
#RSAC

SESSION ID:

Tjerand Silde

Lattice-Based Proof of Shuffle and
Applications to Electronic Voting

CRYP-T10A

Ph.D. Student
Math @ NTNU
@TjerandSilde
tjerandsilde.no

#RSAC

#RSAC

Joint work with:

Diego F. Aranha and Carsten Baum, Aarhus University
Kristian Gjøsteen and Thor Tunge, NTNU

#RSAC

Outline

3

Overview

Primitives

Shuffle Protocol

Voting System

Performance

#RSAC

Overview

4

We present the first practical verifiable shuffle of known values
based on lattice-based primitives to ensure long-term privacy
We construct an electronic voting protocol by combining the
verifiable shuffle with lattice-based verifiable encryption
We also construct a return code mechanism for voter verifiability

Finally, we implement the protocol and present performance
Future work: prove the construction secure in QROM

#RSAC

Primitives

5

Our constructions are based on the following main primitives:
– Lattice-based commitments and ZK-proofs of linear relations
– Lattice-based verifiable encryption

We use the commitment scheme by Baum et al. from SCN 2018

The same commitment scheme provides very efficient ZK-proofs
We adapt the verifiable encryption scheme by Lyubashevsky and
Neven from EC 2017 to encrypt openings of the commitments

#RSAC

Shuffle Protocol

6

Goal: given a set of messages and a set of commitments, we
want to prove that there exists a secret permutation such that
the commitments opens to a re-ordering of the set of messages
– Set of messages { mi }
– Set of commitments { ci }
– Permutation 𝜋

Relation RShuffle = (𝜋, { (mi , ri) } : ∀i Open (c𝜋(i) , mi , ri) = 1)

#RSAC

Shuffle Protocol

7

Idea by Neff from CCS 2001 used to create a verifiable shuffle:
polynomials are stable under permutation of their roots
Schwartz-Zippel Lemma: two different polynomials differs with
overwhelming probability when evaluated in a random point
Our protocol: commit to many random linear combinations of
commitments and messages to create two large polynomials,
evaluate them randomly, and prove in ZK that they are equal

#RSAC

Voting System

8

Players: Users, Ballot Box, Shuffle Server, Election Authorities.

Users: Commit and encrypt ballot. Prove correctness. Send to BB.
BB: Receive votes, check proofs, strip information. Send to SS.

SS: Receive votes, decrypt, shuffle, publish ballots and a proof.
EA: Ensure that everything went well and the proofs are correct.

We also have a return code mechanism so that the voter
receives a confirmation that the correct vote is submitted.

#RSAC

Voting System

9

Security

Integrity of the system follows from
the zero-knowledge proofs

Privacy of votes if ballot box and
shuffle server does not collude

Voter verifiability follows from the
return code mechanism

System

#RSAC

Performance

10

We are working over the cyclotomic ring Rq = Zq[X] / < XN + 1 >

Instantiation: N = 1024 and q is a 32-bit prime ≡ 1 modulo 4
The shuffle proof consist of one commitment, one ring element
and one zero-knowledge proof of linear relation per message
Decryption + shuffle takes 33 ms and has size 17 KB per vote

Our voting system is 5 times faster and at least 50 % smaller per
vote than the 0/1 voting system by del Pino et al. from CSS 2017

#RSAC

#RSAC

Thank you! Questions?

Email: tjerand.silde@ntnu.no

Full version: eprint.iacr.org/2021/338

