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Introduction

Many real-world systems require that users are authenticated or that
information is certified while keeping the identity or content secret.

Some recent popular examples are anonymous browsing with
spam-protection, anonymous telemetry collection, privacy-
preserving contact-tracing, anonymous broadcasting, outsourced
computation and electronic voting.
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Introduction

Our main building block: zero-knowledge proofs.

. A prover holds a secret witness w to some statement x

He wants to convince a verifier about w without revealing it
The prover and verifier interacts to convince the verifier
Correctness: if prover knows w then the verifier accepts

. Soundness: if prover does not know w then the verifier rejects
Zero-Knowledge: verifier learns nothing about w but x is true

v A WwN
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Introduction

The security of public-key cryptosystems is mostly based on hard
computational problems: factoring large bi-primes or computing
discrete logarithms over finite fields or elliptic curve groups.

Shor developed an algorithm that, if implemented on a large
quantum computer, would efficiently solve these problems.
This means that we need to design new cryptosystems that
are secure against quantum computers.
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Introduction

The main research goal of this thesis was to design new protocols
based on zero-knowledge proofs for privacy applications. Four out
of five papers in this thesis build systems that are quantum secure.

This thesis is based on joint work with Diego F. Aranha, Carsten
Baum, Kristian Gjgsteen, Thomas Haines, Johannes Muller, Peter
Ranne, Martin Strand and Thor Tunge.
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Anonymous Communication
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Anonymous Tokens for Private Contact Tracing

The Norwegian Institute of Public Health has developed an
app “Smittestopp” to supplement traditional contact tracing.

The app sends you a notification if you have been close
to someone that has tested positive for Covid 19.

The hope is that this may be faster and may notify
contacts that you forgot about or didn’t know about.
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Anonymous Tokens for Private Contact Tracing

All data is stored on the user’s phone. It uses Bluetooth
for communication with other phones, but no GPS tracking.

You only identify yourself to report a positive test, and
then you upload the “infections keys” to the server.

The other users check locally if they have been in touch
with someone who has uploaded their keys.
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Anonymous Tokens for Private Contact Tracing
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Anonymous Tokens for Private Contact Tracing

Backend Verification
o W% ID
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Anonymous Tokens for Private Contact Tracing

Backend
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ID can be correlated with the “infection keys”!
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Anonymous Tokens for Private Contact Tracing

Backend App Verification

ID

Solution: The app randomizes the token before it is being forwarded.
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Anonymous Tokens for Private Contact Tracing

Backend Verification
Token Blinded value
Signed value + ZKP
4. Verify token 1. Choose a random and 2. Sign the value,
blinded value to be signed and prove that it was

correctly signed
3. Verify proof and unblind
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Anonymous Tokens for Private Contact Tracing

Problem: Users should not be able to hold onto a token and
upload later. We revoke all unspent tokens older than 3 days.

Solution: The client needs to download new public keys from a
public APl every time it wants to talk to the server. Impractical.

Note: Still possible to correlate identities with “infection keys”
if the servers are logging |IP-addresses and timestamps.
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Efficiently Revocable Tokens

New anonymous token protocol

. . User(md, pk) Signer(md, pk, sk)
with public metadata. = B () = B ()
U:=[dG+K U:=[d+kG
t s {0,1}*,r s Z; e:=(d+k)"
T := H(t)
. . . o [y T o [T
Based on ECC, avoids pairings. rer — W
if not V(mpLe) W', moLeq ToLEQ HDqu(G,T', K, W";c)
return |
W = [r]W'
1 return (t,md, W)
Revocation based on metadata.
User(t,md, W) Verifier(sk)
t,md, W e := (Hn(md) + k)"

—_—

As efficient as plain Privacy Pass! W = (ehe )

return true
else

return false

B I ‘ quweglan University of Fig. 6. Designated verifier anonymous tokens with public metadata. Our protocol is a
[ J [ J [J Science and Technology

direct extension of Privacy Pass [DGS718].




Efficiently Revocable Tokens

Public Metadata (PM) PubKey|Request| Signature|Token

Privacy Pass [DGS™18] 257 - 2N 257 769| 385
DIT [HIJ*21]|257 - (N + 2) 257|769 - (N +1)| 385

Our scheme (Figure 6) 257 257 769| 385
PM + Private Metadata PubKey|Request Signature|Token
Kreuter et al. [KLOR20a] 514 - 2N 257 1921 642
Our Scheme (Figure 7) 1028 257 3203 642
PM + Public Verifiability PubKey|Request Signature|Token
Abe and Fujisaki [AF96] 3202| 3072 3072| 3200
Our scheme (Figure 8) 763 382 382| 510

Table 1. Size given in bits. We compare the schemes for 128 bits of security, allowing
for 2V strings md of metadata. Token seed t is of size 128 bits, and metadata md is
implicit knowledge. Privacy Pass, DIT, Kreuter et al. and our protocols in Figure 6
and 7 are instantiated with curve x25519 [Ber05], Abe and Fujisaki is instantiated with
RSA-3072 and our protocol in Figure 8 is instantiated with BLS12-381 [YCKS21].
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Verifiable Shuffles
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Goals

Build a zero-knowledge protocol to prove correct shuffle of messages
Extend the shuffle to handle ciphertexts instead of messages

Build a mixing network from the extended shuffle

Extend the encryption scheme to support verifiable distributed decryption
Combine everything to construct systems for electronic voting

Use primitives based on lattices to achieve post-quantum security

ok WwWNR
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Proof of Shuffle

» Public information: sets of commitments {[m;]}7_; and messages {rm;}7_;.

» P knows the openings {(mj, rm,, f;)}7_; of the commitments {[m;]}7_;,

and P knows a permutation v such that m; = m,—.(; foralli=1,...,7.

» We construct a 4 + 37-move ZKPoK protocol to prove the statement:

x=([m],...,[m:], M,..., ", M),
RShufer: (X’W) W:(’Yaﬂa"-afTarla-'er)afy657‘7
Vi € [7'] : Open( [m7_1(,-)] ,n“v,-,r,-,f,-) =1
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Proof of Shuffle

First, the verifier sends a challenge p to shift all commitments and messages
M; = m; — pand M; = m; — p to ensure that all messages are invertible.

Secondly, P draws 6; uniformly at random, and computes the commitments:

(D] = (620
Vj €42, 7= 1}: [D}] = [6;1M; + 6;%] (1)
[DT] — [97_1MT].
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Proof of Shuffle

P receives a challenge g from V and computes s;
such that the following equations are satisfied:

BM; + st My = 61V,

Vj e {2,...,’7’—1} : Sj_le+Sij= j—le+9ij (2)
Sr—1M, + (_I)TBMT — HT—lM'r-
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Proof of Shuffle

We can rewrite these equations as a linear system:

M M 0 0 0 B 0
0 My M, 0 s1 0
0 0 0 M. 1 M._1| |s_» 0
_(—1)7/\?1T 0 0 0 M; | |sr—1 0

We observe that the determinant of the matrix is equal to [[_, M; — [[—, M..
If the statement is false, it follows from the Schwartz-Zippel lemma that this
system (with high probability) does not have a solution (over the choice of g).
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Proof of Shuffle

P uses the protocol N, to prove that each commitment [D;] satisfies the
equations (2). In order to compute the s; values, we can use the following fact:

Lemma
Choosing

o Jdom
SJ':(—].)J'BHVI.—FHJ' (3)
i=1 !

foralljel,...,7—1yields a valid assignment for Equation (2).
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Proof of Shuffle
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Zero-Knowledge Proof Mgy e Of Correct Shuffle

Prover, P
P
—
M; = ; — p
M;=m;—p

0, & Ry, Vi€ [r—1]
Compute [D;] as in Eq. (1), i.e.
[Dl] = [01M1]7 [D‘r] = [0T—IM‘r]7

(D] = [0i-1M; + 6,1 for i € [r — 1]\ {1} {[Pil}i=

B

—

Compute s;, Vi € [r — 1] as in (3). (s}

Verifier,V
$ AT
p < Rg\ {mi}i_

M; = m; — p
[Mi]=[mi] —p

Use My, to prove that

(1) BIM] + 1My = [Dy]
@Vie[r—1\{1}: s_1[M]+sM; = [D)]
(3) 5r-1[M] + (~1)7 M, = [D;]

i.e. all equations from (2)

Norwegian University of
Science and Technology
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Performance

» Optimal parameters for the commitment scheme is g ~ 23?2 and N = 210,
» The proof of linearity use Gaussian noise of standard deviation o¢ ~ 21°,
» The prover sends 1 commitment, 1 ring-element and 1 proof per message.
» The shuffle proof is of total size =~ 227 KB for - messages.

» The shuffle proof takes =~ 277 ms to compute for = messages.
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Shuffle-Decryption

i (6 )i
> SD both shuffle and decrypt the votes. | \\ "

» Integrity follows from the ZK-proof. ' (cwrew) : \

» Privacy if B and SD does not collude. @ \*

__________________________________________
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Mixing Network

» We extend the shuffle to ciphertexts
instead of messages

» We create a mixing network that does
the following:

1. Re-randomize the ciphertexts

2. Commit to the randomness

3. Permute the ciphertexts

4. Prove that shuffle is correct

5. Prove that the randomness is short

» Integrity follows from the ZK-proofs
» Privacy if at least one server is honest

© NTNU | bomwegian university of
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Distributed Decryption

Verifiable distributed decryption protocol:

» On input key s; and ciphertext (u, v),
sample large noise E;, output t; = sju+ pE;.

{ci} {(ti1, 7))}
e

» We use Ny, to prove correct computation. @ @ m.}

» We use 4 to prove that E; is bounded. tei} o))
We obtain the plaintextas m= (v —t mod q) L )
mod P, where t = th +t+ ... + t§ {ci} " @ {(t,g,ﬂ'pg)}
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Mix-Net and Distributed Decryption

» {S;} may consist of many shuffle-servers.

» {D;} consists of many decryption-servers.

» Integrity follows from the ZK-proofs.

» Privacy holds if the following is true:

1. atleast one shuffle-server is honest, and
2. at least one decryption-server is honest.
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Performance

Optimal parameters are N = 4096 and q = 278,

k ;
ct® [R,] Tsuur | TL; ; | WAEx |TANEx | TS, D,

80 KB|40(¢ + 1) KB|1507 KB|35 KB|207 KB|27 KB|3707 KB|1577 KB

Table 3. Size of the ciphertexts, commitments and proofs.
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Performance

Protocol| Il + Iy IS, e + Ty | ITanex + Ianexy | ITaex + ITaexy
Time |[(10.7 4+ 15.7)7 ms|(15.1 4+ 16.1)7 ms|(30.0 + 25.0)7 ms|(1009 + 20)7 ms

Table 5. Timings for cryptographic protocols, obtained by computing the average of
100 consecutive executions with 7 = 1000.
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Verifiable Decryption
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Lattice-Based Verifiable Decryption

A verifiable decryption protocol is a zero-knowledge protocol proving that a
certain message is the correct decryption of a certain ciphertext with respect
to a committed key which does not reveal anything about the decryption key.

Verifiable decryption is crucial to prove correct outcome in electronic voting.
Today’s systems use discrete logs, and can be broken by quantum computers.

Goal: design an efficient verifiable decryption protocol for lattice cryptography.
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Verifiable Decryption in the Head

Deal splits the key into two
parts and prove correctness.

Play compute a decryption

share t; j based on key share s;.

P commits to the shares, and
V challenges half of them.

V verifies all shares.

V reconstructs to check the
message from the shares.

®© NTINU | Norwegian university of

Mzkpcp
Prover((pk, {¢;}}_1, {m;j}}_1). (sk)) Verifier(pk, {¢;}7_y, {m;};_1)

=1,...,A2
(sko,k, sk k, auxg) « Deal(pk, sk)
=01 =1, T
tijk = Play(sk; ., ¢ji pi.k )
w < ({aux,, {tij«}})

B & 0,1

z « ({skgpi.x s {PaKK s 1o i)

k=1 ...\
Verify(pk, auxy, B[K], skape ) = 1
i=1.,1:
7
Play(skgii. k> G PB1K.kj) = tolkljk

?
Reconstruct(c;, toj k, t1j,k) = m;j
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Verifiable Decryption in the Head

Parameter |[Explanation Constraints Value
N Dimension Power of two 2048
q Ciphertext modulus |Bpec € ¢ =1 mod 2N ~ 2°°
P Plaintext modulus 2
K Security parameter Long-term privacy 128
sec Statistical security 40
A Soundness parameter 10, ..., 128
I Repetitions of IIzkpos|pu > A-1n(2)/1n(3/2) 17,...,218
B Bounds on secrets 1
Bpec  |Decryption bound |v — sul| < Bpec ~ 213
Size of wp |Timings for mp Size of 7s Timings for g
14A1 KB |4AT ms 175 2 KB 30\ ms

Table 1. Notation, explanation, constraints and concrete parameters for the protocol.

We also provide size and timings for decryption proof mp and proofs of shortness 7g.
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Verifiable Decryption for BGV

The verifiable decryption protocol lNMpec, for prover P, goes as following:
1. P takes as input a set of ciphertexts (v, wv1),. .., (ur, v;) and ([s], s, rs, fs).
2. P runs Dec on input s and (u;, v;) for all i € [r] to obtain my, ..., m,.
P extracts noise d; by computing d; = (v; — m; — u;s)/p mod g forall i € [7].
P commits to all d; as [d;], and proves p[d;] = v — m; — u;[s] using M.
P uses protocol M4 to prove that all ||d;||, are bounded by By < v2vNoa.
P outputs messages {m;}7_;, commitments {[d;]}7_,, proofs {m.}7_{, 7A.

o B s W
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Verifiable Decryption for BGV

Message m

Ciphertext (wi,v;)

Commitment [d;]

Proof 7,

Proof ma

Proof mpgc

0.256 KB

22.6 KB

22.6 KB

19 KB | 27 KB

43.67 KB

Table 2. Sizes for parameters p = 2,q ~ 2** and N = 2048 computing proof mpgc =
({[d:], 7L, }i=1,7a), where shortness proofs 74 is amortized over batches of size 2048.

Noise [d;]

Proof I,y

Verification I7j v

Proof ITx

Verification 17y

Proof mpgc

5T ms

47T ms

127 ms

24T ms

127 ms

76T ms

@ NTNU |
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Table 3. Amortized time per instance over 7 = 2048 ciphertexts.




Summary & Conclusions

Privacy matters: it is a human right; it is protected by law
(GDPR); it allows people to be themselves. We need to
build systems that protects privacy.

Quantum computers are being built as we speak, and
NIST is standardizing quantum secure key encapsulations
mechanisms and digital signatures. We need to build an
ecosystem of quantum secure crypto for real-world use.
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THANK YOU!
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