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Problem Description

Unmanned Aerial Vehicles (UAVs), and especially UAV swarms, are playing an
increasingly important role in modern military operations. In such dynamic en-
vironments, secure and reliable communication between entities is desirable. A
major challenge in securing group communication is efficiently handling frequent
and unpredictable changes in group membership, which is inherent to military UAV
swarms. Nodes may join or leave continuously, requiring the swarm to update its
group key dynamically and securely.

Prior research has identified the Messaging Layer Security (MLS) protocol as a
promising solution. MLS is a key management protocol designed for efficient, asyn-
chronous, and scalable group key establishment, supporting groups from a few to
thousands of members.

A recent master project at Norwegian University of Science and Technology (NTNU)
successfully implemented MLS in a drone swarm, demonstrating airborne key updates
every 10 minutes. The project introduced a decentralized delivery service that ensured
message ordering despite unstable connectivity and node mobility.

This project aims to advance the use of MLS in military UAV swarms, focusing
on continuous key distribution for secure group communication. The research will
optimize MLS for resource-constrained UAVs and evaluate its performance and
security under realistic operational conditions. Through simulation and analysis, the
project seeks to enhance the efficiency, resilience, and adaptability of the protocol to
military swarm environments.

Approved: 2025-02-19 – Tjerand Silde, NTNU (Main supervisor)





Abstract

In military UAV swarms, secure group communication is increasingly
important, yet providing strong security guarantees in dynamic, dis-
tributed networks remains a challenge. Messaging Layer Security (MLS),
which was recently standardized, offers scalable end-to-end encryption
with strong security guarantees for group messaging. In this thesis, we
present Valkyrie MLS, a Rust-based implementation of the MLS protocol
integrated into FFI’s Valkyrie UAV swarm platform. Our system secures
inter-drone communication by establishing a shared cryptographic group
state for authenticated, confidential messaging.

We extend our system with a reliable Delivery Service that ensures
total order of broadcast messages, and a proof-of-concept Authentication
Service for credential verification. To assess performance and security,
we conduct both simulated and physical drone tests. The results show
that Valkyrie MLS strengthens messaging security in UAV swarms while
maintaining acceptable performance, although certain challenges remain.





Sammendrag

I militære UAV svermer blir sikker gruppekommunikasjon stadig viktigere,
men det er utfordrende å sikre sterke sikkerhetsgarantier i dynamiske,
distribuerte nettverk. Messaging Layer Security (MLS), som nylig har
blitt standardisert, tilbyr skalerbar ende-til-ende-kryptering med sterke
sikkerhetsgarantier for kommunikasjon i gruppemeldinger. I denne opp-
gaven presenterer vi Valkyrie MLS, en Rust-basert implementasjon av
MLS-protokollen integrert med FFI sin UAV-svermplattform Valkyrie.
Systemet vårt sikrer kommunikasjon mellom droner ved å etablere en delt
kryptografisk gruppetilstand for autentisert og konfidensiell meldingsut-
veksling.

Vi utvider systemet med pålitelig levering basert på totalordnet kringkas-
ting, sammen med et konseptbevis på en enkel autentiseringstjeneste for
verifisering av legitimasjon. For å evaluere ytelse og sikkerhet gjennomfø-
rer vi både simulerte og fysiske dronetester. Resultatene viser at Valkyrie
MLS styrker meldingssikkerheten i UAV-svermer samtidig som ytelsen
forblir akseptabel, selv om visse utfordringer gjenstår.
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Chapter1Introduction

Swarm operations are becoming increasingly important in military contexts, creating
a need for efficient and reliable methods to secure communication within these
systems. Messaging Layer Security (MLS) has emerged as a promising protocol for
secure group messaging in dynamic and resource-constrained environments. In this
thesis, we explore how MLS can be applied in such settings and present Valkyrie MLS,
a cryptographic middleware built on top of the open-source Rust-based OpenMLS
library [RC25b].

1.1 Motivation

In this thesis, we aim to achieve efficient, secure, and scalable group communication
in UAV swarms without compromising performance. Prior research has identified
the MLS protocol [BBR+23] as a promising candidate, offering Forward Secrecy
(FS), Post-Compromise Security (PCS), and efficient group key management. While
initial efforts by Leon and Britt [LB22] and Marstrander [Mar23b] have demonstrated
the feasibility of MLS in drone settings, several open questions remain, particularly
related to resource usage, stability, and authenticated dynamic group membership
during flight.

More broadly, MLS is a new group key agreement protocol for scalable and secure
group communication. However, most practical applications so far have centered
on secure messaging, where certain simplifying assumptions often hold, such as
the presence of a centralized (though untrusted) delivery service, relatively stable
connectivity, guaranteed message delivery, and Internet-like infrastructure.

Our work investigates the applicability of MLS in a different operational context:
How can secure group key agreement be achieved efficiently in resource-constrained,
dynamic, and decentralized environments? We aim to expand the practical appli-
cability of MLS and inform future protocol extensions designed for constrained or
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2 1. INTRODUCTION

distributed systems.

1.2 Scope

This project explores the use of the Rust-based OpenMLS library to secure commu-
nication in distributed UAV swarms. It builds on the work of Marstrander [Mar23b],
who previously implemented MLS using the C++-based Cisco library MLS++.

The Valkyrie system developed at Norwegian Defence Research Establishment (FFI)
serves as the reference architecture for our UAV swarm implementation. We integrate
OpenMLS under realistic constraints, including limited bandwidth, constrained
computational resources, and decentralized coordination. We also compare its
performance to MLS++, and we assess the feasibility of encrypting video streams.

This thesis focuses exclusively on using MLS as the protocol for group key establish-
ment, with OpenMLS as the implementation and the Totem protocol [AMM+95] for
the delivery service. Alternative protocols are not explored, although we acknowledge
that they may present different trade-offs. We limit our attention to performance
evaluation and the integration of authentication mechanisms.

1.3 Research Questions

This thesis is guided by research questions that explore key aspects of the problem we
aim to investigate. These build on the questions defined in our earlier specialization
project [AB24].

We address the following questions:

RQ1: Can OpenMLS be effectively used for secure communication in
UAV swarms?

We evaluate the suitability of OpenMLS as a provider of MLS functionality and
examine the challenges involved in adapting OpenMLS to a distributed, resource-
constrained system that requires real-time communication. This includes both
architectural and software considerations needed to integrate OpenMLS into the
swarm.

RQ2: How can we extend an MLS-based swarm system to include an
authentication service and a delivery service?

While MLS provides end-to-end encryption by default, it does not handle authentica-
tion or message delivery. To secure a real-world swarm, these capabilities must be
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added. This question investigates how the Totem protocol can be used or adapted for
reliable, ordered message delivery, and how drone authentication can be implemented
through credential management, binding verification, and support for expiry and
revocation.

RQ3: How does OpenMLS perform compared to MLS++ in a UAV
swarm?

We compare OpenMLS with the MLS++ implementation from Marstrander [Mar23b],
focusing on key performance metrics such as CPU and memory usage, as well as
message size. The goal of this comparison is to determine whether OpenMLS offers
performance improvements over MLS++, or if it introduces new limitations in the
context of a UAV swarm.

RQ4: What is the impact of video streaming on MLS-based communication
in UAV swarms?

Some of the Valkyrie drones can stream live video from their camera to the Ground
Control Station (GCS) during flight. This question examines how adding video
streaming affects the communication system when using MLS for encryption.

We use the same metrics as in RQ3, namely CPU and RAM usage, to measure the
additional load introduced by video traffic. The goal is to evaluate whether MLS can
still perform effectively under multimedia conditions.

1.4 Related Work

We have reviewed the state of the art and identified background material relevant
to this thesis. In this subsection, we summarize the most important findings from
the literature that are directly relevant to our project. Of the related works, the
study by Marstrander [Mar23b] forms the primary foundation for our work and has
significantly influenced the design and direction of this project.

Leon and Britt [LB22] evaluate the suitability of different key agreement protocols
for secure multi-party communication among unmanned surface and aerial systems,
emphasizing support for FS, PCS, and scalability. They identify MLS as a strong
candidate for replacing conventional point-to-point encryption in such systems.

Dietz [Die22] extends this work by implementing MLS in a simulated UAV swarm
using the Cisco-developed MLS++ library. Their evaluation focuses on packet loss
tolerance and membership dynamics, highlighting the potential of MLS, while also
revealing stability issues in environments with high packet loss and without ordered
message delivery. These observations emphasize the importance of complementary
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services, particularly a Delivery Service to support MLS operations in a distributed
environment.

Building on this, Marstrander [Mar23b] integrates MLS++ into a live UAV swarm
system and introduces the Totem protocol to ensure ordered message delivery. While
this implementation demonstrates the feasibility of using MLS in airborne systems,
it also reveals limitations in MLS++, particularly the lack of documentation.

In addition, Marstrander highlights several critical areas for future work. Notably,
the absence of certificate verification allows unauthorized parties to potentially join
the MLS group. This emphasizes the need for a proper Authentication Service. While
conceptual solutions are proposed, implementation and validation were left as future
work. Finally, the paper points out that synchronizing membership between MLS
and Totem adds unnecessary complexity, suggesting that a tighter integration of the
two protocols could improve both performance and maintainability.

More recently, Leon, Britt, and Hale [LBH24] introduced the MLS API for Unmanned
Surface and Aerial Systems Integration (MAUI) framework. Their implementation
demonstrates secure coordination between unmanned aerial and surface platforms,
using MLS to protect both data and command and control (C2) traffic. They
benchmarked performance using various cipher suites and key update strategies. A
key challenge they observed was maintaining MLS session integrity, particularly due
to the lack of concurrency controls for group operations. These findings highlight
the difficulties of integrating MLS into dynamic, asynchronous environments with
constrained infrastructure.

In a different line of work, Boyd et al. [BDdK+21] present a suite of Symmetric-Key
Authenticated Key Exchange (SAKE) protocols that achieve full FS and robust syn-
chronization, relying solely on symmetric cryptographic primitives. The lightweight
nature and provable guarantees of these protocols make them interesting in the
context of tactical or swarm communication settings, especially when public key
infrastructure is unavailable or impractical. However, they depend on pre-shared
keys between all parties, which is a notable limitation compared to MLS, where
group keys are established on the fly. Integration with group-based protocols such
as MLS remains unexplored, and the applicability of such symmetric approaches to
decentralized swarm scenarios involving dynamic membership and group messaging
remains an open question.

1.5 Our Contributions

In this thesis, we contribute practical implementation work that advances the inte-
gration of MLS in UAV swarms. Our key contributions can be summarized as:
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Valkyrie MLS: We present Valkyrie MLS, a cryptographic middleware built on
top of OpenMLS, an open-source implementation of MLS in Rust.

Delivery Service: We show how Corosync [Pro24], an open-source implementation
of the Totem protocol, enables message ordering in an MLS-based system. This
builds on Marstrander [Mar23b], who used a custom Totem variant to order
handshake messages.

Authentication Service: We design and implement a proof-of-concept authentica-
tion service based on Ed25519 credentials, allowing drones to be authenticated
before joining the swarm.

Dynamic Group Management: We extend Valkyrie MLS to automatically detect
and add drones as they enter communication range. We also define the group
logic specifying who is responsible for adding new members and under what
conditions.

1.6 Thesis Outline

In Chapter 2, we present the relevant background for this thesis, covering UAV
swarm operations, an overview of MLS and its underlying cryptographic primitives,
key concepts from distributed systems, and the OpenMLS library.

In Chapter 3, we describe our development process and methodology, outlining
the steps taken from initial research and design to implementation, testing, and
evaluation.

In Chapter 4, we introduce Valkyrie MLS, our cryptographic middleware for use
in the Valkyrie UAV swarm. We explain our design choices and detail the system
architecture, including the implementation of the delivery and authentication services.

In Chapter 5, we present our testing methodology and results. The system was
evaluated through unit tests, physical drone tests at Kjeller, and simulations under
varying network conditions.

In Chapter 6, we answer our research questions, drawing on insights from development
and testing. We also outline potential directions for future work.

In Chapter 7, we summarize the key findings of this project and reflect on its
contributions. Finally, we suggest directions for further research in this field.





Chapter2Background

We begin our work by going through the essential background material in order
to contextualize the design and implementation of our cryptographic middleware.
Much of the background material we present builds on the specialization project
preceding this thesis [AB24], which has been extended and refined to reflect new
insights observed during the course of this work.

We start by introducing UAV swarms and swarm operations, which is the environment
in which our cryptographic middleware is deployed. This provides context for the
practical constraints and requirements that drive our design decisions. We then
present Continuous Group Key Agreement (CGKA), an enabling cryptographic
primitive for the MLS protocol. With this foundation in place, we introduce MLS
itself, detailing its design goals, requirements, architecture, and core operations.

With this foundation in place, we turn to the challenges that arise when applying
MLS in a distributed and unreliable environment, such as UAV swarms. MLS
was originally designed for reliable networks, while swarm systems are inherently
distributed and subject to message loss and partitioning. We use this section to
highlight the gap between these assumptions and the challenges this gap presents.

Finally, we introduce OpenMLS, which we use as the cryptographic core of our system.
This library provides the practical foundation for our middleware development and
experimentation.

2.1 Military UAV Swarm Operations

Military UAV swarms depend on reliable coordination and secure communication to
operate effectively in contested environments. In this section, we first introduce the
concept of UAVs and their use in swarms. We then narrow our focus to the Flamingo
drone and the Valkyrie swarm system developed by the FFI, which together form
the operational and technical foundation for our work. As the reference platform

7
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for this thesis, we examine the Valkyrie swarm’s architecture and communication
requirements in greater detail.

2.1.1 UAVs

An Unmanned Aerial Vehicle (UAV) is an aircraft that operates without an onboard
human pilot, crew, or passengers. An operator may remotely control the drone, or its
onboard systems may autonomously guide it using sensor data and control algorithms
to navigate and make flight decisions. UAVs are commonly known as drones, and in
this thesis, we use the terms UAV and drone interchangeably. However, the term
drone more broadly refers to unmanned systems across various domains, including
aerial, ground, surface, and underwater platforms. In military applications, the
controlling entity is referred to as a Ground Control Station (GCS).

There is no universally adopted classification system for UAVs, but they are commonly
categorized by size, operational range, flight altitude, airframe type, or their intended
application. UAVs are used across civilian, industrial, and military domains, with
applications ranging from aerial photography and environmental monitoring to parcel
delivery, racing, and surveillance. In this thesis, we focus specifically on military use
cases. Within this context, UAVs are commonly categorized into three operational
roles [HBSS24]:

• Surveillance drones, which carry only sensors and cameras. These are used
for Intelligence, Surveillance and Reconnaissance (ISR) operations.

• Combat drones, which are generally larger platforms capable of carrying and
deploying warheads or weapons.

• Loitering munitions, or suicide drones, which are designed to strike targets
directly, destroying themselves in the process.

Another common distinction is made between fixed-wing UAVs and rotor-based
aircraft. Fixed-wing drones typically offer higher speeds and longer endurance,
making them suitable for longer-range missions. In contrast, multi-rotor drones, such
as quadcopters (which use four rotors), are favored for their maneuverability [HBSS24].
Smaller drones typically have shorter ranges and support lower-level tactical units,
while larger drones tend to serve operational or strategic roles [HBSS24].

The choice of drone type depends on the operational context and the trade-offs
involved. Larger drones typically support a higher maximum takeoff weight (MTOW),
enabling the use of more powerful onboard computers, motors, and advanced radios.
This allows for more complex onboard computation, longer operational ranges, and
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greater autonomy from the Ground Control Station (GCS). Such systems have been
widely used in conflicts like those in Afghanistan, Iraq, and Somalia. However,
as highlighted in the war in Ukraine, these large UAVs have proven less effective
in contested airspace where no actor maintains air superiority [Kun23]. In such
environments, large drones become vulnerable and operationally fragile.

In contrast, smaller drones, despite limitations in flight time, communication range,
and onboard processing, have demonstrated greater survivability and adaptability.
As Kunertova notes [Kun23], these systems have shifted battlefield dynamics by
improving the precision and pace of artillery strikes and enhancing situational
awareness for ground forces. This underscores the strategic relevance of lightweight,
mobile UAV platforms, even when constrained by hardware capabilities.

Independent of their classification, the development and use of UAVs is changing
rapidly. New drone platforms and tactics are constantly emerging. This in turn has
drastically changed the battlefield landscape and affects how we think about modern
military strategy.

2.1.2 UAV swarms

A UAV swarm refers to a group of two or more UAVs that coordinate to accom-
plish shared objectives [AB24]. Compared to single-drone operations, swarms offer
increased flexibility, scalability, and robustness, making them well-suited for complex
and dynamic missions [Die22].

While the internal architecture of a swarm can vary widely depending on the use
case and technological constraints, most systems fall into one of four general cate-
gories [Zie21; Sch14; HBSS24]:

• Centralized: Each UAV communicates directly with a central controller that
collects data and issues commands to nodes in the swarm. This controller acts
as the single point of coordination.

• Hierarchical: UAVs are organized in a layered structure, where lower-level
drones report to and receive instructions from intermediate “squad leader”
drones, which in turn may coordinate with higher-level controllers.

• Consensus: All UAVs participate in decentralized decision-making, often
using peer-to-peer communication and voting mechanisms to agree on collective
actions.

• Emergent: Coordination arises from simple, local interactions between UAVs,
without any centralized planning. This approach mimics behaviors seen in
biological swarms such as flocks of birds or schools of fish.
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Figure 2.1: Illustrative operational scenarios for deploying UAVs or swarms. The
examples are not exhaustive. The figure is self-made, inspired by Zieliński [Zie21].
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The choice of architecture depends heavily on the capabilities and goals of the
system. Factors such as available computing power, communication bandwidth,
and autonomy levels all influence what is feasible. Each architecture has inherent
trade-offs: centralized and hierarchical models are often simpler to implement and
easier to control but are more vulnerable to single points of failure. In contrast,
consensus and emergent architectures offer greater fault tolerance and adaptability
but typically require more sophisticated autonomy and communication strategies.

Drone swarms can be applied to many of the same tasks as single UAVs, as summarized
in Figure 2.1, but their advantage lies in their ability to exhibit swarm-specific
properties. These include increased survivability, scalability, efficiency, autonomy,
and reduced operational cost [Die22]. As noted by Halsør et al. [HBSS24], swarms are
expected to operate reliably even under strong radio interference, given the complex
environments they often encounter and the potential instability of data links.

While the simultaneous operation of multiple drones is increasingly common, these
systems typically lack true swarm coordination, functioning instead as independent
units. Hence, current research focuses on enabling practical and robust swarm
capabilities. At present, most swarm systems remain in developmental or experimental
stages [HBSS24].

2.1.3 The Flamingo UAV and Valkyrie Swarm System

In this thesis, we use the Flamingo drone [Num21], depicted in Figure 2.2, as the
reference platform for developing and testing our cryptographic middleware. The
Flamingo is a lightweight Class I quadcopter developed in-house at FFI for UAV
autonomy research and experimentation. It is also used in the system developed
by Marstrander [Mar23b], which forms the basis for the implementation presented in
this thesis.

The total weight of Flamingo depends on its configuration, ranging from approxi-
mately 2.2 kg (unloaded) to 2.8 kg when equipped with a thermal camera and a 5.8
GHz mesh radio for swarm experiments [Num21]. The All Up Weight (AUW) refers
to the total takeoff weight, including the drone’s frame, battery, and any mounted
payload or equipment. With an AUW of 2.5 kg, the drone can fly for about 45
minutes. In lighter configurations, this may extend to up to 70 minutes. For a
typical ISR setup at 2.8 kg AUW, the operational flight time is around 35 minutes,
accounting for a 20% battery reserve.

Flamingo is designed with modularity in mind, allowing core components to be
swapped or reused across different platforms and applications [Num21]. While the
platform continues to evolve beyond the configuration described in [Num21], we
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Figure 2.2: The Flamingo UAV with a mesh-radio and a thermal camera. The
image is retrieved from Nummedal [Num21].

require a consistent hardware baseline for system development and evaluation. The
components most relevant to our work are the onboard computer and radio, as these
define the limits for computation and communication. The current onboard computer
is an Nvidia Jetson Xavier NX1 [NVI24], which offers high-performance despite its
compact and lightweight form. The Jetson Xavier NX features a six-core ARM CPU
and runs Linux for Tegra. The drone is also equipped with a 5.8 GHz Rajant mesh
radio, used to transmit application data and stream video to the GCS.

Valkyrie is the swarm system developed by FFI to support autonomy research, with
Flamingo serving as its primary UAV platform [Num21]. The system is designed
to be extensible, supporting integration with additional drone platforms such as
Svale [MBB+24], a loitering munition or “suicide drone” [HBSS24]. Drones can be
grouped into one or more swarms, and individual drones can dynamically leave one
swarm and join another. These coordination actions are carried out by the drone
operator through the Valkyrie GCS.

Communication within the Valkyrie swarm occurs over a shared mesh radio network,
where signal quality and packet delivery vary significantly with distance and the
presence of interference. Discussions with the Valkyrie development team highlight
that packet loss is minimal at short distances, often approaching 0%. However, as the

1Due to platform iterations, some components differ from those listed in the original documen-
tation [Num21]. For example, the platform now uses a Xavier NX instead of the originally specified
Jetson TX2
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Figure 2.3: Illustration of Valkyrie GCS graphical user interface (GUI) for operating
a swarm. The illustration is retrieved from Halsør et al. [HBSS24].

signal-to-noise ratio degrades with increased range or physical obstructions, packet
loss can gradually rise, sometimes reaching up to 50% before a sharp drop-off leads
to complete link failure. For telemetry and command and control (C2) messages,
a loss rate of approximately 30% is considered acceptable at longer ranges. This
level of degradation still allows drones to coordinate effectively and maintain core
functionalities such as collaborative tasking and anti-collision behavior.

The GUI in the Valkyrie GCS, as shown in Figure 2.3, presents a map-based overview
showing the position of all drones in the swarm, heavily inspired by the ones seen in
real-time strategy games. This interface allows the operator to select one or more
active drones and issue high-level commands such as screen this area. The drones
then coordinate among themselves to carry out the assigned task as effectively as
possible. The architecture of Valkyrie is best described as emergent [HBSS24]. This
means that communication within the swarm is not centrally controlled but rather
arises from the distributed interactions of the drones. The operator can monitor
individual drones for telemetry data such as battery status, signal strength (RSSI),
and incoming sensor information. The drones and GCS have detection mechanisms
for link failure. A drone will return if it has not received a heartbeat message from the
GCS in the last ten seconds [Mar23b]. This safety feature ensures that the operator
does not lose control of the drone. If a drone detects an object of interest, it can
notify the operator, who may then send a command to the drone to start a live video
stream to manually verify the observation. When a drone approaches low battery
level, a replacement drone can automatically be dispatched from the base station so



14 2. BACKGROUND

that the swarm maintains continuous operation.

Early versions of Valkyrie were typically configured with four drones and a single
GCS [Num21]. The system has since evolved and is now being tested with larger
swarm sizes. In prior FFI reports, swarms of up to 40 drones were used in a simulated
environment [HBSS24], though such scales have not yet been demonstrated in live
flight. Further research is required to determine optimal and practical swarm sizes
in real-world scenarios, but current findings suggest that larger swarms may soon be
operationally feasible.

2.1.4 Transport Protocols in Swarm Systems

For network transport, User Datagram Protocol (UDP) [EFS17] is the preferred
protocol in swarm communication systems. Swarm communications typically operate
over a shared wireless medium, where all nodes broadcast data. In such environments,
minimizing network traffic is essential to reduce interference and ensure that the
channel remains available for other nodes to transmit data. Compared to its counter-
part, Transmission Control Protocol (TCP) [Edd22], UDP introduces significantly
less overhead, making it well-suited for these constrained, low-latency scenarios.

The primary advantage of UDP lies in its connectionless and lightweight nature.
UDP does not require session establishment, acknowledgments, or retransmission
mechanisms [EFS17]. This makes it ideal for real-time coordination in UAV swarms,
where rapid message propagation is more critical than guaranteed delivery. However,
this comes with an inherent trade-off: UDP does not provide delivery guarantees,
ordering, or congestion control. In practice, this means that if signal quality degrades
or swarm members drift out of reliable radio coverage, packet loss becomes inevitable.
Despite these challenges, the advantages of reduced protocol overhead and minimized
channel contention generally outweigh the drawbacks.

Rather than focusing on ensuring that all messages are reliably delivered, swarm
systems prioritize the swift dissemination of current information. In such systems,
outdated data become irrelevant by the time it is received. Reliability mechanisms
in TCP, such as acknowledgments and retransmissions, can introduce additional
latency, consume valuable bandwidth, and increase congestion on the shared wireless
channel. These characteristics are in direct conflict with the time-sensitive and
bandwidth-limited nature of swarm communication. Consequently, UDP is generally
preferred as the network transport protocol in swarm systems.
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2.2 Continuous Group Key Agreement

Securing communication in dynamic and emergent swarms, like the Valkyrie swarm,
requires protocols that can adapt to constantly changing group membership. Tradi-
tional secure messaging schemes struggle to scale in such environments, especially
under frequent joins, leaves, and updates [RCB19]. To meet these challenges, the
field has introduced the concept of CGKA [ACDT20].

CGKA refers to a class of cryptographic protocols designed to enable efficient, scalable,
and secure key management in dynamic groups. These protocols ensure that group
members can securely share and update encryption keys as membership changes.
The MLS protocol is a prominent example of such a protocol.

2.2.1 Challenges with Traditional End-to-End Encrypted Group
Communication

To understand the value of CGKA, it is important to first consider the limitations of
earlier approaches, most notably pairwise End-to-End Encryption (E2EE) protocols
such as the Signal Protocol [PM16; CCD+17]. These protocols have set the bar
for what secure communication looks like in the modern era. Arguably, E2EE has
become a non-negotiable feature for any messaging app that wants to be taken
seriously. The Signal Protocol, with its double ratchet algorithm, is widely regarded
as the gold standard for secure one-to-one communication and forms the backbone
of many widely used applications. It ensures strong confidentiality of messages, even
in the face of active surveillance.

Two of the main security properties that the Signal Protocol provides are FS and
PCS, both of which are crucial for maintaining secure communication in dynamic
group settings. FS ensures that even if an attacker gains access to a user’s current
keys, they cannot decrypt past messages. In contrast, PCS addresses the scenario
where an adversary temporarily compromises a user’s keys. PCS guarantees that
future messages can still be kept secure once the compromise is resolved. These two
security properties are essential for ensuring the robustness of group communication
systems, particularly in the face of frequent membership changes and key compromises.
Figure 2.4 illustrates the relationship between FS and PCS.

However, as secure communication has expanded from individual chats to group
messaging, significant scalability challenges have emerged. Most traditional E2EE
protocols were originally designed for one-to-one interactions and were later adapted
to support group communication. This retrofit approach introduces inefficiencies,
particularly when managing large groups with dynamic membership [BBR+23]. Key
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Figure 2.4: Forward Secrecy and Post-Compromise Security. The figure is adapted
from Barnes et al. [BBR+23].

agreement protocols become more complex, and ensuring FS and PCS across all
group members adds considerable overhead. Despite various messaging platforms
using customized versions of the Signal Protocol [BBR+23], they commonly face
the same limitations: the transition from one-to-one to one-to-many communication
often results in trade-offs in performance, usability or security [CCG+18; AB24].

Pairwise Encryption: Client Fanout

To address these scalability challenges, several methods have been developed. The
most basic approach is often referred to as client fanout, or pairwise encryption. The
Signal Protocol [Mar14] originally used this approach. In a client fanout scheme,
the sender treats a group message as N separate one-to-one messages (where N

is the number of recipients). The sender encrypts the message individually for
each recipient using their pairwise secure channel. This achieves the security of the
underlying one-to-one protocol for each recipient, but at the cost of O(N) encryption
and transmission operations per message.

In fact, all group communication operations in this model, including group creation
(establishing a new secure group), adding or removing members, updating a mem-
ber’s key material, and sending messages, require a linear number of cryptographic
operations, i.e., O(N) [RCB19]. While conceptually simple, and arguably the most
secure, it does not scale to large groups as computation requirements increase linearly
with the group size.

Sender Keys

To improve efficiency, many messaging systems, including WhatsApp [Wha24], use
a sender key optimization. In this approach, each sender establishes a symmetric
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Figure 2.5: Comparing cost of operations in client fanout, sender keys and MLS.
The figure is retrieved from a presentation at the Black Hat USA 2019 Conference
by Robert, Cohn-Gordon, and Beurdouche [RCB19].

group key, known as a sender key, which is shared with all group members over
secure pairwise channels. Once distributed, this key allows the sender to encrypt all
outgoing messages with constant overhead, reducing the per-message cost to O(1).
However, the initial distribution still requires O(N) work.

To preserve security, the sender key may be used with a symmetric hash ratchet,
offering FS by deriving a new message key for each message [BCG23]. In long-lived
groups, however, this model faces significant limitations. While the sender-key
approach improves efficiency compared to pairwise client fanout [RCB19; BBR+23],
it weakens long-term security guarantees. In particular, it struggles to achieve PCS,
making it less suitable for applications demanding robust compromise recovery. If a
sender’s key is compromised, an attacker can passively decrypt all future messages
from that sender until the key is replaced. Recovering from such a compromise involves
generating and redistributing a new sender key to all members—an operation that
require O(N2) operations.

In summary, traditional E2EE group messaging either treated the group as a collection
of pairwise links (client fanout) or as a set of static sender keys. Both approaches
have inherent inefficiencies, especially with regard to member sending messages or
removal and compromise recovery, as illustrated in Figure 2.5. These limitations
motivated the search for true group key agreement protocols that could provide FS
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and PCS while scaling to large, dynamic groups.

2.2.2 Overcoming Scaling Issues with Continuous Group Key
Agreement

To overcome the above issues of scaling E2EE for groups, researchers proposed a
new class of protocols known as CGKA protocols [ACDT20]. The goal of a CGKA
protocol is to allow a long-lived group of participants to continuously agree on fresh
shared keys, even as members join, leave, or update their keys. Through this, it
enables FS and PCS. In a CGKA, the group as a whole evolves a group secret over
time across a sequence of epochs, so that each epoch’s secret is known only to the
current members and is independent of past keys.

In contrast to traditional group key exchange, which might assume a one-time setup
or require all members to be online simultaneously, CGKA protocols aim to be
asynchronous [ACDT20]. It makes no assumptions about if, when, or for how long
members are online. Group members can perform key update operations locally or
in isolation and then broadcast the necessary information for others to update the
group key to obtain a shared cryptographic state. Achieving a scalable asynchronous
protocol with strong security guarantees led designs of CGKA protocols to converge
towards using cryptographic trees as a core data structure [BBR+23].

2.2.3 Asynchronous Ratcheting Trees

Asynchronous Ratcheting Trees (ARTs) [CCG+18] leverage the primitives presented
by Diffie and Hellman [DH76], extending the classic Diffie-Hellman key exchange
(DHKE) into a tree-based group Diffie–Hellman structure for efficiently deriving a
shared group secret among N participants. In this construction, each group member
is assigned to a leaf node of a binary tree, with each leaf holding a long-term DH key
pair. Intermediary nodes represent virtual key agreements between their child nodes,
and the value computed at each internal node is known by all its descendant leaves.

Since all leaf nodes are descendants of the root, the root node encapsulates a shared
value known to the entire group. This root value is then used as a seed for a
key derivation function (KDF), producing a chain of derived keys, similar to the
ratcheting mechanism used in the Signal protocol [PM16].

To illustrate, if two members—Alice and Bob—have public DH keys ga and gb, their
parent node holds the shared secret gab. The public component of the parent node
would then be ggab . To derive the root key, Alice recursively computes shared secrets
from her own leaf up to the root. This requires her private key and the public keys
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Alice Bob Charlie Dave Ester Felix Ginny -

Node in Alice's direct path, to which
Alice knows both the public and
private component. 

Node in Alice's copath, to
which Alice knows the public
component. 

Shared Group
Secret

Figure 2.6: Example of a Diffie-Hellman (DH) tree in ART. Each node in the tree
is implied to have a public and a private component. Nodes in Alice’s direct path
are marked in red, and nodes in blue lie in Alice’s copath.

along the copath of the tree, as depicted in Figure 2.6. The copath refers to the list
of sibling nodes encountered along the path from her leaf to the root2. To support
asynchronous operation, ART assumes that prekeys (pre-published public keys) are
available, to overcome the challenge of members being offline when their keys are
needed3.

ART was significant because it was the first design to realize strong security properties
(in particular, PCS) in an asynchronous group scenario [CCG+18]. Its tree-based
design supports scalable group key agreement: a tree of N members has depth log N ,
so when a member updates their key, only the log N nodes along the path from their
leaf to the root must be recomputed. PCS is achieved through regular updates of
participant keys, injecting fresh entropy into the key derivation process.

2.2.4 Tree Key Encapsulation Mechanism

Following ART, the next evolution in CGKA was the proposal of TreeKEM (Tree Key
Encapsulation Mechanism) [BBR18]. TreeKEM built upon the same Diffie–Hellman
tree foundation as ART, but introduced important simplifications and improvements
to better suit an Internet standard. The main selling point of TreeKEM over ART

2In practice, ART represents intermediary values using a mapping from group elements to
integers [CCG+18], but the conceptual model remains unchanged.

3See the original paper [CCG+18] for a detailed discussion of the asynchronous key setup.
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was its efficiency towards recipients and greater degree of support for concurrent
operations [BBR18].

The core idea of TreeKEM is to treat each node update as a key encapsulation to
the rest of the group, rather than a pure DH key exchange. A key encapsulation
mechanism (KEM) allows a sender who knows a public key to generate a short random
secret key and an encapsulation of the secret key by the encapsulation algorithm
defined by the KEM. The receiver who knows the private key corresponding to the
public key can recover the same random secret key from the encapsulation by the
KEM’s decapsulation algorithm [Gal12]. In TreeKEM, whenever a member updates
their leaf, they generate a fresh random secret and derive new keys up the path to
the root. But instead of requiring an interactive DH at each parent node, the updater
uses a KEM to encrypt the new node secrets to the other group members [BBR18].
This concept provides the foundation for key agreement in MLS.

2.3 Messaging Layer Security

The Messaging Layer Security protocol is a recently standardized continuous group
key agreement protocol that builds on the previously discussed TreeKEM [BBR18;
WPBB23]. MLS is designed to provide strong security guarantees while maintaining
efficiency in large and dynamic groups. The following sections are based mainly on
the official specifications [BBR+23; BRO+25], which provide a detailed explanation
of the design and operation of MLS.

2.3.1 Protocol Overview

The core functionality of MLS is continuous group authenticated key exchange
(AKE). MLS supports dynamic groups, allowing membership to evolve over time
while maintaining cryptographic consistency and security. It enables participants
to verify each other’s identity and agree on a shared secret, which in turn can be
used to encrypt group messages. The shared secret changes when changes to the
group are made, like the addition or removal of a member, so that only the current
members know the shared secret. We refer to the period for which a group secret is
valid as an epoch and the group secret as the epoch secret.

MLS assumes the presence of an Authentication Service (AS) and a Delivery Service
(DS) as supporting services in the system architecture [BRO+25]. The AS is re-
sponsible for ensuring that only authenticated entities participate in the group. The
DS functions as a message relay, storing and delivering encrypted messages between
members.
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Figure 2.7: Epoch progression in MLS. Each epoch correlates to a unique SecretTree
derived via a Commit, which updates the group state. The illustration is made by
the authors.

2.3.2 Groups and Epochs

In MLS, a group represents a dynamic collection of members who wish to communicate
securely. Each group maintains a shared cryptographic state that includes a ratchet
tree, which is a binary tree structure used to efficiently manage the group’s key
material. The group state is consistent across all honest members, meaning every
participant holds the same view of the current members, the keys in use, and the
group’s operational context.

A central concept in MLS is the epoch, which represents a specific version of the
group’s cryptographic state. Whenever the group changes, such as when a member
joins, leaves, or updates their key material, it transitions to a new epoch, as shown
in our illustration in Figure 2.7. This transition is triggered by a Commit message,
which includes all the information needed to update the group state and derive new
shared secrets. Epochs evolve in a linear fashion, with each representing a distinct
group configuration and corresponding key schedule.

2.3.3 TreeKEM, TreeDEM, and TreeSync

Although TreeKEM forms the cryptographic core of the MLS protocol’s key agreement,
it is not a complete solution on its own. One limitation lies in handling group
operations beyond basic updates and removals. While TreeKEM allows members to
inject new entropy during updates, adding a new participant requires extending the
tree, integrating the member’s key, and securely distributing the resulting secrets.
Ensuring that all members maintain a consistent view of group membership and tree
state, especially during concurrent joins and leaves, is non-trivial. TreeKEM alone
does not fully address inconsistencies, and its original design lacks support for PCS
in the presence of active attackers or malicious insiders [BBR18].

Originally centered around TreeKEM [BBR18], the MLS protocol has since evolved
into a modular structure composed of three coordinated sub-protocols: TreeSync,
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Figure 2.8: A modular decomposition of MLS into its sub-protocols: TreeSync,
TreeKEM, and TreeDEM. Illustration is retrieved from [WPB25].

TreeKEM, and TreeDEM [BBR+23; WPBB23], as shown in Figure 2.8. This decom-
position highlights the different responsibilities of each component and addresses the
shortcomings of earlier designs.

TreeSync is responsible for maintaining a consistent group state across all members.
It ensures that each participant has the same view of the group’s structure and key
history. The state is organized as a tree, where each occupied leaf node corresponds
to a group member and each internal node represents a subgroup. Unlike earlier
constructions such as ART, TreeSync authenticates both the initial group state and
subsequent updates using signatures and Merkle-tree-style hashing [WPBB23]. It
also verifies the integrity of the tree structure itself. The synchronized, authenticated
tree generated by TreeSync is then passed to TreeKEM.

TreeKEM handles the group key agreement logic. Based on the authenticated tree
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from TreeSync, it allows the group to derive a sequence of shared secrets, called epoch
secrets (Kn), which are updated as members join or leave. This process provides PCS
by refreshing keys with minimal overhead—typically requiring only a logarithmic
number of public key encryptions and a single decryption per recipient [WPBB23].
Additionally, TreeKEM makes certain assumptions about the design of the overall
system. Notably, TreeKEM relies on DS, which is tasked with receiving messages from
individual group participants, and broadcasting them to all other group participants.

Finally, TreeDEM is a symmetric encryption scheme built on top of TreeKEM. It uses
the epoch secret Kn to derive message encryption keys for each member. These keys
are updated with each message using a ratchet mechanism to ensure FS [WPBB23].

The current version of TreeKEM and the accompanying sub-protocols in the MLS
standard is the result of multiple revisions and extensions since its early designs.
Together, these three sub-protocols enable groups in MLS to be dynamic, allow
operations to happen asynchronously, and ensure that computations scale better
than linearly, all while providing strong security guarantees [WPB25].

2.3.4 MLS Messages and Cryptographic Operations

MLS messages fall into three main categories: handshake messages, application mes-
sages, and auxiliary messages [BRO+25]. Handshake messages are PublicMessage or
PrivateMessage objects carrying a Proposal or Commit, used to manage group state.
Application messages are PrivateMessage objects that carry encrypted application
data. Auxiliary messages, such as Welcome, KeyPackage, and GroupInfo, support
group initialization and coordination.

All message types share a common framing structure. Content such as Application
Data, Proposals, and Commits is first encapsulated in a FramedContent object,
which is then signed to produce an AuthenticatedContent. This object ensures
sender authentication and message integrity.

To protect the message during transmission, AuthenticatedContent is encoded as
either a PublicMessage (signed only) or a PrivateMessage (signed and encrypted).
PrivateMessage is preferred for both application and handshake messages, as it
protects both payload and metadata. However, handshake messages may be sent as
PublicMessage objects when visibility is needed by the DS [BRO+25].

All of these messages are ultimately wrapped as MLSMessage objects. Figure 2.9
illustrates the structure and flow, and Table 2.1 provides a summary of message
types and their roles within the protocol.
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Figure 2.9: Overview of the MLS message structure and processing flow. The figure
is retrieved from Barnes et al. [BBR+23].

Term Description

Proposal
Suggested change to the group. Proposals are not applied
until included in a Commit.

Commit
Applies one or more Proposals to update the group state
and advance the epoch.

Application Data Application messages exchanged by group members.

Welcome
Sent to new members to initialize their view of the group
and provide the necessary secrets.

KeyPackage
Contains a member’s public key and credentials, used when
joining or updating in the group.

GroupInfo
Describes the current group state, including the group ID,
epoch, and ratchet tree hash.

Table 2.1: The message types in MLS along with a description of their functionality.
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Figure 2.10: Overview of the abstract services in MLS. The figure is retrieved from
Barnes et al. [BBR+23].

The main types of Proposals are Add, Update and Remove (not extensive). An Add
proposes to include a new member using their KeyPackage, an Update is sent by a
member when refreshing their key material to maintain PCS, and a Remove proposes
to exclude a member and refresh shared secrets.

2.3.5 Abstract Services: Authentication Service and Delivery
Service

While MLS provides the cryptographic foundation for secure group messaging, real-
world deployment requires additional infrastructure services: the Authentication
Service and the Delivery Service, as depicted in Figure 2.10. These abstract services
enable identity management and message transport, which are essential for opera-
tionalizing MLS beyond pure cryptography. The AS establishes trust between clients
by managing credentials, while the DS ensures reliable message delivery.

Authentication Service

The AS is responsible for issuing credentials that bind client identities to signature
key pairs and enabling client verification [BRO+25]. MLS does not specify how
this should be conducted, but states that whenever a new credential is introduced
in the group, it must be validated by the AS. A member’s credential is said to be
validated when the AS verifies that the credential’s presented identifiers are correctly
associated with the presented signature key field in the member’s leaf node in the
authenticated tree, and that those identifiers match the reference identifiers for the
member. The choice is left to the implementer to decide how this issuance and
validation is conducted, but by ensuring this, authenticated participation in the
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group and prevent identity spoofing or duplication [BRO+25].

Delivery Service

The DS acts as a message relay and storage service, enabling communication between
clients, even when they are offline. As specified by Beurdouche et al. [BRO+25], it
provides access to initial keying material, through KeyPackages, allowing clients to
join groups. In addition and arguably more importantly, the DS is responsible for
delivering MLS messages between clients, supporting both individual and group-wide
communication.

The DS is responsible for delivering both client-targeted messages, such as Welcome,
which are used to add new members to a group, and group-wide messages like Commit,
which must be delivered to all current group members.

MLS tolerates out-of-order message delivery to some extent, but strict ordering is
essential in two specific cases:

1. Proposals before Commits: All Proposals must arrive before the Commit
that references them.

2. Epoch progression: The group must agree on the order of epoch transitions,
each initiated by a Commit.

Concurrent Commit messages from different members can result in diverging group
states, called forks, which effectively fork the group into separate epoch histories.
This race condition must be mitigated by the DS, which should enforce a consistent
ordering or prioritize one Commit over the other.

2.3.6 Group Operations

Figure 2.11 illustrates the step-by-step process of securely forming an MLS group
using the AS and the DS. In Step 1, Alice, Bob, and Charlie create an account and
obtain a credential from the AS, establishing a cryptographic identity. In Step 2,
all participants publish their initial keying material, including their KeyPackage,
to the infrastructure, allowing others to securely add them to an MLS group. In
Step 3, Alice retrieves Bob’s keying material, adds him to the group by generating a
Commit, and produces a Welcome message that is stored on the DS for Bob to fetch
asynchronously. In Step 4, Alice repeats the process to add Charlie, retrieving his
keying material, sending a Commit to update the group, and issuing a corresponding
Welcome message.
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Figure 2.11: Example of group formation in MLS. The illustration is retrieved
from Barnes et al. [BBR+23].

2.4 Distributed Systems

UAV swarms are by nature distributed systems: they consist of multiple autonomous
nodes that must coordinate and communicate over unreliable wireless networks. To
design secure and reliable communication middleware for such environments, it is
essential to understand the foundational challenges of distributed systems. This
section introduces core concepts and theoretical limitations that inform our system
design, focusing particularly on the areas of agreement, consensus, and resilience
under network partitions.

2.4.1 Challenges in Distributed Systems

UAV swarms function as distributed systems composed of multiple autonomous
nodes that communicate over unreliable wireless links. This setup introduces several
well-known challenges: unreliable communication, potential for node failure, and the
difficulty of maintaining coordination in a dynamic topology.
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The Eight Fallacies of Distributed Computing

The Eight Fallacies of Distributed Computing [DJLG94], first identified by Deutsch
et al., are a set of common but misleading assumptions often made when designing
distributed systems. In the context of UAV swarms, where independent agents must
communicate over shared, lossy wireless links in dynamic and potentially adversarial
environments, these assumptions rarely hold. Ignoring them can result in fragile
designs, especially for systems that depend on timely, secure, and synchronized
communication.

Understanding these fallacies helps frame realistic expectations and is crucial when
designing middleware for reliable and secure swarm operation:

1. The network is reliable: Communication is often disrupted by interference
or contested mediums, making message loss a frequent reality.

2. Latency is zero: Delays vary significantly due to distance, congestion, or
retransmissions, affecting synchronization and coordination.

3. Bandwidth is infinite: Low-throughput radio links limit the amount of data
that can be transmitted, which has serious implications for protocol overhead
and scalability.

4. The network is secure: Swarm communications use a shared, open medium.
All communications can therefore be intercepted or tampered with by ad-
versaries. Hence, encryption, authentication, and integrity protections are
needed.

5. Topology does not change: Participants may move, go offline, or dy-
namically join or leave the swarm, requiring protocols that tolerate frequent
reconfiguration.

6. There is one administrator: Centralized control may not be possible—especially
in autonomous deployments—so systems must support decentralized coordina-
tion.

7. Transport cost is zero: Every message consumes both bandwidth and time
on the shared medium, which are limited resources.

8. The network is homogeneous: While less critical in swarms, this fallacy
assumes uniform hardware and capabilities across the network. In practice,
variations in hardware, compute resources and software stacks do occur, so
protocols should remain interoperable across heterogeneous systems.
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These fallacies highlight the inherent challenges in designing robust, distributed
protocols for UAV swarms. As we show in later sections, addressing these requires
middleware that supports partition-tolerance, asynchronous messaging, and dynamic
group membership without relying on idealized network conditions.

Consensus and Agreement Problems

Achieving consensus between nodes in a distributed system is a fundamental challenge.
Several theoretical works illustrate the inherent difficulties in reaching consensus
among distributed nodes. The variations of the problem differ in strength, meaning
they differ in their system model. Different system models have different assumptions
about failure models, communication synchronicity, channel reliability, and message
authentication. Solutions to problems that have stricter requirements and stronger
assumptions will typically solve weaker problems at the same time.

Consensus problems are often discussed in light of the following three properties:

• Termination: All non-faulty nodes eventually deciding on a value.

• Agreement: All nodes that decide on a value do so on the same value.

• Validity: Values that have been decided must have been proposed by some
nodes, meaning no trivial or fallback values.

Any algorithm that exhibits these three properties can be said to solve the consensus
problem.

Three notable works in this context are The Byzantine Agreement Problem [LSP82],
The Consensus Problem [BDM93], and the Interactive Consistency Problem [TP88],
which all highlight challenges with reaching consensus with varying assumptions. The
Byzantine Agreement Problem [LSP82], also referred to as the Byzantine Generals
Problem, highlights this challenge, where nodes must reach agreement despite the
presence of faulty or malicious actors. Even in the absence of malicious actors,
reaching agreement can be difficult due to issues such as message loss, reordering, or
delays. The Consensus Problem [BDM93] focuses on the challenge of ensuring all non-
faulty nodes agree on a single value. Without consensus, divergent interpretations
may hinder the overall system in its decision making. A stricter requirement is posed
by the Interactive Consistency Problem [TP88], where all correct nodes must agree
on the values received from all other nodes. This is particularly important for tasks
like shared key establishment, where consistency in each node’s understanding of
peer identities and key material is essential to secure operation.
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Moreover, Fischer, Lynch and Paterson proved that there is no deterministic consensus
algorithm in a fully asynchronous distributed system [FLP85]. However, their
work does not state that consensus can never be reached: merely that under the
certain assumptions, no algorithm can always reach consensus in bounded time given
asynchronous communication between nodes. This asserts however, that consensus
is a non-trivial task.

Network Partitions and the CAP Theorem

The CAP theorem, first proposed by Brewer and later formalized by Gilbert and
Lynch [Bre00; GL12], states that it is impossible for a distributed system to simulta-
neously provide all three of the following guarantees:

• Consistency: All nodes return the most recent and correct data in response
to a request. The precise meaning of “correctness” is context-dependent and
may relate to cryptographic state, configuration, or data values.

• Availability: Every request to a non-failing node receives a response, regardless
of the current system state.

• Partition Tolerance: The system continues to operate correctly despite
arbitrary message delays, losses, or node failures that create network partitions.

As partitions are an unavoidable scenario in real-world distributed systems, this
theorem implies that distributed systems must choose between consistency and
availability when partitions occur.

2.4.2 Totem: Reliable Group Communication and Ordering

Distributed systems that must maintain a consistent shared state across nodes, require
the implementation of some kind of consensus algorithm. The choice of such an
algorithm depends on the system model and underlying assumptions. MLS requires
a shared state in which handshake messages, such as Commits, are interpreted in the
same order for all participants. In swarm communications we assume asynchronous
communication, message loss, variable delays, and the absence of a centralized
ordering authority. We cannot guarantee consensus for such a system model [FLP85],
but we can impose an ordering on the messages that are sent to achieve MLS’
requirements of interpreting handshake messages in order. Marstrander [Mar23b]
proposed using the Totem Single Ring Protocol [AMM+95] to achieve this ordering.
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The Totem Single Ring Protocol address ordering by organizing nodes into a logical
ring and circulating a token among them. Only the node holding the token may
transmit, ensuring that messages are broadcast in a globally consistent order. This
design enables total order broadcast, which is essential for maintaining consistent
cryptographic state.

Totem supports multiple message ordering guarantees:

• Agreed Order: All correct nodes deliver messages in the same sequence.

• Safe Order: Messages are delivered only when all recipients can confirm
delivery.

• Causal Order: Delivery respects causal relationships between messages.

In addition to message ordering, Totem manages dynamic group membership. When
nodes join or leave, the protocol ensures that all remaining nodes agree on a new
view before resuming communication. This is crucial in environments subject to
failure or reconfiguration.

To handle message loss, Totem uses metadata embedded in the token to detect gaps
and trigger retransmissions. It also adapts to network conditions by regulating token
circulation speed.

Corosync Cluster Engine

Corosync [Pro24] is an open-source group communication engine built upon the Totem
Single Ring Protocol to deliver total order broadcast and consistent membership
views. While Totem provides the underlying guarantees for total order broadcast
and membership agreement, Corosync packages these guarantees into a practical
framework suited for real-world applications. Corosync extends Totem’s foundation
with an Application Programming Interface (API) for multicast communication,
failure detection, and dynamic group management.

A central component of Corosync is the Closed Process Group (CPG) service, which
enables applications to form logical groups and exchange messages with the ordering
guarantees of Totem. Corosync ensures that all non-faulty nodes deliver messages in
the same sequence, even during network disruptions or membership changes. This
makes Corosync a practical and usable implementation of Totem.
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2.5 OpenMLS

This section describes OpenMLS, an open-source Rust implementation of the Mes-
saging Layer Security protocol, maintained by Phoenix R&D and Cryspen [RC25b].
OpenMLS provides a high-level API for managing MLS groups, as defined by the
MLS specification [BBR+23]. It includes most of the core functionalities needed to
build a secure messaging application based on MLS, including group setup, member
management, and message handling. However, it does not include implementations
of an Authentication Service or a Delivery Service, which must be provided externally.
OpenMLS provides extensive documentation through both its official Rust API
reference [RC25c] and the OpenMLS Book [RC25a].

OpenMLS supports the use of custom cryptographic providers, key stores, and
random number generators. This is facilitated through the CryptoProvider trait,
which defines an abstraction over the underlying cryptographic operations. Thus,
OpenMLS allows different providers to be integrated as needed. This enables the use
of various cryptographic algorithms, such as AES-128-GCM or ChaCha20-Poly1305,
depending on the selected ciphersuite and the capabilities of the chosen provider.
OpenMLS currently supports the following three ciphersuites:

• MLS_128_HPKEX25519_AES128GCM_SHA256_Ed25519 (mandatory to implement)

• MLS_128_DHKEMP256_AES128GCM_SHA256_P256

• MLS_128_HPKEX25519_CHACHA20POLY1305_SHA256_Ed25519

2.5.1 Credentials and Key Packages

Members in OpenMLS are identified by Credential objects. These are structured as
shown in Code 1, and include a CredentialType and a serialized payload. The actual
payload is stored as a variable-length byte array (VLBytes), where interpretation
depends on the specified CredentialType.

Currently, OpenMLS only supports the BasicCredential, which is a simple assertion
of identity with no attached metadata. This provides minimal identity assurance, and
systems requiring stronger authentication must implement or integrate additional
credential mechanisms externally. X509 credentials are reserved for future use, and
currently have no associated functionality. Other is reserved for custom, application-
defined credential formats.

MLS uses KeyPackages to support asynchronous group setup. A KeyPackage bundles
together the cryptographic material and metadata necessary for a client to be added
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Code 1 Credential structure in OpenMLS.

1 // A credential used to identify a group member
2 pub struct Credential {
3 credential_type: CredentialType,
4 serialized_credential_content: VLBytes,
5 }
6

7 // Supported credential types
8 pub enum CredentialType {
9 // A basic MLS credential containing identity and signature key

10 Basic = 1,
11 // An X.509 certificate
12 X509 = 2,
13 // A custom, user-defined credential type
14 Other(u16),
15 }

to a group. KeyPackages are designed to be pre-generated and published to the DS,
enabling other clients to retrieve and use them when adding new members to an
existing group. A KeyPackage is intended for one-time use and clients may generate
multiple KeyPackages in advance. The corresponding private keys must be securely
stored locally, as they are required when the client joins a group.

2.5.2 Groups

Groups in OpenMLS are managed using the MlsGroup object, which provides the
primary high-level interface for group operations. Code 2 demonstrates how Alice
initializes a group and adds Bob using his KeyPackage. Examples of group operations
include adding or removing members and retrieving the current group membership.

When creating a group, a set of configuration parameters can be set. These parameters
have to be agreed-upon by all clients joining the group. Among these parameters are:

max_past_epochs: Maximum number of past epochs for which application messages
can be decrypted. The default is 0.

out_of_order_tolerance: Defines a window for which decryption secrets within
the current epoch are kept. This is useful in case the DS cannot guarantee
that all application messages have total order within an epoch. The use of this
affects FS within an epoch. The default value is 5.
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maximum_forward_distance: Defines how many incoming messages can be skipped.
This is useful if the DS drops application messages. The default value is 1000.

After having set the desired parameters for the group and created the group, members
can add new participants by generating Welcome messages based on their published
KeyPackages. Members are added to the group MlsGroup.add_members() function
using the corresponding KeyPackages from every new member as part of the input.
The function returns the 3-tuple containing (Commit, Welcome, GroupInfo). The
resulting Commit message must be sent to all existing group members to apply the
membership change. The welcome message must be sent to the newly added members.
The GroupInfo object is an optional value used in groups where external joins are
allowed.

Code 2 Create group and add member.

1 // Alice initializes a new MLS group
2 let mut alice_group = MlsGroup::new(
3 cryptographic_provider,
4 alice_signature_keys,
5 group_configurations,
6 alice_credential,
7 );
8

9 // Alice adds Bob to the group using his key package
10 let (commit, welcome, group_info) = alice_group.add_members(
11 cryptographic_provider,
12 &alice_signature_keys,
13 &[bob_key_package],
14 );

To join a group from a Welcome, a MlsGroup can be instantiated from the MlsMessageIn
message containing the Welcome through a two-step process. The reason for this
two-phase process is to allow the recipient of a Welcome to inspect the message, for
example, to determine the sender’s identity, validate their credential, and so on.
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The research conducted in this thesis is best described as applied, as it aims to
address a specific and practical challenge: securing communication within a UAV
swarm using the MLS protocol. Our methodology follows a software engineering
approach, built around iterative development and continuous feedback. Throughout
the project, system design evolved in response to implementation insights and testing
outcomes, enabling a gradual refinement toward a functional and robust solution.

The work is also experimental in nature, involving systematic performance evaluation
of the implemented system. Our benchmarking draws comparisons to prior work,
particularly the evaluation of MLS++ conducted by Marstrander [Mar23b].

To clarify how each research question (RQ) shaped the methodology, we briefly
outline their roles below:

RQ1 and RQ2 relate to the core development process. RQ1 explores how OpenMLS
can be employed to enable secure communication in UAV swarms, while
RQ2 considers how MLS can support authentication and message delivery
in distributed swarm systems. These questions informed our architectural
decisions, component design, and the integration strategy.

RQ3 concerns the system’s performance. It prompted the development of a test
framework to benchmark OpenMLS against MLS++ under comparable condi-
tions. This included identifying appropriate metrics, aligning test environments,
and defining evaluation criteria based on Marstrander’s prior work.

RQ4 extends the evaluation by considering the integration of real-time video
streaming into the MLS-secured system. To address both the architectural
challenges and performance trade-offs, we tackled RQ4 with a combination of
implementation work and targeted testing.
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3.1 Project Overview

The development of Valkyrie MLS followed a five-phase model:

1. Initial Development Phase: Define functional requirements, establish the
development environment and read up on relevant literature.

2. Design Phase: Outline the overall system architecture, with particular focus
on integrating OpenMLS, the delivery service, and the authentication service.

3. Implementation Phase: Implement the outlined solution in code.

4. Testing Phase: Validate the implementation through functional and perfor-
mance testing.

5. Evaluation Phase: Assess our solution and methodology, analyze performance
results, and finalize documentation.

This model allowed us to begin with a clearly defined architectural vision, but the
process was far from linear. In practice, the design, implementation, and testing
phases (Phases 2–4) followed an iterative workflow. We continuously developed,
tested, and refined the system in response to implementation challenges and insights
from functional testing, gradually improving its robustness and efficiency.

3.2 Initial Development

The first phase of the project focused on establishing a strong technical foundation
for the work that followed. This included acquiring the necessary programming skills,
reviewing relevant literature, and preparing a suitable development environment.

We devoted a large part of the early effort to learning the Rust programming language.
As neither of us had prior experience with Rust, we invested time in understanding
its syntax and design patterns. Given that OpenMLS underpins the cryptographic
operations of MLS, its documentation [RC25a; RC25c] offered valuable insight into
what became a core component of our system.

In parallel, we studied Marstrander’s thesis [Mar23b] in depth, along with other foun-
dational work on MLS in unmanned systems, as discussed in Section 1.4. This helped
us understand the architectural limitations and performance challenges associated
with earlier MLS implementations in a swarm context.

To support local simulated experimentation and rapid iteration, we set up a con-
tainerized development environment using Docker, following a similar approach to
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that described by Marstrander. The setup, depicted in Figure 3.1, included a Jetson
Nano Developer Kit, a set of Ubuntu-based Docker containers, and one Ubuntu host
machine. The Jetson Nano is a compact single-board computer sharing the same
ARM architecture as the Jetson Xavier NX (used onboard the Flamingo drones), but
offers fewer computational resources. The Docker containers, running Ubuntu 20.04,
were connected via a Docker bridge network and orchestrated by the host machine.
We physically connected the Nano to the host system via Ethernet, such that all
components operated within a single local area network (LAN). This configuration
enabled us to simulate a multi-node swarm environment and verify system function-
ality under realistic architectural constraints, without requiring immediate access to
drone hardware.

3.3 Design

Many of the ideas presented by Marstrander [Mar23b] influenced the design of our
solution. However, our aim was not to directly port the existing system from C++
to Rust. Instead, we evaluated the underlying design principles and architectural
decisions described in the thesis, without relying heavily on the original implementa-
tion or its source code [Mar23a]. This approach allowed us to assess the core ideas
independently of their original context.

We invested significant time in architectural planning early in the project. Although
we later had to revisit and revise several of these initial decisions, this time was far
from wasted. The early reflection laid a foundation for better decision-making and a
deeper understanding of the system as the project progressed.

Figure 3.1: Local development environment used during testing and development.
The left diagram illustrates the physical setup, including the Jetson Nano and host
system. The right diagram shows the logical architecture, including containerized
components and network configuration.
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A general trend we observed was a gradual simplification of the architecture. The
stages in the architectural evolution of our system reflect efforts to reduce unnecessary
complexity and improve clarity in our system. The results of our final design are
described in detail in Section 4.2.

3.4 Implementation

After agreeing on a working system architecture, we began by developing a baseline
system and gradually extended it as system capabilities grew. Early work focused on
end-to-end message passing, cryptographic operations using MLS, and integrating
Corosync with our internal data flow. Later, we added support for authentication
using the validation mechanism described in Section 4.4, and finally refined the
automatic procedures outlined in Section 4.5.

To verify the correctness of these modules, we developed unit tests alongside the
implementation. The core functionalities were tested through these tests, which
helped ensure components behaved as specified and served as safeguards against
regressions during later development. However, we were not able to cover all aspects
of our system, particularly the asynchronous network exchanges.

3.5 Testing

We conducted physical testing over one week at FFI’s facilities at Kjeller, where we
had access to three Flamingo drones. This provided an opportunity for both functional
and performance testing on the actual target hardware. Based on observations from
the tests, particularly the functionality tests, we were able to patch issues and
optimize key functionality, leading to improvements in the final result.

To organize our testing efforts, we developed a detailed test plan outlining the
functional requirements and performance metrics of interest. We partially based this
plan on the test procedures documented by Marstrander [Mar23b], which allowed us
to generate results that could be compared meaningfully to prior work. However,
several aspects of Marstrander’s tests did not align well with our system architecture,
making them difficult to replicate. For example, we omitted the heartbeat interval,
incorporating its functionality into update messages instead. This made testing that
parameter irrelevant to our implementation.

We categorized our testing into three main areas: functional testing, performance
testing, and network testing. A more extensive overview of our test setup and testing
methodology is provided for each of the different tests in Section 5.
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3.6 Evaluation

The evaluation phase centered on analyzing the results from our performance and
functional tests. These results formed the basis for answering RQ3 and partially RQ4,
especially regarding system runtime behavior, resource usage, and the integration of
video streaming within the MLS communication framework.

In parallel with designing, implementing, and testing, we documented key challenges
encountered during development, particularly those for which we were unable to find
satisfactory or scalable solutions. These observations provide valuable input to our
later discussion and form the foundation for our proposed future work. They also
contribute to answering RQ1 and RQ2, as they reflect decisions made throughout
the project.

During this stage, we also finalized the codebase and accompanying documentation.
Our goal was to make it easy for others to reproduce our system and tests or build
upon our work with minimal overhead. We provided setup instructions, usage
examples, and architectural notes to assist anyone looking to extend our solution.
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This chapter presents Valkyrie MLS, our implementation of MLS for FFI’s Valkyrie
swarm system. Below, we describe the system’s high-level structure and the key
design choices that shaped it. The source code of Valkyrie MLS can be found on
Github1.

4.1 System Overview

Valkyrie MLS functions as a cryptographic middleware positioned between the
swarm application and the radio on each drone. Its primary goal is to enable secure
communication within the Valkyrie swarm, which it achieves using MLS. We use the
MLS_128_DHKEMX25519_AES128GCM_SHA256_Ed25519 ciphersuite, the default choice
in OpenMLS. Our system, depicted in Figure 4.1, includes the following components:

Router: Acts as the central unit of our system, routing messages between the
drone application process, the radio interface, the CorosyncHandler, and the
MlsEngine.

MlsEngine: Maintains the state of the MLS group, validates fresh key material
introduced to the group, and handles encryption and decryption of messages.
It uses the OpenMLS API for core MLS operations while applying custom logic
and policies suited to swarm communication.

CorosyncHandler: A custom wrapper that maps Corosync events to internal
message-handling logic. It notifies the router of incoming messages from
Corosync and informs Corosync of outbound MLS configuration messages.

ValidationFunction: Implements the validation mechanism for the AS. It takes
a credential as input and returns a boolean indicating whether the credential
and its associated key material are valid.

1https://github.com/mkarder/valkyrie-mls
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Figure 4.1: Detailed overview showing internal and external components of Valkyrie
MLS. The yellow components highlight existing swarm components, the purple
components highlight external processes our system depends on, and the green
components highlight the custom components built through our development.

Our system relies on the presence of three external components:

Swarm Application: An independent process running on the drone, responsible
for swarm-specific computations and control. It outputs coordination data to
other drones and receives similar input in return.

Radio: The hardware component that provides the low-level network functionality
required to communicate with other drones.

Corosync Engine: An instance of the Corosync application is expected to be
running prior to launching our system. It operates as a standalone process
alongside Valkyrie MLS. It should not be confused with the CorosyncHandler,
which is a different component placed within Valkyrie MLS.
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At the time of writing, OpenMLS is at version 0.6 2, which we use as the basis of
our system.

Upon system initialization, configuration parameters (e.g., node ID or credential type)
are parsed and loaded from a file, then provided to other components through a shared
configuration structure. The MlsEngine loads signature keys and its credential, and
creates an MLS group consisting solely of itself. Once the MlsEngine is initialized,
the Router is created. Upon initialization, the router spawns a thread for the
CorosyncHandler and sets up the communication sockets used to send and receive
messages. Once initialized, it enters an idle state, and handles all incoming and
outgoing messages sequentially. The system can then add or join other nodes as it
discovers them (see Section 4.5 for details).

When a drone needs to communicate information to the rest of the swarm, the
application process sends data through an inter-process communication channel.
Currently we use standard network sockets, but in theory any inter-process mechanism
(e.g. Unix domain sockets or shared memory) could be used. The router receives the
outbound data and forwards it to the MlsEngine for encryption. Once encrypted,
the router sends the data to the radio, which transmits it over the network.

Incoming data is handled in a similar fashion. The router receives encrypted data
on a designated socket, decrypts it, and then forwards the result to the application
process.

The MlsEngine may fail to decrypt incoming data. If the failure is due to an internal
validation error, such as an out-of-sync epoch state, a timer is started to signal the
potential need for a self-healing mechanism. This helps detect drones that may have
become desynchronized from the rest of the swarm and allows the system to recover
from inconsistent group state.

If the error is caused by an unrelated issue, such as a message from an unknown
group, the message is discarded. This suggests the message was not intended for the
current node. We account for the possibility of arbitrary or irrelevant data arriving
at any time, since the system operates in a broadcast environment.

When a MLS configuration message is received from the CorosyncHandler, it is
passed to the router, which forwards it to the MlsEngine for further processing.
The MlsEngine handles all group state changes (e.g., Add, Remove, Update) after
validating the sender and associated key material through the ValidationFunction.

The router also runs a cyclic event loop that drives periodic MLS operations. This
loop checks for pending KeyPackages to be added, removes nodes scheduled for
removal, and issues periodic updates. Each of these actions invokes the corresponding

2https://github.com/openmls/openmls/releases/tag/openmls-v0.6.0

https://github.com/openmls/openmls/releases/tag/openmls-v0.6.0
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function in the MlsEngine. If any of them result in an outbound message (e.g.,
a Commit), the message is returned to the router and sent to the network via the
CorosyncHandler. These automatic procedures are described in more detail in
Section 4.5.

4.2 Design Choices

Great systems rarely come together by chance, but rather emerge from a series of
thoughtful decisions. In this section, we outline the architectural choices behind
Valkyrie MLS, with a focus on how they support robustness, adaptability, and
long-term maintainability.

Figure 4.2: Overview of communication in the Valkyrie swarm, showing Valkyrie
MLS as middleware between the application and radio.
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Modular Component Design

We designed our system to be modular by clearly separating responsibilities across
components and using well-defined interfaces. Since both the Valkyrie swarm and
the Flamingo drone platform continue to evolve (see Section 2.1.3), our solution is
built to adapt to changes in both the swarm application and the underlying network
radio hardware.

Furthermore, we keep the internal coupling of components loose. This allows us to
replace relevant parts of the AS (ValidationFunction), DS (CorosyncHandler), or
even the MLS API (OpenMLS) with minimal effort.

Figure 4.2 shows the system overview. The swarm application runs as a separate
process and sends opaque data, which we treat as a byte stream without interpreting
its structure. This stream is transmitted over the radio, with our Valkyrie MLS
acting as a middleware layer that encrypts outgoing and decrypts incoming data.

Sequential Handling of Data

To maintain a consistent MLS group state, all incoming messages are processed
sequentially rather than concurrently. In a distributed swarm, handling multiple
events in parallel, such as an application message and a Commit, can lead to race
conditions or epoch forks. By enforcing sequential processing, we mitigate these
concurrency hazards.

Our system is built around an event-driven loop that uses the select! macro from
the Tokio-rs crate [Tok25]. The select! macro works like an elevator: idle until a
request arrives, serves it fully, then returns idle, ensuring one event is handled at
a time. This allows the system to listen for multiple asynchronous inputs at once,
while ensuring that only one branch executes when an input becomes ready. The
select! call is placed inside an infinite loop, so the system repeatedly waits for an
event, processes it to completion, and then resumes waiting for the next one.

The select! macro monitors several input sources:

• Plain application messages from the swarm process

• Encrypted messages received over the network

• Protocol messages (e.g. Commits) from other MLS group members

When an event arrives, the appropriate select! branch executes its handler. De-
pending on the event type, the system either applies changes to the group state, such
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as processing a Commit, or forwards application data, for instance by delivering a
decrypted message to the application layer.

Because message arrival is nondeterministic and external, we rely on asynchronous
futures to manage event handling efficiently. Each branch in select! awaits its
corresponding future, and once one resolves, its handler runs to completion before
the loop resumes.

Supporting Additional Input Streams

Our modular design makes it straightforward to integrate new input streams. For
example, Marstrander encountered challenges integrating a drone video stream, as
it originated from a separate process [Mar23b]. In a tightly coupled system, such
integration can be difficult.

Our system avoids this problem. Because each input source communicates of a
dedicated socket, we can add new streams by simple adding a corresponding handler
at startup, without requiring any significant architectural change.3 This flexibility
reinforces our goal of building a system that is easy to extend and maintain.

Two Data Flows

We handle application messages and MLS handshake messages differently because
their delivery requirements differ [BBR+23]. Application messages can arrive out of
order, while MLS messages must arrive in the correct sequence.4

To handle this, we separated the two data streams. This allows us to process non-
critical application messages in any order, while enforcing strict ordering for critical
MLS configuration using Corosync. The separation is implemented using two sockets
for inter-process communication between the radio and the MLS component, as
shown in Figure 4.1.

As each message arrives on a dedicated socket, we identify its source. The router then
forwards it to the correct handler inside the MlsEngine. The router remains agnostic
to OpenMLS internals, using only enough logic to direct messages appropriately
(application data vs handshake events).

3We currently use network sockets for inter-process communication. The Valkyrie team has
indicated plans to transition to shared memory. To support this, we will need a notification
mechanism that alerts select! when new data becomes available in the shared buffer.

4Although strict ordering isn’t required, decryption depends on each member’s secret state.
Each message derives a new symmetric key using the KDF specified in the chosen ciphersuite. The
max forward distance and out-of-order-tolerance parameters control how tolerant the system is to
skipped messages.
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Immediate Commit on Group Changes

OpenMLS supports two approaches for applying group changes: immediate operations
and propose-then-commit. In the immediate operations approach, the initiating node
applies the change to its local state and directly issues a Commit to the other group
members. Alternatively, in the propose-then-commit approach, nodes can suggest
changes by sending Proposals. These proposals are later bundled into a Commit,
issued by any group member, that collectively applies the proposed changes. If a
node receives a Commit referencing missing proposals, OpenMLS returns an error.

The propose-then-commit approach offers flexibility, allowing proposals to arrive
in any order before the associated Commit. However, it also raises the question
of who should send the Commit. One possible solution is to designate a group
leader who periodically broadcast a Commit bundling all proposals collected during
the last epoch. This, however, introduces centralization, requires leader election,
and entails mechanisms for failures if the leader becomes unavailable. Moreover,
it increases message overhead, since each change requires both a Proposal and
a subsequent Commit. While batching proposals into a single Commit reduces the
number of messages, the approach still introduces additional coordination overhead
and implementation complexity.

To minimize system complexity and avoid the need for leader election or additional
message overhead, we adopt immediate operations in our design. This approach
avoids the coordination burden associated with proposal handling. For example, if
drone 1 receives drone 2 ’s KeyPackage, it can immediately add drone 2 and issue a
Commit. A drawback is that loss of this Commit causes nodes to diverge: the initiator
and recipients move to a new epoch, while others remain in the old one. This issue,
however, is not exclusive to immediate operations, as loss of a Proposal under the
alternative approach also leads to failure once the corresponding Commit is processed.

4.3 Implementation of the Delivery Service

As described in Section 2, the DS in MLS is responsible for (1) routing messages
between clients and (2) storing and providing KeyPackages. In traditional MLS
deployments, this functionality is centralized on a trusted server. Since Valkyrie
MLS operates in a peer-to-peer setting, specifically within a distributed UAV swarm,
we decompose and re-implement these DS responsibilities in a decentralized fashion.
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Key Package Distribution

We have no central server to use for storing and retrieving KeyPackages. KeyPackages
are broadcast as soon as they are created, and each node processes any received
KeyPackages immediately upon arrival. This mechanism ensures that group addi-
tions can proceed without requiring a central persistent storage backend, as long as
swarm members receive the necessary packages in a timely manner. The decision is
based upon the assumptions that KeyPackages are intended for one time use.

Message Routing and Total Order

Maintaining a consistent group state across all clients requires that MLS configuration
messages are processed in the exact same order to all participants. This property is
critical to prevent forks where cryptographic states diverges. As stated in our scope
(Section 1.2), we opt to use the Totem protocol to achieve this in our system. The
motivation for using this over other consensus mechanisms is discussed in [Mar23b].
Although a detailed comparison is beyond the scope of this work, alternatives are
briefly discussed in Chapter 6.

To implement this, we distinguish between two types of messages:

• MLS Configuration Messages: These consist of handshake messages
(Proposals and Commits), Welcome messages, and KeyPackages.

• Application Messages: These are regular messages passing between the
drone application and the radio, such as telemetry data or control commands.
They do not affect the MLS state and are more tolerant of delay or loss.

We send these MLS configuration messages using Corosync’s Closed Process Group
(CPG) module to enforce strict guaranteed delivery with total agreed ordering using
the Totem protocol. Application messages are delivered over a separate, unordered
multicast channel, as they do not affect the cryptographic state and are more tolerant
of latency and loss. Furthermore, we tweak the parameters out-of-order-tolerance and
maximum-forward-distance to better handle application messages that are delivered
out of order.

Use of Corosync Closed Process Groups

In our system, we integrated Corosync, whose CPG module provides reliable multicast
and totally ordered message delivery, which is a necessary requirement for MLS con-
figuration messages. This choice improves robustness and reduces overhead compared
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to previous work on Valkyrie [Mar23b], which involved manually implementing the
Totem protocol. That effort quickly revealed the complexity and fragility of building
distributed consensus from scratch. While Corosync is not fully transparent and
limits low-level visibility (for example, token ownership during runtime), it integrated
smoothly with our message formats and state logic without introducing additional
complexity. This tradeoff allowed us to offload the challenges of implementing the
Totem protocol from scratch.

Consistency Model

Designing the DS involves tradeoffs between availability and consistency during
network partitions. From the CAP theorem [Bre00], we have two choices:

• Strong Consistency (CP): Guarantees a consistent message order for all
clients but may delay or reject messages during a partition. To achieve this,
the epoch state should ideally not evolve during a partition or under stable
network conditions where delivery guarantees are uncertain.

• Eventual Consistency (AP): Prioritizes availability by allowing messages to
be processed even if they arrive out of order or inconsistently during network
partitions.

In Valkyrie MLS, we adopt a mixed solution by splitting the data stream in two.
Handshake messages are transmitted through Corosync using a CP-model to ensure
the consistency of the cryptographic group state. In contrast, application data is
sent over the regular multicast channel that tolerates eventual consistency.

4.4 Implementation of the Authentication Service

As outlined in Section 2.3, the MLS protocol requires an AS to operate securely,
but leaves the implementation to be decided. According to the architecture docu-
ment [BRO+25], an AS must support the following operations:

1. Issuing new credentials with a defined lifetime

2. Validating credentials against a claimed identity

3. Determining whether two credentials represent the same logical client

4. Optionally revoking credentials that are no longer authorized
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Our implementation addresses requirement (1) and (2). Requirement (4) is not
implemented, but we discuss theoretical solutions below and further in Section 6.
Requirement (3) is less relevant in our context, as UAVs do not operate across
multiple clients or devices. Nevertheless, it is still partially addressed. Nodes in the
system are identified by a global ID, and therefore all credentials using the same ID
represent the same client.

Design Considerations

There are multiple approaches to implementing an AS. The MLS architecture docu-
ment [BRO+25] outlines several options:

• Traditional Public Key Infrastructure (PKI), where a trusted Certificate Au-
thority (CA) issues and signs credentials.

• Fingerprint-based key verification, as used in systems such as the Signal Proto-
col [CCD+17].

• Transparency logs (Key Transparency), based on the work on CONIKS [MBB+15].

Of these, traditional PKI is the most natural fit: it provides a clear, well-understood
framework for verifying credentials, aligns with a model where certificates and keys
are preloaded, and supports hierarchical trust via CAs. While more decentralized
solutions may be attractive in some settings, we believe a PKI offers the right balance
between security, scalability, and operational simplicity in a UAV swarm context.

The MLS specification includes X.509 certificates as a standard credential type, which
is part of the PKI standard. In a PKI, a CA issues certificates for public keys and
signs them with its private key. A client signs its messages using its own private key
and provides the certificate to prove its claimed identity. This proof includes the
certificate itself and a certificate chain leading to a trusted CA. In Internet PKI, this
typically means a root CA, whose root certificate is preinstalled on all clients.

Marstrander notes that this requires connectivity to a centralized CA for issuing
and verifying credentials [Mar23b], which is disadvantageous for autonomous swarm
operation. To solve this, Marstrander proposes preinstalling root certificates on the
drones. The swarm operator (as root CA) signs each drone’s certificate before flight.
This yields shorter certificate chains (each drone has only a single client certificate
signed by the trusted CA). Issuance and revocation both require connectivity to a
CA. In our case, we assume issuance is done pre-flight.



4.4. IMPLEMENTATION OF THE AUTHENTICATION SERVICE 51

In the case of a compromise, it is necessary to revoke the old certificate and establish
a secure channel to generate new keys and a new certificate, which is difficult in-flight.
A solution could be that the GCS maintains a revocation list and distributes signed
updates to all swarm members. Members could then request the most recent version
of this list from each other.

There is also an important perspective on how we conceptualize the swarm sys-
tem [Mar23b]. Marstrander distinguishes between two types of operational deploy-
ments: the standalone swarm and the joint swarm system. These models influence
the design and implementation of the authentication service, particularly in how
control is managed prior to deployment.

In a standalone swarm, the system consists of a fixed number of UAVs controlled
by a single, dedicated GCS. This central unit is responsible for issuing certificates,
and its keys are preinstalled on all drones. If a compromise occurs, the GCS can
distribute a signed revocation list, indicating which keys or identifiers are no longer
valid. After each mission, the swarm is reset and drones are rekeyed, simplifying key
lifecycle management and limiting long-term exposure.

In contrast, a joint swarm system assumes a larger, more dynamic environment,
where multiple swarms (potentially operated by different GCSs) coordinate within
the same operational area. For instance, two separate military units might deploy
swarm teams concurrently and require secure communication between them. This
setting demands greater interoperability and mutual authentication across domains.

Supporting such operations requires a shared PKI infrastructure for managing
certificates, identities, and revocations. One possible solution is to pre-install all
relevant CA certificates on each drone. However, this increases the attack surface: a
single compromised CA could undermine the security of the entire system. This risk
highlights the need for updating key material and certificates during flight, not just
pre-deployment.

While both models are relevant for future swarm operations, current real-world
deployments more closely align with the standalone model. Its reduced architectural
complexity makes it more practical today. For this reason, we implement a custom
authentication service inspired by PKI, tailored to the simpler standalone swarm
model.
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Implementing an Authentication Service

The AS is split into two conceptual components:

Issuance: We assume that UAVs can be preconfigured with credentials before
deployment. This is a realistic assumption in tactical environments, and it
allows the GCS operator to act as a CA, generating and signing credentials
and key material before flight.

Validation: Each UAV runs a lightweight credential validator locally. Upon receiv-
ing a credential from a peer, it checks whether the credential was signed by a
trusted authority and is still valid.

Credential Type and Structure

In MLS, each group member presents a credential that provides one’s identity and
binds it to the member’s signing key [BBR+23]. The identities and signing key are
verified by the Authentication Service. It is up to the application to decide which
identifiers to use at the application level [BBR+23]. For our use case, we want
credentials contain information about the subject (its ID), the public key that it
holds, the validity of the credential, a signature over it from a trusted issuer and the
identity of the issuer who signed it.

In terms of credentials, there are several ways to go about to structuring them. In
OpenMLS, we have two specified credential types, in addition to an application
specific credential, as described earlier in Section 2.5.1 and in Code 1.

Using the BasicCredential leaves us with no authentication security, as this is
exposes only an identity to represent a client and does not contain any key material
or any other information. This leaves us with the choice of implementing our own
credential structure based on either X.509 or a custom scheme defined by ourselves.

While X.509 is widely supported and aligns with the long-term direction of the MLS
standard, it presents notable drawbacks for our use case. The typical certificate struc-
ture includes fields that are irrelevant in a swarm context, resulting in unnecessarily
large payloads. Prior work has reported certificate sizes of up to 2600 bytes [Mar23b],
which could lead to network congestion given that credentials are transmitted with
every KeyPackage, Add, and Update message. Moreover, although X.509 is not yet
supported in OpenMLS, it is expected to be in the future. This creates a risk that
any custom implementation we add now may become obsolete.

As an alternative, we opt to design a lightweight, custom credential format that
minimizes size while preserving the necessary authentication guarantees. This
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approach allows us to include only the fields relevant for our system, leading to
a more efficient wire format. Although this shifts the responsibility of ensuring
authenticity and integrity to our own implementation, we consider this a worthwhile
trade-off for the swarm setting. Our custom credential, Ed25519Credential, is
tailored specifically to the constraints and requirements of a UAV swarm.

Code 3 Ed25519Credential Structure

1 pub struct Ed25519Credential {
2 pub identity: u32,
3 pub credential_key_bytes: [u8; 32],
4 pub not_after: u64,
5 pub signature_bytes: [u8; 64],
6 pub issuer: u32,
7 }

The Ed25519Credential is built on the notion of the Ed25519 signature
scheme [JL17] and is illustrated in Code 3. The choice of using Ed25519 signa-
tures was made due to its widely adopted nature, its small key size combined with
the fact that it is used as the signature type of our chosen ciphersuite in OpenMLS.
The credential contains the minimal required fields needed for our authentication
service to validate a signature key pair and should be interpreted as follows:

• identity: A 32-bit identifier for the UAV. This fixed-size type provides a
predictable layout and matches Corosync’s node ID format (which also uses
u32 for IDs).

• credential_key_bytes: The UAV’s Ed25519 public key.

• not_after: UNIX timestamp indicating when the credential expires.

• signature_bytes: A 64-byte Ed25519 signature over the credential payload.

• issuer: The ID of the credential issuer (e.g., a swarm administrator or trusted
CA).

The signature is produced using the Ed25519-dalek library5, which is also used
by OpenMLS. The payload is hashed with SHA-512 and signed with the issuer’s
expanded secret key. The signed message m is the concatenation of the credential’s
three core fields:

m = identity ∥ credential_key_bytes ∥ not_after

5https://docs.rs/ed25519-dalek/latest/ed25519_dalek/

https://docs.rs/ed25519-dalek/latest/ed25519_dalek/
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Trust Model and Credential Validation

Our system follows a simple yet effective trust model: a UAV only accepts credentials
signed by a known and trusted issuer. Prior to deployment, a set of trusted issuer
public keys are stored on a UAV. Validation of a received credential proceeds as
follows:

1. Verify that the issuer is among the trusted preloaded signature keys.

2. Reconstruct the signed payload from identity, credential_key_bytes, and
not_after.

3. Verify the signature using the trusted public key.

4. Ensure the credential is not expired.

Credentials that pass all checks are accepted. If the issuer is unknown or any checks
fail, we mark the credential invalid and discard it.

Credential Issuance

Credential issuance is performed by the swarm operator or a trusted authority as
follows:

1. Generate an Ed25519 key pair.

2. Construct the credential payload:
m = identity∥credential_key_bytes∥not_after.

3. Sign m with the issuer’s Ed25519 private key.

4. Generate a signed credential object using the signature and other relevant fields.
Store the signed credential on the target UAV.

There are multiple ways to generate Ed25519 key pairs, but in our case, we use
an external toolkit. Specifically, we choose OpenSSL, a widely used open-source
cryptographic library and command-line tool [The23]. OpenSSL provides safe and
convenient support for key and certificate creation, among many other things.

To generate an Ed25519 key pair, we use the following commands:

openssl genpkey -algorithm Ed25519 -outform DER -out <privkey >
openssl pkey -in <privkey > -inform DER -pubout -outform DER -out

<pubkey >
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The first command generates a new Ed25519 private key in DER format, making it
easy to read from file and minimizing its storage size. The second command derives
and exports the corresponding public key, also in DER format.

4.5 Automatic Procedures

The OpenMLS API offers a convenient interface for executing group operations via
the MlsGroup object, which encapsulates the full group state. While the Add, Remove,
and Update operations are straightforward in isolation, automating them within a
dynamic, distributed swarm is non-trivial. The GCS cannot oversee all membership
in real time, so questions such as when to update, who should add whom, and when
to remove a member require automated decision-making and clearly defined policies.

Before delving in to automating the different procedures, we begin by reiterating two
types of group abstractions for our system:

Totem (CPG) group: the network membership group, defined and managed by
Corosync. We refer to Totem as the general ordering and membership protocol
and Corosync as the implementation of it.

MLS group: the cryptographic group in MLS. The cryptographic state of the
group changes as nodes perform Add, Update and Remove operations on the
group.

Operations in Totem is already automated and assumed [AMM+95; Pro24]. Further-
more, Totem, and consequently also Corosync, is assumed to be self-healing, meaning
that if network subgroups are formed due to temporary loss of connectivity, they will
automatically merge once the nodes are able to communicate with each other again.
Our overall goal is to automate these procedures in our cryptographic group as well.

4.5.1 Automatic Updates

Updates are the primary mechanism for refreshing cryptographic key material and
play a central role in maintaining PCS. This operation can be automated in several
ways, but two natural strategies emerge: triggering updates at fixed time intervals or
after a certain number of messages have been sent.

While message-based updates may offer a fine-grained approach, the number of
messages exchanged in the swarm can vary significantly depending on the applica-
tion—and may increase substantially if video streaming is incorporated. Since we
lack precise assumptions about message frequency and must accommodate potentially
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high-throughput scenarios (e.g., video streaming), we choose a time-based update
strategy. This approach provides a predictable and application-agnostic mechanism
for key renewal.

In our system, the update interval also serves as a baseline for other operations.
For instance, Commits that contain an Add or Remove are also processed during this
scheduled update. Marstrander’s earlier work [Mar23b] triggered operations on the
Totem token: Commits were only sent when holding a token, providing an implicit
global lock. This prevented concurrent commits by different nodes. Without such
coordination, simultaneous Commits could fork the cryptographic group state.

Since we use Corosync as an abstraction over Totem, we no longer receive explicit
notifications about token ownership. To reduce the risk of concurrent Commits, we
staggered the update timers of nodes. This naive approach is fragile, particularly as
node count increases or update intervals shrink, and should be revisited in future
work to include more robust coordination mechanisms.

4.5.2 Automatic Removal

Removal is itself a topic for a master thesis. What should cause a removal from the
cryptographic group? We want to remove any node that loses connection or is removed
from the swarm. We only discuss the challenge of in-flight removals, and choose to
focus on the removing nodes based on loss of connection in our implementation. One
way of going about this, is using heartbeat messages, used to detect link failures.
Assuming heartbeat messages are already part of the swarm application, we could
detect a lost link by monitoring application messages. Each drone could track the
time since last message from every other drone (similar to [Mar23b]). In this work,
four events were presented as reasons to remove a member:

1. No recent Update: A member has not sent an Update in a long time.

2. Left Totem group: A member is no longer part of the Totem group.

3. No application traffic: A member is not sending application messages.

4. Duplicate member: A node with the same identity already exists in the
MLS group.

In our proposed system, we aimed to omit some of these events to simplify the
automatic removal functionality. The first two events are sufficient reasons to remove
a member. If a member does not update within a given time period, this breaks the
principle of per consistent state. Additionally, if a member is no longer in the Totem
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group, it should also be evicted from the MLS group, as these group abstractions
should remain synchronized. If a member is not sending application messages, this
is a swarm application issue and not something that inherently compromises the
security goals of MLS. If we already receive Updates from a drone, we know that we
can receive data from it, meaning the communication link is active. Therefore, the
swarm application itself should decide how to handle the lack of application messages,
as this may indicate that there is something else wrong with the drone.

Duplicate members should not be allowed in the group. This is already enforced when
the credential is validated. OpenMLS will reject or error out if it detects duplicate
signature keys on add. This kind of invalid group state should therefore never occur.

We propose the following: if a node is evicted from Totem or fails to send timely
updates, it should be marked for eviction from the MLS group. Since Corosync
already notifies us of Totem evictions, we can propagate the corresponding node
identifiers to the MlsEngine to schedule their removal. By using a consistent identifier
for each drone across both the Totem and MLS groups, the MlsEngine can reliably
schedule the eviction of nodes from the MLS group during the next update cycle.

To detect stale members, each drone locally tracks the latest updates received from
other group members. If a member has not sent an update within, for example, three
times the expected update interval, it is considered inactive. This check is performed
during the drone’s own update cycle.

To avoid removing the same node twice, we extend the system’s functionality to
handle concurrent removals more gracefully. For example, in a group of three drones
node 1, node 2, node 3 , if node 3 is evicted from the Totem group, both node 1 and
node 2 will mark it for removal from the MLS group. If both attempt to perform
the removal, one will fail. To prevent this, each drone checks incoming Commits. If a
Commit contains a removal targeting a node already marked as pending, the drone
clears that entry from its pending removals before applying the Commit. It does
not matter which node ultimately issues the Commit, as long as duplicate removal
attempts are avoided. By checking all incoming Commits for overlapping removals and
cleaning up any matching pending entries, we prevent errors and ensure a consistent
group state.

Another aspect is marking nodes for removal in the event of a compromise. Deciding
if a node is compromised is outside this thesis’s scope. However, the GCS can mark
nodes for removal via a manual command (our API supports this). For security,
we should authenticate GCS commands (e.g. with an extra credential) to prevent
unauthorized removals.
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4.5.3 Automatic Add and Discovery

Leveraging evictions in Totem, combined with the absence of updates, provides a
solid baseline for automating removals in our system. However, this logic does not
extend as easily to automating add and discovery. Totem only informs us of the
ID of a node that has joined the group, but to add that node to the MLS group,
we also need its current KeyPackage, including its credential. Since there is no
central service to query KeyPackages by ID, we must rely on an alternative method:
either querying the node directly or having it broadcast its KeyPackage, a classic
push-or-pull scenario. While both are valid approaches, broadcasting is preferable
in our case, as the KeyPackage must be sent regardless, and the underlying radio
network already supports broadcast communication. Therefore, each node should
periodically broadcast its KeyPackage to enable discovery by other drones. These
broadcasts are sent via Corosync, meaning the message will be handled as a DS
message upon receipt, and also confirms that the sending node is already part of the
Totem group.

Add

A valid KeyPackage should result in a Welcome. That is, if node 1 receives a
KeyPackage from node 2, it should first validate the credential and then generate a
Welcome message for node 2. To prevent concurrent Add operations, each node first
stores received KeyPackages in a local list. The first node to enter its update cycle
will process all pending KeyPackages and issue corresponding add proposals. The
remaining nodes, upon receiving the resulting Commit, check whether it contains an
add proposal for a KeyPackage already present in their pending_key_packages list
and remove it accordingly, similar to how pending removals are handled. Additionally,
before storing a received KeyPackage, nodes must ensure that its credential is not
already part of the current group.

Join

When a node receives a Welcome message, it must decide whether to accept the
invitation. To answer the question of who should join whom, we define the following
policy.

Each node should join the group if it includes the GCS, provided the GCS is
present in the network. This requirement was expressed by FFI’s Valkyrie team
during our discussions. The rationale is straightforward: The GCS should maintain
communication and control over all available drones. Therefore, upon receiving a
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Welcome message, a node checks whether the group includes the GCS’s credential
identifier. If it does, the node accepts the invitation.

This policy encourages convergence toward a stable group centered around the GCS,
assuming it is reachable. To reduce unnecessary broadcast of KeyPackage messages,
nodes already in a group containing the GCS are instructed not to broadcast their
KeyPackage. This design assumes the presence of only one GCS in the network.
Supporting multiple GCS units would require additional parameters, such as one to
determine which GCS to prioritize.

In cases where the GCS is not present, for instance due to lack of radio coverage,
we still require drones to communicate securely using MLS. In such situations, the
swarm may partition into one or more subgroups, where each subgroup is a subset of
drones sharing the same cryptographic state, i.e., they belong to the same group and
epoch. To maintain coherence, all nodes should attempt to join the largest subgroup
currently available.

Finally, we must account for scenarios where multiple groups are of equal size. In
such cases, we need a tiebreaking mechanism. The simplest strategy is to have nodes
join the group that includes the member with the lowest identifier, assuming that
node IDs are numeric and globally comparable.

4.5.4 Challenges with the Policies Above

Although the ideas above are sensible, a few complications arise in practice. The
first problem is that even if the GCS is present, multiple subgroups may coexist
temporarily. A node might first join a group without a GCS before eventually
migrating to the GCS group. While this still leads to eventual convergence, we aim
to reduce such intermediate reconfigurations. To do so, nodes inspect the Totem
membership list before initiating Add operations. If the GCS is detected, additions to
other subgroups are suppressed. Optionally, this check can also be performed upon
receiving a Welcome, though it is redundant if all nodes follow the addition policy
correctly.

Expanding on this, we could outline a theoretical attack for this, where someone
poses as a GCS. To avoid this, we use the same assumption as for the AS, where
the ID of the GCS is defined in the configuration loaded on startup. To ensure this
is the correct GCS, we need some sort of additional authentication mechanism for
the Totem membership. Corosync supports both encryption and authentication6.
This could also prevent forms of Denial-of-Service (DoS) attacks, where an attacker

6Corosync defines optional configurations within its directive, including configuration for secrecy
and authentication: https://manpages.ubuntu.com/manpages/focal/man5/corosync.conf.5.html

https://manpages.ubuntu.com/manpages/focal/man5/corosync.conf.5.html
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would try to overwhelm the Totem service with never-ending messages to deny its
availability. Unfortunately, we did not have time to incorporate this in our system.

The second problem is multi-faceted:

• Nodes cannot determine how many subgroups exist at a given time.

• Nodes cannot confirm whether a peer has accepted their Welcome, which can
lead to incorrect assumptions about group size.

• Our current implementation adds nodes in batches during update cycles, which
may further complicate the problem of incorrect assumptions a node can have
about its group size.

Each drone has limited visibility into the system: it knows (1) its own MLS group
size, (2) the size of any Welcome message’s group it receives, and (3) the total number
of nodes participating in the Totem group (i.e., the underlying Corosync cluster).
Given this limited perspective and the absence of a centralized GCS, it is challenging
to guarantee stable convergence of membership.

One way of going about this is to apply policies also when adding new mem-
bers. We can infer that we are the largest MLS group in the network if our
MLS group size > T otemgroup

2 . If we are in such a group, then we can add other
nodes.

A problem arises when no majority group exists, as this prevents any node from adding
others. In such scenarios, additional information is required to identify the largest
group. To convey this information, nodes would need to include extra data when
sending KeyPackages. Although this is technically feasible, for example by adding a
custom header with bits indicating the current group size, it introduces unnecessary
complexity. Instead, we assume that nodes join the network gradually rather than
forming multiple subgroups at once, and therefore choose not to complicate the
design further.

To ensure convergence toward a stable group, we expand our policy for adding
members by introducing a simple rule. Specifically, we add an exception to the rule
of only adding nodes when belonging to the majority group: if a node’s current MLS
group contains the lowest ID in the network, it may also add other nodes to its group.
The lowest ID present in the network is obtained from the Totem membership list.
While this approach may not be optimal, it ensures convergence toward a stable
group, either the majority group or the one containing the lowest ID.
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We summarize the rules for broadcast, add, and join behavior based on each node’s
role:

• We are the GCS or part of a group that includes the GCS:

– Does not broadcast its KeyPackage.
– Adds other nodes.
– Ignores incoming Welcome messages.

• We are in a majority group (over half of the Totem group):

– Broadcasts its KeyPackage.
– May add nodes if no GCS is present.
– Accepts Welcome messages only from groups with the GCS.

• All other nodes:

– Broadcasts its KeyPackage.
– May add nodes if no GCS is present and they are in the same group as

the lowest-ID node.
– Accept Welcome messages.

Together, these rules makes the swarm converge to a stable group: priority goes to
joining the GCS group first, then any majority group, and finally (if needed) the
group containing the lowest-ID node. We assume only one GCS exists in the swarm.

4.6 Handling Crypto-State Forks

One issue we encounter in our system is crypto-state forks. A crypto-state fork
happens when two nodes or more nodes apply a different Commit at the same time.
This may happen if node 1 applies a change before receiving the Totem send token,
and before node 1 is able to broadcast its Commit to the rest, another Commit is sent
to the MLS group. This will then split the current MLS group, leaving node 1 in
another epoch than the rest. The same will happen if a Commit is lost or not received
by some nodes. Testing revealed various scenarios and edge cases, but usually only
one node is affected.

A key indicator of a fork is a ValidationError caused by epoch divergence on a
drone. By default, we set max_past_epochs to 1, allowing drones to decrypt messages
from up to one epoch in the past. This means that drones ahead by one epoch can
still decrypt messages from a lagging peer. However, a drone that falls behind cannot
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decrypt messages from nodes that are already one epoch ahead, as those messages
rely on updated key material that the lagging drone has not yet received.

We propose a simple recovery method for those cases where a node lags one epoch
behind the group. When a node detects that they are one epoch behind, it triggers a
reset timer and removes itself from the group. It can then rejoin the group through the
automatic discovery mechanism. If the node regains the ability to decrypt messages
after starting the timer, for example if the Commit message is simply delayed), the
node aborts the timer.

4.7 System Summary

In this chapter, we have described how Valkyrie MLS achieves authentication, message
ordering and dynamic group management:

Authentication: The system includes a working prototype of an authentication
service. It uses Ed25519 credentials and custom X.509 certificates, ensuring
that only authorized drones can join the cryptographic group.

Message Ordering: Valkyrie MLS uses Corosync, which implements the Totem
protocol, to ensure that the MLS configuration messages arrive in the correct
order.

Dynamic Group Management: The system automatically detects new drones
as they come within communication range, determines which node should add
each new member, and then handles the group update process without manual
intervention. It also includes a recovery mechanism for drones that fall behind
in cryptographic epoch state.
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Our testing combines unit tests, simulation-based evaluations, and real-world drone
testing to evaluate the Valkyrie MLS system. We begin briefly outlining our unit
testing, which serve as a baseline test suite to validate internal logic during de-
velopment. We then move on to our physical testing with drones, which involves
both functionality testing and performance testing. In our functionality testing
we aim to verify the correctness and stability of our system under various network
conditions, while performance testing aims to mainly measure CPU and RAM usage
across varying protocol parameters. Lastly, we tackle various tests conducted in
our simulated environment. These involve network testing, where we assess system
behavior under artificial packet loss, as well as looking at message and credential
sizes to measure expected overhead.

5.1 Unit Testing

We developed and maintained unit tests alongside the core components to validate
the internal business logic and ensure correctness in isolation. Moreover, we created
a comprehensive test suite in our code base to evaluate the core business logic of
Valkyrie MLS throughout our development phase. This allowed us to verify and
validate that secure group operations like Add, Update, and Remove worked as
expected among multiple participants, and also included functional tests for the
authentication mechanisms. The tests validate both protocol correctness and group
coordination logic. The tests cover message sending, group operations, credential
validation, and group joining behavior under various conditions needed for automatic
procedures.

63
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Figure 5.1: Physical testbed with three Flamingo drones from the testing conducted
at FFI’s location at Kjeller.

5.2 Physical Testing

We conducted functional and parameter testing at the FFI’s facilities at Kjeller.
There, we tested our system using actual Flamingo drones, focusing on confirming full-
system functionality and measuring runtime resource usage (CPU and RAM) across
different protocol configurations. These results also form the basis for performance
evaluation. Although in-flight testing was not feasible due to practical constraints,
we manually moved the drones to simulate dynamic network topologies and varying
link qualities. We use the same test setup and environment for both functionality
and performance tests during our physical testing, but different methodologies.

5.2.1 Test Environment

We set up a physical testbed consisting of three Flamingo drones as shown in
Figure 5.1. Each drone is equipped with an NVIDIA Jetson Xavier NX with a
six-core ARM processor running Linux for Tegra, and uses a Rajant radio for wireless
communication. The drones communicate over the eth0 interface within the IP
network 192.168.12.0/24, using multicast on the network layer. Each node ID
corresponds to the last 8 bits of its IP address, providing a straightforward mapping
between identity and address. To port the Valkyrie MLS software to the drones, we
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compile the software natively on each drone. Cross-compiling is also possible, but we
have to account for the ARM architecture when doing so. As our host machine uses
an x86 architecture, we find it easiest to rather compile it on the drones, allowing for
altering files locally if needed.

To communicate, control, and oversee operations, we use an Ubuntu host machine act-
ing as the GCS. It connects to the same IP network as the drones via a Rajant radio
module. We control group membership remotely from the host through a command-
line interface. We developed a custom API for Valkyrie MLS to facilitate sending
commands such as broadcast_key_package(), add_pending_key_packages(), and
remove_member(LeafIndex), enabling manual management of the group’s crypto-
graphic state. This proved especially useful, as most of our tests required establishing
a stable cryptographic group before beginning measurements. Additionally, we
use ssh to monitor each drone’s local view and apply configuration changes when
necessary.

To simulate application-layer traffic, we use MGEN (Multi-Generator), a data gener-
ation tool developed by the U.S. Naval Research Laboratory. MGEN sends data to a
local socket on each drone, which is read by the Valkyrie MLS process. This mirrors
how an actual application would transmit data to Valkyrie MLS. The Valkyrie MLS
process then encrypts the data and multicasts it to the group. Upon reception, the
other nodes decrypt and process the message. By using MGEN, we can control both
the number and size of the application messages, enabling consistent and repeatable
testing.

5.2.2 Functionality Testing

We conducted functionality testing to verify that the system behaves correctly under
various conditions. These tests focus on the drones’ ability to form stable MLS
groups, authenticate credentials, and dynamically manage group membership in both
stable and unstable network environments.

The testing is divided into four parts. We begin by validating the manual functionality
of the Add and Remove operations, along with automatic Update behavior. These
tests use BasicCredentials to isolate core group operations. We then evaluate
the system’s authentication mechanisms by testing the Validation Function using
Ed25519Credentials. Once both manual group control and credential validation
are confirmed, we proceed to test the automatic procedures. First, we evaluate their
behavior under stable network conditions, and finally, under unstable conditions that
simulate dynamic link quality and partitioning.



66 5. TESTING AND RESULTS

Functionality Test 1: Manual ADD and REMOVE with Automatic
UPDATE

This test aims to validate the manual control operations provided by the MlsEngine,
ensuring that three UAVs can be manually configured to form a stable MLS group.

To isolate manual behavior, all automatic procedures are disabled. Before starting the
test, we power on all three UAVs and confirm they are connected to the radio network.
Each drone is configured with CredentialType::Basic, an update_interval of
10 seconds, and a correct node ID. We also verify that an instance of Corosync is
running on each drone.

Once initialized, we confirm that each drone emits periodic Update messages and
begins sending application data using MGEN at a rate of 1 kB per second. At this
point, we do not expect messages to be decrypted correctly, since no MLS group has
been formed.

Next, we instruct drone 2 and drone 3 to broadcast their Key Packages. We then
command drone 1 to add its pending Key Packages, thereby forming the group. We
verify group formation by checking drone 1 ’s MLS group state and ensuring epoch
consistency across nodes. We also confirm that application data and Updates are
now correctly decrypted and processed by all participants. Finally, we remove drone
3 from the group by referencing its index, and subsequently add it back again to test
removal and re-addition.

This test confirms that manual operations function as intended. Drones are able to
add and remove each other successfully, and epoch updates are correctly synchronized
across the group. The automatic update mechanism performs as expected. However,
when all nodes are initialized simultaneously, overlapping update timers can lead to
crypto-state forks. To avoid this, we stagger drone initialization during testing. This
behavior highlights the fragility of relying on desynchronized update timers.

Functionality Test 2: ED25519 Credential Validation

This test evaluates the Validation Function for Ed25519Credential. We aim to
verify that Commit messages are accepted only when the credentials are valid and
correctly issued.

The setup mirrors that of Functionality Test 1, but with the credential type set to
Ed25519Credential. Prior to testing, we generate and issue credentials on the host
machine, which acts as a CA, as described in Section 4.4.

To test credential rejection, we intentionally issue one drone an invalid creden-
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tial—both by corrupting a valid credential and by issuing one from an unauthorized
CA.

The test confirms that drones correctly accept and process only valid credentials.
Group formation proceeds as expected when all credentials are valid, mirroring
the results from Test 1. Invalid credentials are rejected, and no Add operation is
performed. Although credential revocation is not yet supported, these results confirm
that the implemented authentication service performs successful credential issuance
and validation.

Functionality Test 3: Automatic ADD and REMOVE under Stable
Network Conditions

This test validates that drones are able to automatically broadcast and discover each
other, in accordance with our framework for automated procedures. The goal is to
confirm that discovery leads to successful Add operations and the formation of a
stable MLS group under stable network conditions.

We use the same setup as in Functionality Test 1, but enable all automatic
procedures. The test is performed with both CredentialType::Basic and
CredentialType::Ed25519.

Once the drones are initialized, they are expected to automatically form a group
without manual intervention. We use MGEN to send application-layer traffic, allowing
us to verify that the group has formed correctly and that messages can be decrypted
by all members. To validate automatic Remove functionality, we terminate the
Valkyrie MLS process on individual drones one at a time, and later restart it to test
rejoining behavior.

Nodes that are powered off or disconnected are automatically removed from the
group, and epoch advancement proceeds correctly among the remaining members.
Upon re-initialization, the removed node is initially unable to participate but is
automatically re-added after broadcasting its Key Package. This confirms that
the automatic group maintenance logic functions correctly under stable network
conditions.

Functionality Test 4: Automatic ADD and REMOVE under Unstable
Network Conditions

This test assesses the system’s ability to maintain secure group communication and
recover from disruptions when drones experience unstable or intermittent network
connectivity.
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We follow the same procedure as in Functionality Test 3, but instead of shutting down
drones, we physically move one drone in and out of coverage to simulate varying link
conditions. Depending on its placement in the local terrain, the drone experiences:

• Stable coverage: Close proximity and no terrain obstruction.

• Unstable coverage: Medium distance and partial terrain interference.

• No coverage: Greater distance with significant terrain obstruction.

We observe how the system responds as the drone transitions between these zones,
focusing on message decryption, epoch synchronization, and membership dynamics.

When moving drone 3 rapidly in and out of coverage, the system correctly detects
its absence and removes it from the group. This is triggered by a Totem eviction.
Upon returning, the drone broadcasts its Key Package and is successfully re-added.
During its absence, the remaining drones continue to decrypt each other’s messages
and maintain epoch consistency.

In some cases, drone 3 re-enters coverage still believing it is part of the old group.
Due to missed Update messages, its epoch state lags behind. This inconsistency is
detected as a cryptographic fork, prompting the drone to self-remove and rejoin the
group, after which synchronization is restored.

However, when the drone is moved more slowly or resides for extended periods in
the unstable coverage zone, we observe group-wide desynchronization. This occurs
even when two drones are in close proximity. The issue stems from Totem failing to
maintain an operational state, which delays or blocks MLS configuration messages.
In such conditions, encrypted application data cannot be processed, and automatic
updates push nodes into diverging epoch states. Communication resumes only when
the unstable node is either fully removed or re-enters stable coverage.

These observations highlight the dependency of MLS group stability on Totem’s oper-
ational state and the sensitivity of handshake and update mechanisms to fluctuating
network quality.

Findings from Functionality Testing

During a week of on-site testing and development at Kjeller, we achieved significant
functional improvements to our system. Most notably, we successfully enabled the
automatic addition and removal of drones in the swarm. When we physically removed
a drone from coverage, the system reliably detected its absence via Totem eviction
and removed it from the group. Upon re-entering coverage, the drone broadcast its
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KeyPackage, and the swarm rediscovered it and automatically reintegrated it into
the group.

Our testing also revealed key limitations. The use of unsynchronized Update timers
led to cryptographic state divergence in some cases, making it difficult for groups
to maintain a stable shared state. Additionally, we observed that unstable link
conditions severely impact group coordination. Specifically, the stability of the MLS
group is closely tied to Totem’s ability to remain in its operational phase. When
Totem becomes unstable, communication and group synchronization across the swarm
degrade, regardless of the proximity between nodes.

5.2.3 Performance Testing

We now turn to performance testing of Valkyrie MLS, focusing on its resource usage
under varying protocol configurations. The primary objective is to evaluate how
the system impacts overall CPU and memory usage. To do this, we vary individual
parameters in isolation and observe their effect on system performance.

The goal is to quantify CPU consumption during encrypted communication and
compare our results to prior measurements reported by Marstrander [Mar23b]. This
comparison provides insight into whether our OpenMLS-based system is lightweight
enough for real-world use in drone swarms and how it stacks up against the previous
MLS++-based implementation. Ideally, the added cryptographic overhead should be
negligible.

Methodology

Each test is run under controlled conditions for 10 minutes, during which we vary
one parameter at a time from Table 5.1, keeping all others fixed at their default
values. We assume a steady-state MLS group at the start of each run, with three
synchronized nodes communicating securely via a shared group key. Automatic add
and remove operations are enabled, although self-healing (re-join) functionality is
not included in this version1.

Our choice of parameters and value ranges reflects operational realities and theoretical
design trade-offs. For example:

• Update Interval determines how frequently the cryptographic state changes
via Commit messages. We test a range from no updates to longer intervals (up

1We later developed the self-healing mechanism based on observations from these tests, and we
verified it in Functionality Test 4.
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to 100 seconds) to assess the impact on performance and group stability.

• Max Past Epochs affects memory usage and group resilience. Retaining past
epochs enables nodes to recover if handshake messages are missed. We test
configurations ranging from zero epochs (no state retention), to one epoch (a
realistic baseline), and up to ten epochs to explore this trade-off.

• Out-of-Order Tolerance allows a node to decrypt messages received out of
sequence. We vary this parameter from 5 to 500 to analyze the memory and
processing overhead of storing extra keys, and its effect on CPU usage.

• Maximum Forward Distance defines how many messages a node can skip
before decryption fails. This is relevant during traffic spikes or packet loss.
We evaluate values from 0 (no tolerance) up to 100,000 to test the system’s
robustness under bursty or congested conditions.

• Log Level can affect CPU load due to runtime I/O. While logging is not
required for swarm operation, it is useful for debugging and monitoring. We
measure performance across verbosity levels ranging from no logging to error.

• Application Message Size and Frequency simulate different swarm work-
loads. MGEN limits messages to a maximum of 8 kB. We test message sizes of
1, 4, and 8 kB, and frequencies of 2, 10, 50, and 300 messages/s to represent a
spectrum from light control traffic to high-rate data streams (e.g., compressed
video). This helps assess whether fewer large packets are more efficient than
many small ones.

During each run, we log CPU and memory usage of both the Valkyrie MLS and
Corosync processes using pidstat, sampling once per second. This provides a
high-resolution view of runtime overhead. Results are written to CSV files for post-
processing and analysis. In all tests, we also verify that MLS group functionality is
retained.

Table 5.1 summarizes all tested parameters, their value ranges, and default settings.

Results

The baseline performance test using the default configuration values for all parameters
from Table 5.1 show that Valkyrie MLS introduces minimal overhead under typical
conditions. The combined CPU usage of Valkyrie MLS and Corosync averages 4.9%
on one core, as depicted in Figure 5.2, corresponding to less than 1% of total CPU
capacity on the six-core system. valkyrie-mls accounts for most of the load. RAM
usage remains stable at around 47,000 kB for the duration of the tests, well below
the system’s 8 GB limit.
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Parameter Default Value Explanation
Update Interval [s] [No updates, 3

10, 100]
Time between periodic Update messages
sent by each node.

Max Past Epochs [0, 1, 10] Number of past epochs for which
decryption keys are retained.

Out-of-Order
Tolerance

[5, 50, 500] Number of out-of-order messages accepted
per epoch. Impacts forward secrecy.

Maximum Forward
Distance

[0, 1000,
100 000]

Max number of future messages that can
be skipped before not being able to
decrypt.

Log Level [no logging,
debug, info,
warn, error]

Verbosity of system logs.

Application Message
Size [kB]

[1, 4, 8] Size of each application-layer message
generated and encrypted by Valkyrie
MLS.

Application Message
Frequency
[messages/s]

[2, 10, 50, 300] Frequency of messages sent per second
using MGEN.

Table 5.1: Default parameter values for testing. Bold values indicate defaults used
when varying other parameters.

Figure 5.2: CPU usage of Corosync and Valkyrie MLS (Baseline).
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Update
Interval [s]

Avg CPU [%]
(One core)

RAM [%] Observations

None 4.7 ∼ 0.6 No anomalies observed. Lowest
CPU usage overall.

3 5.9 ∼ 0.6 Periodic message decryption fail-
ures (1–3 messages after Commit);
pattern varies across runs.

10 5.0 ∼ 0.6 Occasional decryption delays ob-
served.

100 4.5 ∼ 0.6 Stable behavior; lowest CPU us-
age among tested intervals.

Table 5.2: Performance results with varying update intervals.

We vary the update interval to assess its effect on system performance and stability.
Table 5.2 summarizes the results. The average CPU load fluctuates between 4.5%
and 5.9% on a single core, a difference of just 1.4 percentage points. Even at its
peak, the load accounts for less than 1% of the drone’s total computational capacity.
RAM usage remains stable at approximately 47,000 kB across all configurations,
constituting to about 0.6% of the total available system memory. With high-frequency
updates (e.g., 3 seconds), we occasionally observe 1–3 messages failing to decrypt
immediately after a Commit. These dropouts follow consistent patterns within a test
but differ between runs, indicating that timing interactions between periodic Updates
and MGEN’s deterministic message scheduling likely cause the behavior.

Table 5.3 summarizes the results for three group protocol parameters
max_past_epochs, out_of_order_tolerance and maximum_forward_distance.
These parameters influence state retention in OpenMLS and synchronization behav-
ior in Valkyrie MLS. Across all tests, we observed minimal variation in CPU and
RAM usage, but some configurations affected the robustness on the system—placing
nodes in different epochs. Increasing max_past_epochs showed minor increases in
CPU and RAM usage, but significantly improved system robustness. Differences
in RAM usage were negligible, ranging from 48,912 kB at the lowest measurement
to 50,803 kB at the peak. Storing one past epoch allowed the system to recover
from dropped handshake messages, whereas storing none led to desynchronization as
soon as one Commit was lost. The difference between storing one and ten epochs was
negligible. Varying out_of_order_tolerance and maximum_forward_distance had
no significant effect on performance under normal traffic conditions. However, setting
maximum_forward_distance to zero caused frequent decryption failures, highlighting
its importance for tolerating burst loss or reordering.

Log verbosity had some impact on CPU usage (Table 5.4). Debug logging increased
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Table 5.3: Performance impact of parameters affecting state retention and tolerance.

Parameter (Value) Avg CPU [%] RAM [%]
Max Past Epochs = 0 5.2 ∼ 0.6
Max Past Epochs = 1 5.5 ∼ 0.6
Max Past Epochs = 10 5.4 ∼ 0.6
Out of Order Tolerance = 0 4.7 ∼ 0.6
Out of Order Tolerance = 5 4.9 ∼ 0.6
Out of Order Tolerance = 50 4.8 ∼ 0.6
Out of Order Tolerance = 500 4.9 ∼ 0.6
Max Forward Dist. = 0 4.6 ∼ 0.6
Max Forward Dist. = 1000 4.9 ∼ 0.6
Max Forward Dist. = 100,000 5.0 ∼ 0.6

Log Level Avg CPU [%] RAM [kB]
debug 6.4 ∼ 0.6
info 4.3 ∼ 0.6
error 4.2 ∼ 0.6
warn 4.1 ∼ 0.6
none 4.0 ∼ 0.6

Table 5.4: CPU and RAM usage at different log levels.

Message Size [kB] Avg CPU [%]
1 4.7
4 4.9
8 5.2

Table 5.5: Impact of message size on
CPU usage.

Frequency [msg/s] Avg CPU [%]
2 2.0
10 4.9
50 15.9
300 31.0

Table 5.6: Impact of message fre-
quency on CPU usage.

CPU usage by more than 2%, while disabling logs entirely led to the lowest resource
consumption. Although the recorded peak usage of 6.4% still corresponds to only
1.1% of the total available computing power, memory usage remained stable across all
levels. These results suggest that limited logging provides a better balance between
observability and efficiency, though more verbose logging remains feasible without
noticeably affecting system performance.

We test the effect of varying message size and frequency on CPU usage, as shown in
Table 5.5 and 5.6. Message size has minimal impact, with CPU usage rising slightly
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Message Size [kB] Frequency [msg/s] Avg CPU [%]
8 25 9.9
4 50 15.3
1 200 40.2

Table 5.7: CPU usage for equivalent message loads using different size-frequency
combinations.

from 4.7% to 5.2% as size increases from 1 kB to 8 kB. In contrast, message frequency
significantly affects CPU load. Increasing the rate from 2 to 300 messages per second
raises CPU usage from 2.0% to 31.0%. At 300 msg/s, the system initially fails due
to poor error handling. After fixing this, we manage to run the test, but the MLS
group becomes unstable: the maximum forward distance (set to 1000) is exceeded
after three update cycles, and the group fails to recover.

To investigate how message size and frequency interact under a fixed message load,
we test different combinations that yield comparable data rates. Results (Table 5.7)
show that using fewer, larger messages consistently yields lower CPU usage. For
example, sending 25 messages of 8 kB results in 9.9% average CPU load, while
sending 200 messages of 1 kB raises usage to 40.2%. This suggests that minimizing
message frequency is an effective strategy for reducing system overhead under high
data loads. We also note that we found a practical limit of 200 application messages
per second when using a maximum forward distance of 1000. Above this threshold,
we experience that group functionality deteriorates, and never recovers. With the
message frequency set to 300 messages per second, we observed a significant number
of application messages failing to decrypt due to incorrect generation numbers. This
occurred because, within a single epoch, the ratcheting mechanism became misaligned
as a result of extensive message loss. To address this issue, we substantially increased
the max_forward_distance parameter, allowing the system to tolerate a large number
of dropped messages within an epoch without losing ratchet synchronization. Figure
5.5 illustrates the CPU usage under this configuration. This setup may be particularly
suitable for high-throughput scenarios such as video streaming, where frequent packet
transmission is expected. We discuss this in greater detail in Section 6.

Findings from Performance Testing

Our CPU measurements closely matched, and even surpassed those of Marstran-
der [Mar23b], indicating that our cryptographic layer introduces minimal extra load
on the Flamingo platform. Figure 5.2 indicates that under baseline conditions, CPU
usage was about 4.9% on one of a total of six cores. In the stress test at 300 msg/s
(Figure 5.4), CPU usage on one core reached about 31% on the drones, but where we
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Figure 5.3: Memory usage under default parameters.

experienced sporadic forks. These forks are aligned the spikes in CPU consumption
in the figure. Increasing maximum forward distance to 100,000, while using the same
message frequency, lowered the overall consumption with 6.1 pp, compared to using
the default of 1000 for this parameter.

Throughout all tests, memory usage remained stable and consistently below 1%.
Figure 5.3 shows memory usage with default test parameters. The memory stays
constant at 0.67% of total 8 GB available system memory.
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Figure 5.4: CPU usage when sending 300 messages per second.

Figure 5.5: CPU usage for 300 messages per second with max_forward_distance
of 100,000.
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5.3 Simulated Testing

In addition to physical tests, we wish to conduct experiments in a controlled, simulated
environment. This allows us to precisely evaluate the system’s behavior under varying
network conditions and to measure properties that do not require physical hardware.

The simulated tests serve two main purposes: (1) to assess system robustness under
adverse network conditions, and (2) to record credential and protocol message sizes.
The latter helps verify our assumptions about the network overhead introduced
by our system and by different credential formats–—particularly between standard
X.509 certificates and our lightweight Ed25519-based credential.

5.3.1 Network Robustness Testing

For the network testing, we use the containerized swarm environment described in
Section 3.2, with three Docker containers. Each container represents a drone instance
and is connected via Docker’s default bridge network. This setup allows us to control
network conditions precisely using Linux traffic control tools (tc), simulating varying
levels of packet loss across nodes.

Figure 5.6: Decryption success rate vs. packet loss. The blue bar indicate the
average decryption rate, while the black highlight the standard deviation.

To evaluate the resilience of Valkyrie MLS under lossy network conditions, we measure
the amount of successfully decrypted application messages. We use MGEN for sending
application data, and send this at a rate of 10 packets per second with a message size
of 4 kB. We simulate varying levels of packet loss using Linux traffic control (tc) on
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the Docker bridge network. We apply gradually increasing amount of random packet
loss on the link interface, going from 0% loss to 50% loss. In the Router component,
we measure the percentage of successfully decrypted application messages over ten
10-minute runs. When loss is introduced, we expect MLS handshake messages to
be dropped, placing the nodes in different epochs. Nodes then have to re-establish
the MLS group in order to decrypt application messages again. As we increase the
random loss, the probability of a handshake message being loss increases, in turn
affecting the node’s ability to decrypt application messages.

As shown in Figure 5.6, the decryption success rate declines sharply with increasing
packet loss. At 12% packet loss, fewer than half of the received messages are
successfully decrypted. For losses beyond 17%, only 20% of application messages are
correctly processed, leaving swarm communication is effectively non-functional.

Figure 5.7: Decryption success rate over time.

Figure 5.7 further illustrates the system’s sensitivity. At 0% packet loss, decryption
remains consistently successful. At 2–5% loss, the success rate varies more, ranging
from 90% to 95%, with occasional drops due to missed handshake messages. These
results highlight the importance of a reliable transport layer and suggest that addi-
tional resilience mechanisms, such as retransmission, may be necessary in unstable
environments.
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Message Basic Cred. Ed25519 Cred. Marstrander
Update* 339 B 464 B 750 B
Add + Commit** 687 B 937 B 400 B (Commit) + 1100 B (Add)
Welcome (2 Members) 827 B 1077 B 1700 B
Welcome (10 Members) 3663 B 4913 B 19,000 B
KeyPackage 282 B 407 B 800 B

Table 5.8: Comparison of MLS message sizes against prior recorded sizes.
* Messages from the group initiator are typically larger. These values reflect typical
(mode) sizes.
** Marstrander sent Add proposals followed by a separate Commit. Our system
embeds the Add proposal within the Commit message, significantly reducing total
size.

5.3.2 Message Size Comparison

To evaluate the added network overhead of MLS protocol messages we generate
relevant messages locally on the host machine. Protocol message sizes are measured
by setting up group structures using customized Rust binaries—similar to our unit
tests—and recording the serialized messages sent from the Router to Corosync.

Table 5.8 compares message sizes between our implementation and the results reported
by Marstrander. Across all message types, the recorded sizes from this thesis are
consistently reduces message sizes. Welcome and Commit messages, in particular, show
significant improvements. The main efficiency gain comes from combining the Add and
Commit messages into one, which reduces overhead and simplifies processing—unlike
Marstrander’s approach that sent them separately.

5.3.3 Credential Size Comparison

For credential sizes, we generate the certificates and credentials directly on the host
and record their serialized sizes as stored locally. For our X.509 certificates, we used
a self-signed root certificate as the CA, using the same key type as the subject: e.g.,
if the subject has a 2048 bit RSA key signed, the CA also uses a 2048 bit RSA key.
Credential size is an important consideration in for our system, as credentials are
sent in every KeyPackage, Add, and Update message. Table 5.9 compares several
formats:

Previous recordings from Marstrander reported X.509 credential sizes of up to 2600
bytes [Mar23b]. In contrast, our custom Ed25519Credential drastically reduces
overhead, requiring only 128 bytes. Even when using standard Ed25519-based X.509
certificates, the size drops to just 245 bytes.
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Certificate Type Key Type Format Size

Not Compressed Compressed
X.509 RSA 2048 PEM 977 B 782 B
X.509 RSA 2048 DER 679 B 696 B
X.509 Ed25519 PEM 351 B 300 B
X.509 Ed25519 DER 217 B 227 B
Ed25519Credential Ed25519 Custom 128 B 148 B

Table 5.9: Credential format size comparison.

We tried reducing the size of the credentials using gzip, a tool for file compression.
Interestingly, this only reduced the size of the PEM-formatted certificates. The DER-
formatted certificates remained smaller than even the compressed PEM certificates.



Chapter6Discussion

In this chapter, we address our four research questions, drawing on the measurements
presented in Chapter 5, and insights gained during development of Valkyrie MLS.
Each section focuses on one question, presenting our key findings and reflecting on
the implications for secure communication in UAV swarms.

Before diving into the discussion, we briefly revisit the research questions that have
guided this thesis:

1. Can OpenMLS be effectively used for secure communication in UAV swarms?

2. How can we extend an MLS-based swarm system to include authentication and
message delivery services?

3. How does OpenMLS perform compared to MLS++ in a UAV swarm?

4. What is the impact of video streaming on MLS-based communication in UAV
swarms?

In the sections that follow (Sections 6.1–6.4), we explore each of these questions in
depth, discussing what we observed, the challenges we encountered, and what the
results suggest for future deployments of secure communication in UAV swarms.

6.1 Evaluating OpenMLS for Secure Communication

While OpenMLS offers a strong cryptographic foundation via the MLS protocol, it
alone is insufficient for secure end-to-end communication in UAV swarms. Achieving
this requires domain-specific integration and system-level support tailored to swarm
communication. We also consider whether alternative protocols may be better suited
for this task.

81
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OpenMLS Is a Suitable Choice for Implementing MLS

OpenMLS provides nearly all the functionality needed to implement the MLS protocol
effectively. The library includes all core cryptographic operations needed for end-to-
end encrypted group messaging. It implements the fundamental MLS sub-protocols
TreeSync, TreeKEM, and TreeDEM, which together cover group membership manage-
ment, continuous key agreement, and secure message broadcasting. These mechanisms
are well-suited to the dynamic and asynchronous nature of UAV swarms: MLS was
explicitly designed for asynchronous group messaging with strong security properties,
meaning OpenMLS can seamlessly re-establish keys and synchronize group state as
drones join, depart, or lose connectivity.

The reliability of these security properties also depends on implementation correctness
and system-level constraints. OpenMLS benefits from Rust’s focus on memory safety
and performance without a garbage collector, making it a strong fit for our resource-
constrained drone environment. Rust’s compile-time checks for ownership, borrowing,
and lifetimes help prevent memory issues like buffer overflows and use-after-free
bugs, which are hard to detect and can compromise security. Although our limited
experience with Rust made the initial development phase challenging, the language
promoted a disciplined approach to handling sensitive cryptographic data. Compared
to MLS++, written in C++, Rust provides stronger built-in guarantees against
memory-related errors, giving us increased confidence in the security and reliability
of our implementation.

OpenMLS stands out as a practical and developer-friendly choice for implementing
MLS in resource-constrained systems. Its API is well-structured and intuitive, and
integrating it into our system required no modifications to the core library. We
used the mandatory ciphersuite MLS_128_HPKEX25519_AES128GCM_SHA256_ED25519,
which offers low setup time and message overhead, although it exhibits lower message
handling performance [LBH24]. If needed, switching to a different ciphersuite is
straightforward.

OpenMLS is supported by active maintainers, detailed documentation, and an en-
gaged open-source community. The official OpenMLS Book [RC25a] provides concrete
examples and clear guidance, and the project is maintained by organizations central
to MLS standardization, including Phoenix R&D and Cryspen. The community
surrounding OpenMLS also provides support through its forum1, a forum which we
benefited of personally through this development. OpenMLS’s ease of use, thorough
documentation, and strong community support makes it a strong candidate for future
use in this line of research.

1https://openmls.zulipchat.com/

https://openmls.zulipchat.com/
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OpenMLS Alone Cannot Provide End-to-End Secure Swarm
Communication

While OpenMLS is a suitable choice for implementing the MLS protocol, it cannot
by itself provide end-to-end secure communication in UAV swarms. In particular,
OpenMLS lacks built-in support for two key architectural components mandated
by the MLS specification: the AS and DS. This provides flexibility in terms of
development and customized use of the library in messaging applications, but requires
developers that use OpenMLS to carefully design the complementary abstracted
services.

OpenMLS does not yet support standard credential formats such as X.509 out of the
box. The library only defines the minimal BasicCredential. This type provides
a bare assertion of identity using an ID and a signature key, without any context
for validation, which in practice offers minimal assurance. This requires current
users of the library to create their own validation mechanisms. To provide stronger
authentication, we extended OpenMLS with our custom Ed25519Credential and
associated validation function. Although this met the needs of our system, it
runs counter to best practices in secure communication, which caution against ad
hoc cryptographic schemes. Custom credential mechanisms risk introducing subtle
vulnerabilities and limit interoperability, making this a significant limitation in
OpenMLS for real-world swarm applications.

To Achieve Secure Communication in UAV Swarms With MLS, More
Domain-Specific Integration Is Needed

UAV swarms pose unique operational, networking, and security challenges that
differ significantly from the environments for which OpenMLS and the broader MLS
protocol were originally designed. While OpenMLS serves as a general-purpose
cryptographic library optimized for asynchronous group messaging over relatively
stable Internet infrastructure, the UAV swarm operates under very different conditions.
This mismatch highlights the need for deeper domain-specific integration when
applying OpenMLS in such systems.

Our current implementation remains general-purpose and lacks tight integration
with swarm-specific systems. Due to time constraints, development and testing
were limited to a one-week period at FFI’s facilities. Valkyrie MLS demonstrates
proof-of-concept functionality and is yet to be embedded in production flight software
or adapted to specific swarm use cases. As such, the system does not yet reflect the
full complexity of real-world missions or the operational expertise held by experienced
swarm operators.
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Bridging this gap requires deeper domain knowledge and closer alignment with
practical swarm development. Although we reviewed literature and consulted with
the Valkyrie MLS development team, our perspective remains academic. This
limited understanding influenced our design decisions. While our system reflects
assumptions common in general distributed systems, it may not fully align with
tactical requirements. However, this generality could also be a strength by potentially
enabling the architecture to serve as a flexible foundation for a broader class of
resource-constrained, infrastructure-less systems beyond UAV swarms.

Alternative Protocols Should Be Considered for Secure Swarm
Communication

While MLS is a robust and scalable group messaging protocol, its assumptions do
not perfectly match UAV swarm environments. MLS was designed for settings with
relatively stable and reliable networks (e.g. TCP/IP), not wireless links without
delivery guarantees or message ordering. We experienced that lost MLS messages
caused forks in the cryptographic group state between members and that the coor-
dination needed to restore a synchronized state reduced the goodput of application
messages. Thus, the mechanisms that provide strong and efficient security guarantees
in MLS become liabilities when swarm members experience desynchronization in
their cryptographic state.

Moreover, the swarm architecture assumes a trusted GCS that issues credentials to
each UAV prior to deployment. During this process, drones are also manually loaded
with a set of trusted keys, effectively bootstrapping trust through an out-of-band
mechanism. As a result, the basic requirement for authentic identities relies on using
pre-distributed material. If the system already relies on static, out-of-band trust, are
the dynamic group management features of MLS truly necessary, or do they instead
introduce unnecessary complexity for real-world drone swarms?

In this context, we raise the questions of alternatives to MLS. One particularly
promising alternative is the use of a Symmetric-Key Authenticated Key Exchange
(SAKE)-based Pre-Shared Key (PSK) scheme, as explored in a study by Boyd et
al. [BDdK+21]. Their approach uses a pairwise long-term Pre-Shared Key (PSK)
that is cryptographically evolved after each session, providing full FS and robustness
to synchronization issues, while avoiding the computational overhead of public-key
operations. Though limited to two-party settings, this method may still offer a
lightweight and secure alternative in systems where the set of communicating nodes
is stable and known in advance.

Group size is another important factor when evaluating the suitability of MLS.
While MLS excels in large groups, typical UAV swarms are comparatively small. In
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scenarios described by FFI, swarm sizes usually range from 2 to 40 drones [HBSS24],
whereas MLS is designed to handle groups from two up to thousands of members.
As such, whether its scalability provides any real advantage at the scale of tens of
nodes is debatable. In a small, fixed-size swarm, a simpler full-mesh or static keying
approach might offer equivalent security with lower complexity.

Given these constraints, adopting MLS may introduce unnecessary complexity. Its
reliance on reliable, ordered transport and dynamic key updates does not align well
with lossy radio links and pre-established trust. In this context, the benefits of MLS
are limited and come at the cost of extra protocol overhead. Consequently, while
MLS is a powerful general-purpose solution, it can be overly complicated for secure
communication in performance-critical, small-scale UAV swarms.

6.2 Extending MLS for Authentication and Message Delivery

As mentioned earlier, MLS provides the core cryptographic mechanisms for secure
group communication, but it is not a complete messaging system on its own. It
depends on the existence of additional supporting services to manage authentication,
credential distribution, and reliable message delivery. To bridge this gap and support
secure, coordinated communication in a UAV swarm, our system employs Totem
(Corosync) and a custom-designed authentication scheme based on Ed25519 signa-
tures. Together, these components ensure that messages are delivered in a consistent
order and that all members of the swarm are authenticated. We begin by discussing
the implementation of these components, before we highlight current limitations and
open challenges in our system design.

6.2.1 Delivery Service Implementation

We argue that our implementation satisfies the necessary functionality expected of
a Delivery Service. As defined in [BRO+25], the DS is a conceptual component
responsible for two primary tasks: (1) providing a directory for initial keying material
and (2) routing messages between clients within the group.

In our implementation, nodes periodically broadcast KeyPackages, which decentral-
izes the directory of initial keying material. Furthermore, we ensure the routing of
messages between clients by using peer-to-peer multicast, and the Totem protocol
provides total ordered delivery guarantees.
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Periodically Broadcasting KeyPackages Decentralizes the Directory of
Initial Keying Material

To make initial keying material readily available, clients periodically broadcast their
KeyPackages. This eliminates the need for a centralized delivery service and allows
any MLS group member to obtain the necessary information to add an external client
to its group. Upon receiving a KeyPackage, the recipient immediately processes it.
The credential is first validated, and if it is valid and the sender is not already a group
member, the KeyPackage is stored for use in the next update cycle when creating a
Welcome message. Invalid or duplicate KeyPackage are discarded immediately, and
no backlog is kept. Once a KeyPackage is used to create a Welcome, it is discarded.
This strategy adheres to the one-time-use principle for KeyPackages, eliminates
additional coordination overhead, and enforces immediate processing requirements.

A possible future improvement is to allow local storage of KeyPackages. The current
design demands instant admission decisions, which we see restrictive in lossy or
highly dynamic networks. An alternative would be to store received KeyPackages
locally, so they can be processed later. For instance, after operator approval or when
connectivity improves. This would allow for more flexibility regarding handling of
KeyPackages and avoid coordinated activity that could lead to forks during periods
with poor network conditions.

Another option is on-demand querying triggered by discovery signals (e.g., periodic
heartbeat messages). Such querying would save bandwidth by avoiding unsolicited
KeyPackage broadcasts. However, it introduces an extra round-trip. Valkyrie MLS
therefore favors broadcasting for its simplicity and lack of coordinating dependencies,
but any stored KeyPackages must still respect the one-time-use rule and be deleted
once consumed.

Routing Using Peer-to-Peer Multicast and Total Ordered Delivery
Through the Totem Protocol

To accommodate for message routing, messages are broadcast and use a multicast
address. Each drone sends its messages directly to the swarm over a shared commu-
nication channel, which eliminates the need for traditional point-to-point routing.
While some drones may not have direct line-of-sight connections, the underlying
Rajant radio provides functionality that abstracts these limitations and maintains
swarm-wide message propagation [Raj19].

As discussed in Section 2.3, MLS imposes strict ordering requirements on messages
in two key situations: (1) proposals must be received before their corresponding
Commit, and (2) all members must agree on the order of epoch transitions, each
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initiated by a Commit. We simplify the first requirement by committing immediately
on each proposal. This eliminates the need to track or sequence multiple outstanding
proposals. However, the second requirement, ensuring global agreement on the order
of epoch transitions, remains essential for maintaining a consistent group state.

To account for this, we impose ordering through the use of the Totem protocol
provided through Corosync. Totem functions as a lightweight consensus layer that
guarantees total, agreed-upon ordering of handshake messages. This ensures that
all drones process epoch-changing messages in the same sequence. Our approach
was inspired by prior work [Mar23b], which implemented a similar mechanism from
scratch. In contrast, we leverage Corosync to reduce implementation complexity
while achieving the same guarantees of deterministic message ordering.

Based on our functionality tests, Totem provides the necessary guarantees for message
ordering. However, we identified a limitation in fully distributed setups: the lack of
a coordinating entity introduces problems with consensus, which is not guaranteed
attainable under system model [FLP85]. One possible improvement would be to
adopt a hybrid architecture, where a temporary central node is elected to act as a
coordinating entity. Other nodes could broadcast their proposals, while the central
node could handle tasks such as message sequencing and decide on when and what
proposals to commit on, particularly during poor connectivity. To increase resilience,
a backup node could also be elected to take over if the primary node fails. The
election mechanism could draw inspiration from existing routing protocols like Open
Shortest Path First (OSPF) [Moy98], which use metrics and deterministic rules to
select a designated router and a backup. Applying similar ideas could help manage
group coordination more effectively during edge cases.

6.2.2 Authentication Service Implementation

The MLS architecture [BRO+25] defines core functionalities the Authentication
Service must provide: (1) issuance of credentials that bind client identities to
signature key pairs, (2) enabling clients to verify another’s credential against a
reference identifier, and (3) allowing members to check if two credentials belong
to the same client. Valkyrie MLS fulfills these requirements in turn. First, it uses
a model inspired by Public Key Infrastructure (PKI) to issue credentials binding
each UAV’s identity to its MLS signing key pre-flight. Second, each drone locally
verifies any received credential by checking that the issuer is known, the credential
information is well-formed and valid, and the issuer’s signature is correct. Third, every
credential includes a unique reference ID so a drone can compare two credentials’ IDs
to determine if they refer to the same UAV. Each of these mechanisms is described in
detail in Section 4.4. Together, they enable the AS to function as intended, assuming
pre-distributed credentials and trusted keys.
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6.2.3 Challenges Regarding the Delivery Service and
Authentication Service

Although we assess our implementation to be functional with its extended services,
there are still issues that remain. We now describe five challenges we have identified
from our project work and sketch possible solutions to each of those challenges. The
challenges we have identified, which we discuss below, are the occurrence of epoch
forks, epoch skews, disruption of operation, membership inconsistencies and change
of trust in-flight.

Challenge 1: Epoch Forks

The occurrence of forks or epoch divergences between nodes is an issue for Valkyrie
MLS. We define a fork as two or more nodes have inconsistent view of the current
cryptographic group epoch state. As the drone swam is a distributed system, it
is prone to inconsistencies. This is an issue we frequently encountered during our
testing and we have identified two major causes of these forks:

1. Concurrent commits without the Totem send token: Two or more nodes
commit at nearly the same time.

2. Packet loss over the unreliable network: Commits are lost in transit
between nodes.

Concurrent commits occur when two or more drones generate and broadcast Commit
messages at nearly the same time, resulting in inconsistent epoch histories across the
swarm. For example, if Drone A and Drone B both create a Commit simultaneously;
CommitA and CommitB respectively, each drone may apply its own Commit first and
then the other’s, resulting in different epoch orders: A sees CommitA → CommitB, while
B sees CommitB → CommitA. This desynchronization leads to incompatible encryption
keys, making it impossible for the drones to decrypt each other’s messages.

In theory, this should not be a problem, as Totem imposes an ordering on the sending
of these Commit messages. The lack of coordination between MLS and Totem in
our system, however, has not made it possible to notify nodes of when they hold
the Totem send token. In our current implementation, the Corosync process does
not stop the MlsEngine from commiting at any given time, which results in the
possibility of epoch forks happening. Hence, Drone A can end up committing when
they are not holding the send token and has to wait to send CommitA, even though it
has applied this change locally. If Drone B then receives this token in the meantime
and commits, we would end up in the scenario where the group receives CommitB first,
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and then CommitA. Drone A also receives this commit, but has already transitioned
into its new epoch.

Our current solution is to stagger drone startups to reduce simultaneous commits.
As a temporary workaround, we stagger the startup of drones by a few seconds to
offset their commit cycles. This reduces the likelihood of simultaneous commits.
While effective in practice during testing, this approach is fragile and non-scalable.
It relies on manual intervention and does not guarantee consistent operation under
real-world conditions. Addressing this limitation is essential for achieving a robust
and fault-tolerant system.

Several solutions, including leader election and token-gated commits, could mitigate
the problem. To eliminate epoch forks caused by concurrent commits, we have
identified the following solutions:

Leader election: Elect a single drone as the group leader responsible for issuing
all commits. Other members send proposals to the leader, who batches them
and commits them at fixed intervals. This feature is already available, as a
member can reference others’ proposals when committing. This reduces commit
frequency and improves coordination.

Token-gated commits: Restrict commit generation to the drone currently holding
the Totem token, ensuring that only one node can commit at a time. This
builds on existing Corosync infrastructure and naturally prevents concurrent
commits.

Delay-and-decide: Upon generating a commit, briefly pause to observe whether
any concurrent commits are received. If so, apply a deterministic tie-breaking
rule to select one and discard the others. This approach tolerates limited
concurrency while maintaining consistency.

Accept-then-rollback: Immediately accept the first commit received but keep a
backup of the previous group state. If another valid commit for the same epoch
arrives shortly after, apply a tie-breaking rule to decide whether to continue
or roll back to the alternative. This method balances responsiveness with
correctness, but requires careful handling of state retention to preserve FS.

Among these, we consider leader election and token-gated commits the most promising,
as they offer scalable, systematic ways to coordinate group state transitions and
prevent the race conditions causing epoch forks.

The second identified cause of epoch forks in is the loss of Commit messages in
transit. When a Commit is dropped, one or more drones miss a critical update to
the group state, resulting in inconsistent epoch states. This leads to cryptographic
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divergence, where nodes derive incompatible keys and can no longer decrypt each
other’s messages, or we get a situation where one node is an epoch ahead, and can
decrypt messages from the other node, while the other node is an epoch behind, and
cannot decrypt messages from the first drone since it is in front.

This issue stems from our use of UDP as the transport layer for all MLS messages.
Unlike TCP, UDP offers no delivery guarantees, dropped packets are not acknowl-
edged or retransmitted. While MLS was originally designed with reliable transport
like TCP in mind, our swarm environment relies on lightweight communication over
potentially lossy wireless links, making message loss a real and recurring threat. This
challenge has also been noted by prior work, including [Mar23b; BBR+23; Die22].

Corosync’s total ordered delivery reduces the impact of lost Commits. As a mitigation,
we send MLS configuration messages over Corosync, which ensures all participants
receive messages in the same order and, in theory, retransmits lost ones. However,
since Corosync still runs over an unreliable medium, packet loss can still occur. We
have not yet formally evaluated the reliability of Corosync compared to raw UDP, so
its impact on reducing forks remains an open question.

We propose using Quick UDP Internet Connections (QUIC) [IT21] as the transport
layer protocol. QUIC is a modern transport protocol that builds on UDP but
adds important features such as acknowledgments, retransmissions, and stream
multiplexing. It provides stronger delivery guarantees than UDP while maintaining
lower overhead than TCP. Given the intermittent and lossy nature of swarm networks,
QUIC is a promising alternative for transmitting MLS messages reliably. This
aligns with observations from prior work such as [Die22], which highlights UDP’s
shortcomings for MLS use in unreliable environments.

Another mitigation strategy involves adopting schemes like Fork-Resillient CGKA
[AMT23] for protocol-layer recover. The paper defines and construct a new type
of CGKA that supports processing packets in any causally respecting order. FR-
CGKA allows nodes to store past group states and recover from missed Commits.
If a node misses a Commit, it can retroactively apply it after retrieving the missing
message, enabling re-synchronization with the group. This adds robustness by
allowing eventual consistency for nodes that have become out of sync with the rest of
the group. Work within the MLS community has begun looking into such solutions,
but are still early in its development [Koh25].

If a packet is lost in transit over the physical medium, there is no clear fix other than
resending that package. At initial glance, we believe these approaches could work to
mitigate the consequence of lost commit messages generating epoch forks, as they
each have some sort of recovery mechanism in place. QUIC on the transport layer,
while FR-CGKA in the MLS protocol layer.
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Challenge 2: Two Communication Channels Cause Epoch Skews

We observed that encrypted application messages occasionally arrived either too
early or too late relative to the recipient’s current epoch. In MLS, application
messages must be both encrypted and decrypted within their designated epoch;
otherwise, decryption fails. Our architecture uses two separate communication
channels: Corosync for transmitting MLS handshake messages and a UDP multicast
channel for encrypted application messages. This separation led to situations where
a drone would generate a Commit, begin encrypting and sending application messages
using the new epoch, but the corresponding Commit had not yet propagated to
other drones. This was mainly due to the previously mentioned issue regarding
applying Commits locally, without holding the Totem send token. This results in
epoch mismatches and decryption failures for other members of the group.

Increasing max-past-epochs allows decryption of messages that arrive late. The
max_past_epochs parameter in OpenMLS is, by default, set to 0, meaning messages
from any previous epoch are immediately rejected. During parameter testing, we
increased this value to 1 and observed a notable improvement in message delivery.
Messages that arrived one epoch late could now be successfully decrypted, significantly
reducing message loss in the presence of moderate network delays. However, this
adjustment had no impact on messages that arriving too early. Hence, there is still
the need for additional mechanisms to handle forward epoch skew.

One approach is to encrypt messages using past epochs to create a forward buffer. One
approach involves introducing a forward buffer by encrypting application messages
using an older, stored epoch. This would allow receiving drones to maintain a buffer
of both past and future epochs, increasing the likelihood of successful decryption
despite network delays. As stated above, OpenMLS supports retention of past epochs
via the max-past-epochs parameter. For instance, by setting max-past-epochs to 10
and encrypting messages using epoch 5, drones that have advanced further can still
decrypt these messages, effectively creating a forward window. While this strategy
weakens security guarantees, it significantly improves robustness. We see this as an
acceptable tradeoff given the swarm’s current operational challenges.

Another approach is to unify all communication over a single channel to eliminate
ordering inconsistencies. One proposed mitigation is to send all messages, both
MLS handshake and encrypted application messages, over a single communication
channel, such as Corosync. While this could eliminate ordering inconsistencies
between channels, we suspect that Corosync may not sustain the high message
throughput required by our system and could become a bottleneck. This remains
untested, however, and empirical evaluation should be done to assess its feasibility.
An alternative approach is to use raw UDP for all messages, eliminating the consensus
layer entirely. Although this would likely increase the frequency of forks, it may be
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possible to maintain coordination by for instance introducing a lightweight distributed
locking mechanism, as used in distributed database systems.

The most straightforward approach however, would be to employ the token-gated
commit mechanism discussed for epoch forks. Using Corosync, we have not been
able to obtain the Totem send token, but prior work, which implemented the Totem
protocol from scratch, used this approach [Mar23b].

Challenge 3: Unreliable Network Conditions Cause Disruption of
Operations

When a drone operates at the edge of radio coverage, it frequently drops in and
out of the Totem group, causing instability that halts the entire system’s progress.
Because Corosync requires all members to be synchronized to circulate the Totem
send token, a single unstable node blocks token circulation for the whole group. This
stops MLS handshakes being sent, meaning updates are only applied locally and
the system fails completely rather than continuing with the stable nodes. Corosync
exposes no direct control over token management, offering only limited parameter
tuning to mitigate this behavior.

Currently, we do not implement any solution to this problem. Token-gated commits
would help in not evolving epochs locally, but it would not fix the problem of
handshake messages being halted. However, we observe that simply shutting down
the unstable drone or moving it completely out of range results in the system
stabilizing. This suggests that a clear removal is better than a partially connected
node. We therefore propose using principles from mobile communication networks to
improve group stability, specifically through hysteresis and time-to-trigger (TTT)
mechanisms. These techniques are commonly used to prevent unnecessary state
changes in response to short-term signal fluctuations [ZWG+12].

Hysteresis introduces a buffer zone between thresholds, ensuring that a state change
(e.g., joining or leaving a group) only occurs when the signal strength crosses a
threshold by a certain margin. This prevents rapid toggling between states when the
signal hovers near the boundary. For example, in wireless handover, a device only
switches to a new base station if its signal is significantly stronger, avoiding frequent
switching between similar signals. Time to Trigger (TTT) adds a temporal filter by
requiring that a condition be met for a minimum duration before triggering a state
change. This avoids reacting to brief or noisy changes in signal strength.

By combining these two mechanisms, drones would only be added or removed from the
Totem group if their signal strength remains consistently above or below a threshold
for a set period. This helps eliminate “flapping” behavior where a weakly connected
drone repeatedly joins and leaves the group. As a result, group membership becomes
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more stable, the Totem token can circulate reliably, and we reduce the impact one
unstable drone has on the entire swarm. We also note that this requires additional
control over Totem operations, and advocates for customizing Corosync or implement
Totem from scratch.

Challenge 4: Synchronizing Membership Between MLS and Totem

In our architecture, a single drone maintains multiple notions of group state across dif-
ferent system layers: the network group (Totem), the cryptographic group (managed
by OpenMLS), and the application layer group (defined by the swarm application).
As the system is agnostic to the swarm-level application logic, the application layer
group is abstracted away from the scope of this discussion. We therefore focus on
the interaction between the network group and the cryptographic group.

These layers operate independently and are not inherently synchronized. As a
result, each layer maintains its own view of group membership, which can lead to
inconsistencies. For instance, a drone might be removed from the MLS group but
still remain a member of the Totem group.

Such desynchronization introduces both security risks and inefficiencies. A node
that remains in the network group despite being excluded from the cryptographic
group will continue to receive encrypted messages it cannot decrypt, consuming radio
bandwidth unnecessarily. Furthermore, even without access to the message content,
the node may still extract metadata, observe communication patterns, and perform
traffic analysis. This opens the door for passive surveillance or even denial-of-service
attacks.

Conversely, if a node is removed from the network group but still considered part
of the MLS group, the remaining drones may falsely believe the node is still reach-
able. We describe this scenario as false situational awareness. This can result in
degraded coordination or decision-making due to inaccurate assumptions about the
communication topology.

Valkyrie MLS implements partial synchronization. In the current implementation,
our system supports one-way synchronization: when a node is removed from the
Totem network group, it is automatically scheduled for removal from the MLS group.
While this provides a basic mechanism for reducing exposure to unreachable nodes,
it does not address the reverse case. Nodes removed from OpenMLS may still remain
active in the Corosync network group, thereby continuing to receive traffic and
introducing the risks discussed above.

To resolve this, we propose a dedicated membership coordination module to ensure
bidirectional synchronization between the Totem (Corosync in our case) and MLS
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group. This module would continuously monitor membership events in both layers
and enforce consistency by removing nodes from the MLS group when Corosync
detects a failure, and conversely removing nodes from the Corosync group when
they are excluded from the MLS group. By aligning membership views across both
layers, this approach improves overall system robustness, reduces unnecessary band-
width consumption, and mitigates security vulnerabilities arising from membership
inconsistencies.

Challenge 5: Change Trust in Flight

Our current implementation of the AS assumes that all credentials and trusted keys
are preloaded before flight. It does not support adding new trusted keys, issuing new
credentials, or revoking access for compromised nodes during operation. This static
design requires any trust changes, such as accepting drones with credentials from
a different GCS, to be handled through out-of-band communication. While this is
acceptable for small or controlled deployments, it becomes a significant operational
bottleneck and a security risk for larger, more dynamic, and flexible swarm operations.

We propose adding an authenticated Authentication Service API to enable secure,
over-the-air updates of trust relationships within the swarm. The API would support
three key operations: Add-Trusted-Key, Remove-Trusted-Key and Revoke-
Credential, each carrying the relevant public key or credential identifier. To
ensure security, all API messages must be encrypted to preserve confidentiality
and signed by an already trusted entity to guarantee integrity and authenticity.
Access control is enforced by requiring that only nodes possessing a trusted key may
issue API commands, with every command individually signed. This design offers
practical operational benefits: swarms can dynamically merge by having respective
Ground Control Station adding the key of the other GCS once, enabling all drones to
authenticate peers signed by any participating GCS. Credential revocation follows the
same mechanism, where trusted entities could maintain and distribute a revocation
list. This however, raises a concern about an ever-growing trust store, as the set of
trusted keys grows larger. To counteract this, we could remove trusted keys if e.g.,
two merged swarms disband. In-flight issuance of new credentials would still need
out-of-band communication, as this information should not be broadcast.

6.3 Performance Comparison: OpenMLS vs. MLS++

OpenMLS performs as well as or better than MLS++ in our tests, but differences
in setup and methods make direct comparison difficult. Our results show similar or
better performance. However, architectural differences between the systems make it
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difficult to draw meaningful, isolated comparisons between OpenMLS and MLS++.
Furthermore, methodological mismatches limit direct comparison.

Our Results Show Similar or Better Performance

Our parameter tests suggest that OpenMLS does not introduce any significant
bottlenecks in terms of system performance. Given a baseline of handling a total
of 120 kB/s (three nodes each sending 40 kB of data every second), we observe an
average CPU load of 4.9% on a single core. This corresponds to less than 1% of
the total available computational resources on a six-core Flamingo UAV, and leaves
substantial headroom for other processes, such as the swarm application.

Even under stress-test conditions, beyond the expected message rates for a single
entity, we only observe an average load of approximately 5% of total computational
capacity (31% on a single core), with short peaks reaching about 40% on that core.
We argue that this demonstrates that the system can handle high message rates. We
therefore conclude that the computational overhead introduced by Valkyrie MLS
remains low and is negligible for the expected message load.

We found it hard to define exact test that replicates prior recorded results, as
Marstrander [Mar23b] conducted their best-documented tests primarily on Jetson
Nano hardware. Of the tests recorded on the actual drone platform, the CPU
consumption was 10.5% of one core when using similar amounts of application data.

A clearer comparison emerges when examining message and credential size overhead.
As shown in Sections 5.3.2 and 5.3.3, our recorded sizes show significant reductions
compared to those reported for MLS++ [Mar23b]. One factor is our use of smaller
Ed25519 signature keys, which reduce credential sizes—both for our custom scheme
and X.509 certificates—and thus shrink messages that include them. Prior work
appears to use keys based on the P256 curve instead. Although the key and signature
sizes of both schemes are generally similar, we observe notable differences in practice.
While we cannot pinpoint the exact cause, our OpenMLS-generated messages and
credentials based on Ed25519 consistently exhibit substantially smaller sizes.

The main takeaway from our performance testing is that computational capacity is
not a limiting factor for typical usage. However, stress tests reveal an upper bound to
what the system can handle before functionality issues begin to appear. Comparing
Figure 5.4 and Figure 5.5, we note that performance degrades when failures occur,
despite the message load being constant across both tests. The only difference in the
latter is an increased max_forward_distance, which permits decryption of messages
further ahead in the epoch sequence, and appears to help mitigate crypto-state forks.
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Architectural Differences Between the Systems Make It Difficult to Draw
Meaningful, Isolated Comparisons Between OpenMLS and MLS++

There are distinct architectural differences between the our system and the system
used in prior testing [Mar23b]. In our implementation, the Token mechanism is
managed using the Corosync library. In contrast, Marstrander implemented Token
functionality manually, which likely introduces different performance characteristics
and failure-handling behavior. Another key difference is our avoidance of heartbeat
signals. While Marstrander’s system uses periodic heartbeats to monitor group
membership and trigger updates. These differences reflect distinct system design
and architecture, and have significant implications for runtime behavior and system
performance.

Therefore, conclusions on the differences between OpenMLS and MLS++ are difficult
to draw. Given the architectural and methodological differences outlined above, it
is difficult to isolate the effect of the cryptographic library alone when comparing
our results to those of Marstrander. Performance outcomes are clearly influenced
by factors beyond the choice of library or programming language. As a result, any
conclusions drawn about the relative performance or efficiency of OpenMLS versus
MLS++, or Valkyrie MLS versus Flamingo-MLS, must be interpreted with caution.

Methodological Differences Limit Comparison with Marstrander

Hardware differences limit comparability. Marstrander conducted extensive testing
in [Mar23b, Section 5 – Testing in a Simulated Environment], where the results
presented in that section reflect performance on the Jetson Nano. In [Mar23b,
Section 6 – Flamingo MLS Takes Off ], most of the simulated results are discerned
due to the realization that the final hardware platform, Jetson Xavier NX, used on
the Flamingo drone is significantly more powerful than the Jetson Nano. To ensure
our results are relevant to the operational context of the Valkyrie swarm, we instead
chose to measure CPU and memory usage directly on the drones used in deployment.

Ambiguity in test descriptions complicates interpretation. Furthermore, the tests
performed by Marstrander on the actual drone hardware are described in a way that
makes it difficult to discern precisely what was measured and under what conditions.
This lack of clarity limits the extent to which we can meaningfully compare our
results to theirs.

Limitations in testing due to MGEN’s load constraints. During the testing phase,
we used MGEN to generate synthetic application-layer traffic. While effective for
simulating basic communication patterns, the tool introduced certain limitations. In
its current configuration, MGEN supports message sizes only up to 8192 bytes (8kB),
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whereas real-world drone communications may involve packets as large as 50kB. As
a result, we were unable to evaluate the system’s performance with larger payloads.
That said, within the tested range, we observed no issues related to message size, and
we found no evidence suggesting that larger packets would pose significant problems
for the delivery layer in practice.

6.4 Assessing the Impact of Video Streaming

Video streaming may be feasible, but current evidence is inconclusive. Our tests
show it significantly impacts swarm performance, though one tested configuration
showed potential. We suggest that a more lightweight security mechanism might
suffice for video streaming, but further investigation is needed.

Preliminary Impact of Video Streaming on Swarm Performance

High-frequency message load test as a proxy for video traffic. During our physical
testing at Kjeller, we conducted extensive performance evaluations of the system. In
one of the scenarios, we generated application-layer data at a very high frequency,
up to 300 outgoing messages per second from each drone. This meant that each
drone processed approximately 300 outgoing and 600 incoming messages per second.
While we did not test actual encrypted video streaming, this setup approximates the
message frequency typically associated with live video transmission, allowing us to
assess how the system might behave under similar load conditions.

The results at this message rate revealed several critical performance bottlenecks.
CPU usage exceeded 30% on a single core on the six-core Jetson Xavier NX, but
more concerning were the functional failures. The high message rate caused loss
of commit messages, leading to epoch forks that the system was unable to recover
from during the tests. Additionally, our implementation encountered runtime panics
due to internal errors triggered under high load. These issues were later patched,
as the system should not fail under high traffic alone. The root cause was traced
to Corosync being unable to reliably deliver messages under such load, resulting in
critical communication failures.

Another issue observed was related to max_forward_distance. Our system uses a
default value of 1000. This value was quickly exceeded when one node fell out for
a short period. Once this limit was reached, the receiving drones were unable to
decrypt further messages, and the system did not recover until a new commit was
issued to reset the generation counter. This behavior poses a risk to system stability
under high-throughput conditions.
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One promising configuration we discovered during testing involved significantly
increasing the maximum_forward_distance parameter from the standard value of
1000, to much higher values such as 100,000 or even 100,000,000. This adjustment
enabled drones to decrypt messages that were much further ahead within the the
epoch, making the system more resilient to packet loss.

A More Lightweight Security Mechanism Could Be Sufficient For Video

Video streams in swarm operations typically have lower security requirements than
command and control traffic. Since live video provides only short-lived situational
awareness and quickly loses tactical value, leakage or tampering is rarely safety-
critical. As a result, core MLS guarantees like FS and PCS may be less relevant for
such ephemeral data. Enforcing strict properties, such as sub-minute key updates,
may offer limited benefit while increasing the risk of cryptographic state divergence in
dynamic, lossy networks. In such contexts, lighter or more relaxed security measures
could be more appropriate.

This prompts a broader question: how critical are FS and PCS in real-world threat
models? Although valuable, these properties introduce complexity and fragility. If
key compromise is unlikely and the operational impact is minimal, less frequent
updates, such as every few minutes, may strike a better balance between security
and stability.

Instead of encrypting video directly with MLS, one alternative is to export an epoch
key from the group and use it as a static symmetric key for the streaming session
over a separate channel. To preserve some FS, the key could be evolved using a
KDF, separating it from those used for control traffic. While this is compatible with
the MLS architecture, it introduces coordination challenges, such as selecting and
managing exported keys. Supporting this approach would require system extensions
to enable flexible key handling for non-critical data like video.

The Current Evidence Remains Limited

We did not prioritize testing video streaming with MLS during the physical testing at
Kjeller, as we focused instead on functional and performance evaluation of the system.
As a result, we did not test with actual live video transfers and have limited empirical
data on the specific impact of video streaming. However, we defend the relevance
of our earlier analysis, as video traffic is characterized by high packet frequency, an
aspect we did test for. Nonetheless, dedicated testing of encrypted video streaming
remains left out as an exercise to the reader. Further experiments are necessary to
confirm system robustness and ensure compatibility with real-world swarm scenarios.
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In this thesis, we have designed and implemented Valkyrie MLS, a cryptographic
middleware based on OpenMLS [RC25b], and evaluated its suitability and efficiency
in a military UAV swarm. We demonstrated that OpenMLS provides the core
functionality required to enable secure group communication, but it depends on
auxiliary services and well-defined policies to support autonomy and resilience in
decentralized, resource-constrained environments.

We have shown how Corosync can be used to provide Totem-based delivery ordering
as a DS in our MLS-based system. Additionally, we demonstrated the feasibility of im-
plementing an AS using Ed25519Credentials. Assuming pre-shared signature keys
and credentials, we can support mutual authentication among swarm nodes without
requiring centralized infrastructure. Furthermore, both the Ed25519Credentials
and X.509 certificates derived from the same key scheme were shown to reduce mes-
sage overhead for MLS traffic, which is beneficial in environments where bandwidth
and latency are critical concerns. To enable autonomous operation of MLS in UAV
swarms, we proposed a set of policies and procedures to handle membership changes,
key updates, and group recovery in the absence of central coordination. This allows
MLS to function in a fully distributed setting, where nodes must operate without
persistent communication with the ground control station or centralized services.

Our testing indicates that OpenMLS shows potential for secure group communication
in UAV swarms, but there are significant limitations that must be addressed. One of
the main challenges is the lack of reliable and ordered message delivery, particularly
for handshake messages. In lossy radio environments, the failure to receive such
messages leads to group state divergence and forks, which can stall the exchange of
application messages. Reestablishing a shared state under these conditions is difficult
and time-consuming, especially when nodes operate at the edge of network coverage.
Our system does not handle this loss well, as observed in our simulated network
tests, and there is a need to overcome the issue of message loss in order to meet
requirements of swarm communication. We also observed that Corosync provides
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consensus necessary functionality through ordering, but the added coordination
needed to achieve this halts operation when nodes operate at the edge of network
coverage.

Performance testing on the drone platform demonstrates that Valkyrie MLS, and
by extension OpenMLS, achieves promising results in terms of resource usage. By
our observed CPU and RAM measurements, we do not regard resource usage as a
constraint for OpenMLS. While our results suggest that OpenMLS performs as well
as or better than MLS++ under our test conditions, differences in system architecture
and methodology complicate direct comparisons. We found that the drone platform
favors larger and less frequent handling of application messages, compared to smaller
and more frequent messages, and that storing past epochs and allowing for greater
forward distance for messaging support a more robust functionality without affecting
the performance significantly.

Future Work

Our primary goal was to improve and evaluate MLS-based secure communication
in drone swarms, and through this work we have identified multiple directions for
further research. First, improving the reliability of handshake message delivery
is essential. This could involve introducing transport-layer protocols for ensuring
delivery guarantees, like QUIC over UDP, to improve reliability while maintaining
a low message overhead. Another approach is to assume message loss is inevitable,
and define policies that allow the system to tolerate and recover gracefully when
these losses happen to handshake messages. Future work is already initiated in the
MLS community [XLH25; Koh25], but is still in an early phase and may not take
into consideration adapting the protocol to swarm-specific use cases. Another area
of interest is the stabilization of Totem membership when nodes are operating at the
edge of network coverage. Frequent join and leave events currently cause disruptions
to other system operations.

The interaction between the Totem and MLS group abstractions should also be more
tightly coupled, such that membership changes in one are reflected in the other. This
would help ensure consistency and reduce operational complexity. Furthermore, the
AS could benefit from enhanced capabilities, particularly in supporting dynamic
revocation and trust updates. Given the assumptions placed on the AS, future work
should also explore alternative group key management schemes, such as symmetric
pre-shared key protocols like SAKE-PSK [BDdK+21], which may offer more practical
solutions.
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Technical Glossary

Corosync Open source implementation of the Totem Single
Ring Ordering and Membership protocol.

Flamingo The ISR drone used in the Valkyrie system.

MGEN Application-layer traffic generator developed by
the U.S. Naval Research Laboratory, used to
simulate network traffic patterns in testing and
experimentation.

MLS++ C++ implementation of the MLS protocol.

OpenMLS Rust implementation of the MLS protocol.

pidstat A Linux performance monitoring tool that re-
ports statistics per process or thread, including
CPU usage, memory, and I/O activity.

Totem Reliable group communication protocol used by
Corosync to ensure ordered message delivery in
distributed systems.

Traffic Control (tc) Linux command-line utility used to configure
traffic shaping, scheduling, and network emula-
tion features on network interfaces.

Valkyrie UAV Swarm System developed at FFI.
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Valkyrie MLS Cryptographic middleware developed as the
main contribution of this master’s thesis. It runs
on each drone in the Valkyrie swarm and pro-
vides secure group communication by encrypting
messages using the MLS protocol. Valkyrie-
MLS is implemented in Rust and built on top of
the OpenMLS library. The source code is avail-
able at https://github.com/mkarder/valkyrie-
mls.

https://github.com/mkarder/valkyrie-mls
https://github.com/mkarder/valkyrie-mls
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List of Acronyms

AGKE Authenticated Group Key Exchange.

AKE authenticated key exchange.

API Application Programming Interface.

ART Asynchronous Ratcheting Tree.

AS Authentication Service.

AUW All Up Weight.

C2 command and control.

CA Certificate Authority.

CGKA Continuous Group Key Agreement.

CPG Closed Process Group.

DH Diffie-Hellman.

DHKE Diffie-Hellman key exchange.

DoS Denial-of-Service.

DS Delivery Service.

E2EE End-to-End Encryption.

FFI Norwegian Defence Research Establishment.

FS Forward Secrecy.

GCS Ground Control Station.
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GUI graphical user interface.

HPKE Hybrid Public Key Encryption.

IETF Internet Engineering Task Force.

ISR Intelligence, Surveillance and Reconnaissance.

KDF key derivation function.

KEM key encapsulation mechanism.

KT Key Transparency.

MAUI MLS API for Unmanned Surface and Aerial Systems Integration.

MLS Messaging Layer Security.

MTOW maximum takeoff weight.

NTNU Norwegian University of Science and Technology.

OSPF Open Shortest Path First.

PCS Post-Compromise Security.

PFS Perfect Forward Secrecy.

PKI Public Key Infrastructure.

pp percentage points.

PSK Pre-Shared Key.

QUIC Quick UDP Internet Connections.

RFC Request for Comments (IETF specification documents).

ROS Robot Operating System.

SAKE Symmetric-Key Authenticated Key Exchange.

TCP Transmission Control Protocol.

TLS Transport Layer Security.
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TTT Time to Trigger.

UAS Unmanned Aerial System.

UAV Unmanned Aerial Vehicle.

UDP User Datagram Protocol.

UxS Unmanned Systems.
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