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Cryptography 101
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Symmetric-Key Encryption I

A symmetric-key encryption-scheme is an encryption-system for two parties with
two functions Enc(·, ·) and Dec(·, ·) together with a shared key k :

— Enc takes as input a key k and a message m,
and outputs a ciphertext c: Enc(k ,m) = c.

— Dec takes as input a key k and a ciphertext c,
and outputs a message m: Dec(k , c) = m.

Only the two parties that know the key can encrypt and decrypt messages.
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Symmetric-Key Encryption II
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Symmetric-Key Encryption III

Properties of a symmetric-key encryption-scheme:

— Both parties need to know the key k in advance

— Usually have keys and blocks of size 128 or 256 bits

— Super fast (only using XOR, AND, vectors etc.)

— Length of ciphertext ≈ Length of plaintext
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Symmetric-Key Encryption IV

Security of symmetric-key encryption:

— The best way to break it is to guess the key

— It does not hide the length of the encrypted data

— Might be vulnerable to side-channel attacks

— Might be vulnerable to attacks by quantum computers
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Public-Key Encryption I

A public-key encryption-scheme is an encryption-system for two parties with two
functions Enc(·, ·) and Dec(·, ·) together with a public key kp and a secret key ks:

— Enc takes as input a public key kp and a message m,
and outputs a ciphertext c: Enc(kp,m) = c.

— Dec takes as input a secret key ks and a ciphertext c,
and outputs a message m: Dec(ks, c) = m.

Everyone can encrypt a message, but only one party can decrypt.
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Public-Key Encryption II
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Public-Key Encryption III

Properties of a public-key encryption-scheme:

— Only one party knows the private key, everyone knows the public key

— Pretty slow, working with big numbers thousands of bits long

— Length of ciphertext >> Length of plaintext
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Public-Key Encryption IV

The RSA cryptosystem:

— Choose two prime numbers p and q and let n = p · q

— Choose a number e and find a special number d depending on p and q

— The public key is the two numbers (e,n)

— The private key is the two numbers (d ,n)
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Public-Key Encryption V

The RSA cryptosystem:

— Encryption of message m: Enc((e,n),m) = me mod n = c

— Decryption of ciphertext c: Dec((d ,n), c) = cd mod n = m
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Public-Key Encryption VI

Security of RSA public-key encryption:

— The best way to break RSA is to factorize n into p and q

— The cryptosystem must be randomized to be secure

— Might be vulnerable to padding attacks

— Might be vulnerable to side-channel attacks

— Will be broken by attacks by quantum computers

13



Hash Functions I

A hash function H is a deterministic function that takes input of arbitrary length,
and produce a fixed length output. A hash function has the three following
properties:

— Collision resistance,

— Pre-image resistance,

— Second pre-image resistance.
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Hash Functions II

Collision resistance:
It should be difficult to find two different messages
m1 and m2 such that H(m1) = H(m2).
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Hash Functions III

Pre-image resistance:
Given a hash value h it should be difficult to
find any message m such that h = H(m).

16



Hash Functions IV

Second pre-image resistance:
Given an input m1, it should be difficult to find
a different input m2 such that H(m1) = H(m2).
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Hash Functions V

Security of hash-functions:

— The best way to break a hash-function is to guess inputs

— The best way to get collisions is the birthday attack

— Commonly used hash-functions have outputs of length 256 and 512 bits

— Might be vulnerable to attacks by quantum computers
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Digital Signatures I

A digital signature-scheme is a signature-system for two parties with two functions
Sign(·, ·) and Verify(·, ·, ·) together with hash function H, a secret key ks and a
public key kp:

— Sign takes as input a secret key ks and a message m,
and outputs a signature σ: Sign(ks,m) = σ.

— Verify takes as input a public key kp, a signature σ and a message m,
and outputs a message True or False: Verify(kp, σ,m) = True or False.

Only one party can sign a message, but everyone can verify a signature.

19



Digital Signatures II
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Digital Signatures III

The RSA digital signature-system:

— Choose two prime numbers p and q and let n = p · q

— Choose a number v and find a special number s depending on p and q

— The public key is the two numbers (v ,n)

— The private key is the two numbers (s,n)
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Digital Signatures IV

The RSA digital signature-system:

— Signature of message m: Sign((s,n),m) = (H(m))s mod n = σ

— Verification of signature σ: Verify((v ,n), σ,m) = σv mod n ?
= H(m)
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Digital Signatures V
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Secure Computation
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Secure Computation

Goal:

being able to do computations on encrypted data, and therefore
compute valuable information without violating privacy.
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Secret Sharing I

Goal:

share a secret with a group in a way so that none of the people
can reconstruct the secret on their own, but some threshold of
members can reconstruct the secret if they work together.
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Secret Sharing II

First; some geometry:

— How many points in the plane do you need to define a straight line?

— How many points in the plane do you need to define a parabola?
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Secret Sharing III

y = ax + b
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Secret Sharing IV

y = ax2 + bx + c
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Secret Sharing V

We have a secret number, say, b = 4.

We want to share this secret with three friends in a way so
that none of them knows our secret, but if at least two of them
work together, then they are able to reconstruct the secret.
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Secret Sharing VI

We want to construct a polynomial of degree one: p(x) = ax + b,
and give one point p(1),p(2),p(3) to each of our three friends.

Assume that we can only chose coefficient from the numbers 0 to 4.
Our secret number will be b = 4, and we randomly choose, say, a = 2.
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Secret Sharing VII

Then p(0) = 4 is the secret we want to share.

We share the following with our friends:

— p(1) = 2 · 1 + 4 = 6 mod 5 = 1 with player A,

— p(2) = 2 · 2 + 4 = 8 mod 5 = 3 with player B,

— p(3) = 2 · 3 + 4 = 10 mod 5 = 0 with player C.
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Secret Sharing VIII

Individually,

— player A has the value p(1) = 1,

— player B has the value p(2) = 3,

— player C has the value p(3) = 0,

but none of them know what the secret is, because they
need two points to be able to reconstruct the whole line.
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Multi-Party Computation I

Goal:

allow a group to compute a public function,
without having to reveal their individual input.
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Multi-Party Computation II

Procedure:

— Everyone secret-share their input with everyone

— Addition and scalar multiplication is done locally

— Multiplications require sending a new secret-share to every party
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Multi-Party Computation III

Security:

— Secret sharing with threshold n − 1 of n parties

— Parties can provide "false" input

— Can notice and abort if someone is cheating
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Multi-Party Computation IV

Advantages:

— Computation is really fast

— Post-quantum security
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Multi-Party Computation V

Disadvantages:

— Require a lot of communication

— Everyone must be "online" at all time
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Fully Homomorphic Encryption I

Goal:

allow a third party to compute a function,
without knowing the input nor the output.
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Fully Homomorphic Encryption II

"Noisy encryption":

— The encryption of a message contains some extra "noise"

— As long as the "noise" is small, you can still decrypt

— Adding ciphertexts also adds the "noise"

— Multiplying ciphertexts also multiplies the "noise"

— When the "noise" gets larger, you can "bootstrap" to make it smaller
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Fully Homomorphic Encryption III

Procedure:

— The user encrypts their data and sends it over

— The third party does the computations on the encrypted data

— The user gets the encrypted data back and then decrypts

41



Fully Homomorphic Encryption IV

Advantages:

— No communication while computing

— Small functions are fast to compute

— Post-quantum security
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Fully Homomorphic Encryption V

Disadvantages:

— Require a lot of computation

— "Bootstrapping" is expensive
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Secure computation in practice I

Multi-Party Computation:

— Pre-computation independent on data and function using FHE

— Secret share information as normal

— Fast MPC using the pre-computed data
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Secure computation in practice II

Fully Homomorphic Encryption:

— Agree on function before choosing parameters

— Choose parameters large enough to handle some "noise"

— Do as little "bootstrapping" as possible
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Secure computation in practice III

Some applications in use:

— Journalist can share sensitive information in case anything happens...

— Private companies can analyze medical information without violating privacy

— Competing companies can work together without sharing data
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Cryptography & Machine Learning
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Cryptography & Machine Learning I
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Cryptography & Machine Learning II

Cryptography for machine learning:

— Training neural networks on encrypted data

— Prove correctness of machine learning algorithms

— Protect machine learning algorithms against abuse

— Training neural networks while keeping the training model secret
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Cryptography & Machine Learning III

Machine learning for security:

— Detection of vulnerabilities and attacks

— Crypto- and malware-analysis

— Machine learning for attacking cryptography
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Cryptography & Machine Learning IV

Resources:
— Rivest, Asiacrypt 1991. “Cryptography and machine learning”.

• https://people.csail.mit.edu/rivest/pubs/Riv91.pdf

— Goldwasser, Crypto 2018. "From Idea to Impact, the Crypto Story"
• https://www.youtube.com/watch?v=culuNbMPP0k

— Alani, 2019. "Applications of Machine Learning in Cryptography: A Survey."
• https://dl.acm.org/citation.cfm?doid=3309074.3309092
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Thank You! Questions?

Email: tjerand.silde@ntnu.no
Talk: www.tjerandsilde.no/talks
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