totem in a distributed MLS. Totem is up to date most of the
time, while the MLS group is not agile enough to keep up, at least in Flamingo
MLS. A tighter integration between MLS and Totem can decrease the concep-
tual complexity of the system and make it more reliable and straightforward
to implement.

We have investigated how to use MLS to enable secure communication in a
UAV swarm. However, we can generalize most of the results to other unmanned
systems. Some challenges discovered for a UAV swarm will probably be less
challenging with other unmanned systems. The Flamingo UAV is a small drone
with constrained computational resources. Larger systems can afford more
computational resources, so the computational load needed for Flamingo MLS
might not be an issue anymore. There are also more stationary systems with
more predictable connections, which would require a less dynamic protocol
than Totem.

7.2 Composed Security of MLS and Totem
When combining two different protocols, it is essential to consider how it
affects the security. MLS by itself is considered secure, but the specification [2]
recommends carrying the MLS messages over a secure transport channel, such
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as TLS. The argument is to protect the metadata from being read by an
attacker and avoid this information being used to, for instance, perform a
selective denial of service attack on specific messages. The developers did not
design Totem with the security perspective in mind, and we cannot consider it
a secure transport channel. Therefore, we cannot consider all metadata secure
in Flamingo MLS. This does not affect the confidentiality and integrity of MLS
message content, but it can affect the availability of messages. An attack on
the availability in Totem will also affect the availability of MLS messages.

In Totem, there are simple methods for impeding the availability. Totem
does not authenticate its messages, which means there is no way of knowing
a message’s legitimacy and who sent it. To give an example of an attack on
the availability in Totem, we assume an attacker with access to the network
infrastructure. In the case of a UAV swarm, an attacker can communicate with
the Rajant radios as a part of the IP network. With access to the network,
the attacker can send malicious Totem messages that affect the operation of
Totem.

A simple example is to send join messages continuously. When a Totem
node receives a join message, it enters the gather state to reconfigure the group,
adding the new member. The nodes will have to agree on the new group, and
as long as the attacker does not agree with the rest, they will never reach a
consensus. They will then continue until reaching the consensus timeout, and
then the ID of the attacker will be marked as a failed node. The rest will then
be able to continue to form a group. However, the attacker can continuously
alter its ID or spoof the ID of the other nodes. This will make the gather state
continue forever, effectively stopping all communication that rely on Totem.
We cannot add new members to the MLS group, remove members, or update
key material. Existing members can still send application messages but lose
most of the security guaranteed by MLS.

We can protect the Totem protocol from tampering by authenticating the
messages. An attacker cannot continuously send join messages because the
other nodes will detect that the messages are not authenticated and discard
them. We can use MLS functionality to perform the authentication, thereby in-
tegrating the protocols more tightly, as described earlier in this chapter. Since
Totem members are not necessarily a part of the MLS group, the functionality
cannot depend on group membership. Every node has an MLS key package,
which is independent of the MLS group and contains the node’s signature key.
We can use the key to sign and authenticate Totem messages. This solution
does require an AS implementation, which Flamingo MLS currently does not
have.

7.3 Addressing Compromised UAVs
So far, we focused on achieving security from outside attackers, but what hap-
pens when the attack comes from inside the group? This can happen when an
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adversary gets physical control over a UAV or by manipulating the radio in-
terface. The UAV swarm is then vulnerable to tampering by the compromised
UAV. It could disrupt the swarm behavior or leak the information gathered.
This scenario might be realistic when operating close to an enemy and can
impact the swarm operation.

The problem statement is closely related to implementing secure commu-
nication in a UAV swarm. Secure communication can help prevent comprom-
ised UAVs and recover from a compromised state. Finding solutions to this
problem is beyond this project’s scope, but we will present some thoughts on
the matter. We will discuss why MLS alone cannot recover from this type of
compromise, how to detect a compromised drone, who should decide to kick
out a node, and in what scenarios the problem is most relevant.

Since MLS is post-compromise secure, we would think that it is simple to
recover from such a compromise. However, it is not that simple in practice.
When we say that MLS has post-compromise security, we emphasize two main
features: key material is updated regularly, and members can be removed from
the group. An update of key material will only help recover when the adversary
compromises the keys and nothing more. The group will enter a secure state
when the node updates the compromised keys. This does not help when the
entire node is compromised because the adversary can access the new key
material. We must remove the member to recover from this scenario. This does
not happen automatically; someone or something must make the decision.

It is difficult to detect that a UAV is compromised. It could behave exactly
like the other UAVs and only diverge in critical moments. Alternatively, it
could send minor misinformation to the swarm that, over time, makes the
mission fail. If the goal of the compromise is to affect the operation of the
swarm, then some changes in normal behavior have to occur. These could be
minor and difficult to detect but exist nonetheless. It might be possible to
analyze and compare the behavior to normal UAV behavior.

Another solution is to detect the moment of compromise. This is effective
for physical compromises since the drone will deviate from normal behavior.
The drone might have to land, which is easy to detect by using the drone’s
sensors or because of loss of network connection. These scenarios can some-
times be legitimate, so we should be careful with classifying a node as com-
promised automatically. Loss of network connectivity can quickly happen if
the UAVs have too large of a distance or fly behind an obstacle.

Who can classify a drone as compromised and remove it from the group?
It is problematic if all nodes can make this decision. We can imagine a scen-
ario where a compromised drone misuses this feature to disrupt the group by
removing legitimate members. One solution is to have a leadership role that
possesses the power to remove members. This could be a trusted UAV or the
GCS, but it introduces a single point of failure in the system. Another solu-
tion is to use a mechanism for having all the nodes agree on the decision. For
instance, we remove the drone if the majority agree. All nodes must agree on
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the result for MLS operations. If not, one node might remove the comprom-
ised node while another lets it rejoin. Therefore, one node cannot just decide
independently. There needs to be a consensus on the matter.

Defending against malicious members is complex, and solutions are ad-
vanced and expensive. It might cost more than the operational effect on the
other end can justify. The battery capacity severely limits the operational
time for the Flamingo UAV swarm. Even though there is a high risk of losing
UAVs during the operations, it is unlikely that the enemy has the capacity and
resources to capture, reprogram, and relaunch the UAV to disturb the oper-
ation. However, we can imagine an adversary with a longer planning horizon
than a single flight. An adversary can exploit the compromised UAV to affect
multiple swarm operations over an extended period.

There are operations with unmanned systems that have longer operational
time than the Flamingo UAVs. Larger UAVs have considerably longer flight
times, and the same goes for Unmanned Surface Vehicles (USVs), where the
operation can last for days, weeks, or months. The longer the operation con-
tinues, the higher the risk of compromise, and the adversary can influence the
operation for a longer time.
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Conclusion

In this project, we showed that MLS can be used during UAV swarm opera-
tions by successfully demonstrating its use on two Flamingo UAVs in flight.
This achievement marks a milestone in this line of research, affirming that we
can implement MLS to provide the necessary levels of reliability and perform-
ance. This was made possible through the integration of MLS with Totem, a
protocol designed to ensure the reliable consensus of nodes on the sequencing
of messages. This solution provided minimal overhead and was reliable against
latency, jitter, and packet loss during testing.

The solution relies on Cisco’s MLS++ library for the MLS implementa-
tion. Testing revealed a surge in CPU consumption when the rate of applica-
tion messages increased. Benchmark testing on the smaller Jetson Nano board
showed a max data rate of 5.9 Mbps for the reception of messages, using the
entire capacity of a CPU core for this operation. This is more resource con-
sumption than expected and can affect the feasibility of larger swarms and
more data. Investigations into CPU usage showed that cryptographic opera-
tions were only a small part of the contribution, with less than 20 % of cycles
used in a test configuration. Marshaling operations used nearly half the cycles.
This is probably because MLS++ is designed for use in messaging services and
not the resource-restrained environment of UAV swarms.

In this project, we only presented conceptual solutions for an Authentic-
ation Service (AS), so the solution is vulnerable to tampering by illegitimate
nodes. Therefore, we did not achieve secure communications from all threats.
The performance is an issue for application messages, and even though it
worked with the three drones available during testing, it will not be efficient
for larger swarms. To answer the main research question, we showed how to im-
plement secure communication in a UAV swarm and explained what remains
before fully achieving it. We revealed essential drawbacks to how MLS++
implements MLS that we can further use to develop efficient solutions.
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8.1 Future Work
This project focused on developing a proof-of-concept program to demonstrate
that MLS can be successfully deployed in a UAV swarm. Even though this was
a success, more work is needed to develop this into a complete solution. The
current solution is not secure because the certificates are not verified. That
means anyone can create an MLS key package and join the group. Therefore,
the need for an AS is essential to maintain security. We described conceptual
solutions to this challenge in Section 3.1, relying on PKI and having the GCS
function as a CA. We must implement this concept and test it to see how it
works.

The performance of MLS++ is not optimal for use on UAVs with con-
strained resources. We need to investigate ways of implementing MLS with
better performance. We should test other implementations to evaluate the
performance. OpenMLS is a prime candidate. If no implementations provide
the desired results, we can alter existing implementations or develop one de-
signed for high-throughput and resource-constrained environments. We also
recommend further testing on the Jetson Xavier NX to provide a realistic
picture of the resource consumption.

Totem performed well in the testing, but the protocol description could
have been more precise on the desired behavior, and therefore, the implement-
ation could be more optimal. We should perform further testing and overall
protocol design, and also investigate other protocols. Attention should be given
to combining MLS and Totem (or a similar protocol). Both protocols maintain
a group, and we use much effort to synchronize them. This generates unneces-
sary conceptual complexity. A tighter integration can also address challenges
with joining the MLS group, removing members, and merging groups.
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