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Abstract

We present an approach for creating return codes for lattice-based electronic voting. For a voting
system with four control components and two-round communications, our scheme results in a total
of 2.3MB of communication per voter, taking less than 1 s of computation.

The Swiss Post electronic voting protocol [Swi21], planned for use in elections and referendums in
Switzerland, assumes an untrustworthy voting server and offers individual verifiability, universal
verifiability, and privacy. The protocol is based on discrete log-type assumptions, whose security
could be broken by quantum computers in a decade or two. This is not only a future threat against
integrity, but also a threat against privacy of votes cast today.

Together with the shuffle and the decryption protocols by Aranha et al. [Ara+21; Ara+22], the
return codes presented can be used to build a post-quantum secure cryptographic voting scheme
compatible with the trust assumptions of [Swi21]. While [Ara+21] includes return codes, but
assumes a trustworthy voting server, [Ara+22] allows for an untrustworthy voting server but does
not include return codes. We fill this gap.

Sammendrag

Vi presenterer en fremgangsm̊ate for å lage returkoder for et gitter-basert elektronisk valgsystem.
For et valgsystem med fire kontrollkomponenter og kommunikasjon i to runder oppn̊ar protokollen
v̊ar en total kommunikasjonsstørrelse p̊a 2.3MB per velger, og bruker under 1 s for utregningene.

Den elektroniske valgprotokollen til Swiss Post [Swi21], som Sveits planlegger å bruke i valg og
folkeavstemninger, antar en up̊alitelig valgserver og tilbyr individuell verifiserbarhet, universell
verifiserbarhet og hemmelighold av stemmesedler. Protokollen bruker sikkerhets-antagelser basert
p̊a diskret logaritme, og disse antagelsene vil kunne trues av kvantedatamaskiner om et ti̊ar eller
to. Dette er ikke bare en fremtidig trussel mot integritet, men ogs̊a en trussel mot langvarig
hemmelighold av stemmesedler avgitt i dag.

Vi presenterer en gitter-basert valgprotokoll passende for valg med returkoder, og utvider med dette
rammeverket til Aranha et al. [Ara+21; Ara+22]. [Ara+21] inkluderer returkoder, men antar en
p̊alitelig valgserver, mens [Ara+22] antar en up̊alitelig valgserver, men inkluderer ikke returkoder.
V̊are returkoder kan sammen med miks- og dekrypterings-protokollene til Aranha et al. brukes til
å lage et post-kvante-sikkert kryptografisk valgsystem som er kompatibelt med tillitsantagelsene
til [Swi21].
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Preface

This work is the result of the TMA4900 Industrial Mathematics Master’s Thesis at the Norwegian
University of Science and Technology (NTNU). The thesis concludes my studies at the 5-years
master’s degree programme Applied Physics and Mathematics with specialization in cryptography.

A compressed version of this master thesis has been accepted as a short paper for the conference
E-Vote-ID which will be held in Bregenz, Austria in October 2022. The short paper is joint work
with Tjerand Silde. The short paper will be published in University of Tartu Press Proceedings
and will be available at e-vote-id.org/proceedings.

This thesis is available at ntnuopen.ntnu.no and tjerandsilde.no/academic.
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1 Introduction

Every democratic country needs a voting system for their citizens. Traditionally this voting system
is an in-person paper-based system, but in the last few decades some countries have explored the
possibility of an online voting system, letting their inhabitants participate in an election from
wherever they want, using their own devices. The supporters of online voting claim it could reduce
costs, increase the speed of counting ballots, and increase availability for the voters. However,
severe problems were found in every online voting system implemented to be used in elections,
including the systems used in Switzerland [Hai+20], Australia [HT15], Estonia [Spr+14] [Per21],
and the United States [SKW20]. Also, quantum computers compose not only a future threat
against integrity of online voting, but also a threat against privacy of votes cast today.

1.1 Purpose

There are at least three obvious reasons why Switzerland is eager to implement an online voting
system. First, the frequent voting events. While most democratic countries today are indirect
democracies where citizens cast their ballots about every second year, Switzerland is a direct
democracy where the citizens cast their ballots not only in the parliamentary elections held every
fourth year, but also in referendums three or four times a year. Second, Switzerland does not
consider coercion to be an issue in their elections and does not require an electronic voting system
to be coercion resistant. Through their extensive use of postal voting, the possibility of vote selling
is already present. Therefore, implementing an electronic voting system in Switzerland faces one
issue less than in countries where coercion resistance is a requirement. Third, the high percentage
of Swiss living abroad. Around 11% of the Swiss population live abroad,1 and an electronic voting
system could make Swiss elections independent of foreign postal services.

The first trials with internet voting for federal votes in Switzerland were run in the canton of
Geneva in 2004.2 By 2010, trials in 12 of 26 cantons with three different systems were held and
in 2012, 50% of Swiss living abroad could use internet voting for federal votes. The Swiss Post
voting system came in use in 2016, and in 2019, the source code of this system was published.
After severe failures were found in this source code [Hai+20], Switzerland decided in March 2019
to put the whole electronic voting project on hold. Now, electronic voting trials are again in the
planning. Since the 1st of July 2022 a new legislation applies for the first stage of the redesign
of e-voting trials.3 This new legislation again allows the Swiss cantons to apply to the Federal
Council to offer e-voting on a trial basis. Some cantons are planning to resume trials with the new
and improved Swiss Post voting system.

The Swiss Post voting system [Swi21] uses cryptography whose security is based on discrete log-
type assumptions. These mathematical assumptions are assumed to provide the necessary security
against classical computers. However, quantum computers could be a threat against the security
of these systems. A quantum computer uses qubits, which not only can be represented as 0 or 1,
but also as a superposition of both. This allows to speed up the algorithms to compute discrete
logarithms. It is hard to say when quantum computers will be strong enough to break discrete
log-type assumptions. First then, they could tamper with the results of an ongoing election and
be a threat against the integrity of online voting protocols. Still, the possibility of future quantum
computers is also a threat against privacy of votes cast today. A future quantum computer could
break the vote secrecy of a past election. Ballots cast today could be stored by those waiting for
quantum computers to decrypt them in the future.

To ensure long-lasting secrecy of ballots, voting systems could use cryptography based on other
mathematical assumptions than discrete logarithm. Lattice-based cryptography is a good candid-
ate. The best algorithms known for breaking the assumptions of lattice-based cryptography cannot

1https://www.eda.admin.ch/eda/en/fdfa/living-abroad/schweizerinnen-und-schweizer-im-ausland/fifth-
switzerland/statistics.html

2https://www.bk.admin.ch/bk/en/home/politische-rechte/e-voting/chronik.html
3https://www.bk.admin.ch/bk/en/home/dokumentation/medienmitteilungen.msg-id-89020.html

All links 1, 2, and 3: Accessed the 29th of May 2022
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be speeded up by quantum computers. As of today, no voting system in use is post-quantum se-
cure. In this thesis, we investigate how the Swiss voting protocol can be made post-quantum secure
using lattice-based cryptography.

1.2 Return Code-Based Voting

In an electronic voting system, a voter can use her personal device, from now on called the voting
client, to send her vote to a voting server. We could imagine a very simple voting system, where
the voter types her preferred voting option to the voting client which encrypts it and sends it
to the voting server. Finally, the voting client shows the voter a message on the screen saying
”Congratulations, you have now voted in this election”. Trusting the voting client to perform such
an important task is risky; how does the voter know that her voting client really delivered the
right vote to the voting server? A hacked voting client could try to cast another vote than the
vote intended by the voter. We need to design the voting system in such a way that a voter can
be assured that the right vote arrives to the voting server even if her voting client is hacked. This
can be solved with so-called return codes, giving each voter a confirmation that the correct vote
was received and recorded by the voting system.

A return code-based voting system consists of three phases. In the setup phase, everything is
prepared for the election, the different components receive their keys, and the voters receive per
postal mail a voting card consisting of different keys and return codes. In the voting phase, the
voter types her preferred voting options to the voting client and receives some return codes back
which she can compare with the return codes from her voting card. Finally in the tally phase,
the election result is computed based on all the confirmed votes. In the following we focus on the
voting phase of a return code-based voting system.

The voting phase consists of voter, voting client, voting server and return code server. The voting
phase includes different cryptographic operations like encryption and zero-knowledge proofs. Be-
cause a voter cannot do any cryptographic operations, the voting client will do these operations
for her. Figure 1 shows the 5 steps of the SendVote protocol of the voting phase. The protocol is
initiated by the voter by typing some key and is ended after the voter successfully compared the
received return codes with the return codes from her voting card.

Voter

5) Compare
return codes with

codes from voting card

Voting
client

Voting
server

Return code
server

1) Key,
voting options

4) Return codes

2) Ballot

4) Return codes

2) Ballot

3) Return code
share

Figure 1: The SendVote protocol of a return code-based voting scheme

1. To start the voting process, the voter types the start voting key from her voting card to the
voting client. Then she types her preferred voting options.

2. The voting client encrypts the voting options and computes the ballot. The voting client
sends the ballot to the voting server which forwards it to the return code server.

3. Based on the ballot, the return code server computes a return code share and sends it to the
voting server.

4. Based on the return code share, the voting server computes the return codes. The return
codes are sent back to the voter.

5. The voter verifies the return codes shown on the screen by comparing them with the corres-
ponding return codes from the voting card.

When the return codes shown on the screen correspond with the return codes from the voting card,
the voter is assured that their intended vote was correctly sent from the voting client to the voting
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server. This property is called sent-as-intended individual verifiability. As already mentioned, the
vote is encrypted by the voting client before being sent over the internet to the voting server. This
encryption is done so that nobody eavesdropping the internet communication can learn the vote
and assures confidentiality of the vote against the ”outside world”. Making return codes is simple
if we only care about this type of privacy. We simply let the voting server decrypt the vote, and
send return codes based on the plaintext vote. However, for a voting system we do not only want
confidentiality of the vote against the ”outside world” but also against the voting system itself.

Absolute privacy where no information is leaked to no one cannot coexist with verifiability where
sufficient info is available to verify the result. There will always be some compromise. We must
choose someone to trust, to assume someone to be trustworthy. Trust assumptions must be chosen
to achieve high levels of privacy and verifiability, but still allow for an efficient and voter-friendly
system. Voters might not agree upon which authorities are trustworthy. By using distribution
of trust, multiple authorities perform crucial tasks together. By choosing enough heterogeneous
authorities, collaboration is unlikely.

The Swiss Post voting system does not trust the voting server, but does trust that at least one
of several return code components is honest. Therefore, the return code server shown in Figure 1
does in fact consist of several independent components controlled by independent authorities. Each
return code component makes one return code share. Then, all the return code shares are combined
by the voting server to compute the return codes. The Swiss Post voting system achieves individual
verifiability if at least one of the return code components is honest. If one return code component
is honest, it is not possible for other parts of the system to change or drop a vote while showing
the right return codes to the voter. Even if the voting client, the voting server, and all but one
control component are untrustworthy and try to cooperate to change or drop a vote, they are not
able to do this unnoticed. The voter would notice because wrong return codes would be shown.

The voting phase of the Swiss Post voting system consists of two rounds. We remember from
step 5 of Figure 1 that the voter verifies the return codes shown on the screen by comparing them
with the corresponding return codes from the voting card. A second round of the voting phase
lets the voters actively confirm their vote. If the return codes shown on the screen do not match
those on the voting card, the voter can try again with another device or go to a physical voting
place. If the return codes do match, the voter initiates the second round of the voting phase, called
the ConfirmVote protocol. The ConfirmVote protocol is initiated by the voter by typing another
key from the voting card. The ConfirmVote protocol precedes similarly to the SendVote protocol
and is ended when the voter receives the confirmation return code that she can compare with
the confirmation return code from her voting card. While the SendVote protocol assures that the
voting client sends the vote as intended, the ConfirmVote protocol lets the voter actively confirm
their vote and assures that the voting server records the vote as confirmed. This property is called
recorded-as-confirmed individual verifiability.

After all voters have cast their votes, the encrypted votes must be mixed and then decrypted to
compute the voting results. For this, we can use a mix-net. If the mix-net would take as input a
list of encrypted votes, change the order of the list, and then output the new list, it would be easy
to spot the permutation and break privacy. Thus, the output must look different than the input.
Making this possible without risking that the mix-net changes votes in the process is a delicate
task. We need the mix-net to be verifiable, that is, it must prove that the votes contained in the
output are the same as in the input, although they look different.

Because of the desired properties and trust assumptions of the Swiss Post voting system, the ballot
from step 2 of Figure 1 cannot only include the encrypted vote, it must include several components.
First, the encrypted vote that will be the input to the mix-net. Second, some code that can be
sent to the return code components so that they can compute the return codes without learning
the vote itself. Third, the voter’s identity so that the voting server can check that the voter is
eligible to vote. Finally, we include proofs proving that the preferred voting options of the voter
were in fact used both in the computation of the encrypted vote sent to the mix-net and in the
computation of the codes sent to the return code components. To make the components of the
ballot, different cryptographic building blocks are needed. We need encryption, commitments, and
zero-knowledge proofs.
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1.3 Cryptographic Building Blocks

A public key encryption scheme can be compared with a box with a key lock given to you by
the decryptor. Only the decryptor has the secret key that can open the box. When you receive
the box, it is open and empty. You can put a paper with a secret message in the box, and when
you close the box, it automatically locks. Now you can send the box back to the decryptor. The
decryptor can use the secret key to open the box and read the message.

A commitment scheme can also be compared with a box with a key lock. However, this time,
you make the box yourself and only you have the secret randomness to open it. Now you can
put a paper with a secret message in the box, lock it, and send it to a verifier, while keeping the
randomness for yourself. Now the verifier is in possession your message but cannot open the box
to read it because she does not have the randomness. However, as the verifier now possesses the
box, you are not anymore able to change the message contained in it. Later, you could give the
randomness to the verifier, and she can open the box and read the message. Both the fact that
the verifier is not able to read the message before you give them the randomness and the fact that
you are not able to change the message after you gave the box away, are important properties
of the commitment scheme. We call these properties hiding and binding. We can think about
a commitment as a one-time encryption of a given message. After you revealed or re-used the
randomness, the commitment will not be hiding anymore.

Zero-Knowledge proofs, also called ZK-proofs, are proofs that do not reveal more than necessary
about some secret message. If we combine such ZK-proof with a commitment box as above, we
can prove properties about the secret message contained in the box without revealing the secret
message itself. For example, we can prove that the secret message in the box is short. If we send
two commitment boxes, a ZK-proof can prove that the secret messages contained fulfil some linear
relation with each other. In the voting system, ZK-proofs can be used by the voting client to prove
that the ballot was correctly computed, and be used by the return code servers to prove that the
return codes were correctly computed.

1.4 Related Work

Our goal is to make the voting protocol of [Swi21] post-quantum secure. For this we need a voting
protocol that (1) respects the security properties of [Swi21], in particular it should provide (1a)
individual verifiability, (1b) universal verifiability and (1c) privacy. (2) These security properties
should be assured with the given trust assumptions, in particular the protocol should allow for
several control components for making return codes and mixing votes, where only one of these
control components is assumed trustworthy. (3) Vote privacy should be preserved even against an
attack using quantum computers in order to guarantee long-term privacy. (4) The protocol should
be efficient so that it could be used in practice also in larger elections.

[Swi21] uses a so-called decryption mix-net, where the input ciphertexts are nested encryptions
and each node in the mix-net is responsible for decrypting one layer of each ciphertext. Decryption
mix-nets based on dlog-like assumptions can achieve high efficiency with strong security properties
including universal verifiability, while existing efficient schemes for lattice-based primitives do not
provide universal verifiability. In 2020, Boyen, Haines, and Müller [BHM20] presented the first
verifiable and practical post-quantum mix-net with external auditing which can be used as a drop-
in replacement of existing constructions. Their construction is a decryption mix-net using only
lattice-based primitives, including nested BGV ciphertexts. Their system is quite efficient, though
the nested BGV ciphertexts are quite costly in terms of communication size. They formally proved
that their mix-net provides a high level of verifiability. However, their use of an active auditor that
must be assumed to be honest during the mixing process conflicts with universal verifiability.

For making efficent schemes that provide universal verifiability, we need another approach. In the
following schemes, the mixing and the decryption are separated from each other. The first fully
post-quantum proof of a shuffle for Ring-LWE encryption schemes was presented by Costa, Pinilla,
and Bosch [CMM19] in 2019. This shuffle was in 2021 used by Farzaliyev, Willemson, and Kaasik
[FWK21] to construct a mix-net, using the amortization techniques by Attema, Lyubashevsky,
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and Seiler [ALS20] for the commitment scheme by Baum, Damg̊ard, Lyubashevsky, Oechsner, and
Peikert [Bau+18].

Herranz, Mart́ınez, and Sánchez [HMS21] in 2021 gave the first sub-linear post-quantum zero-
knowledge argument for the correctness of a shuffle. However, the scheme is not implemented, the
example parameters do not take the soundness slack of the amortized zero-knowledge proofs into
account and their scheme does not consider decryption of ballots, which would make an actual
implementation of the scheme less efficient.

In 2021, Aranha, Baum, Gjøsteen, Silde, and Tunge [Ara+21] proposed a verifiable shuffle for
lattice-based commitments to known values. Their scheme is much more efficient in terms of
communication size and communication timings than the scheme of [FWK21]. Their shuffle can
be used to prove that a collection of commitments opens to a given collection of known messages,
without revealing a correspondence between commitments and messages. Their scheme was the
first construction from candidate post-quantum secure assumptions using return codes to defend
against compromise of the voting client. However, their trust model assumes a single trusted voting
server to ensure privacy of the ballots, which is too restrictive for use in [Swi21].

In 2022, Aranha, Baum, Gjøsteen, and Silde [Ara+22] proposed a verifiable secret shuffle for BGV
ciphertexts as well as a verifiable distributed decryption protocol for it. The protocol allows for an
untrustworthy voting server. The shuffle is based on an extension of the shuffle of commitments
to known values which is combined with an amortized proof of correct re-randomization. The
verifiable distributed decryption protocol uses noise drowning for BGV decryption and proves
decryption correctness in zero-knowledge. They give concrete parameters for their system and
estimate communication size and timings of their protocol. An implementation of all sub-protocols
is provided. They demonstrate with a prototype voting protocol design that the shuffle and the
decryption protocol are suitable for use in real-world cryptographic voting schemes. However,
their prototype voting protocol does not describe how to make return codes. The return codes
from [Ara+21] do not fit with this shuffle protocol because of the different trust assumptions and
because the voting phase of [Ara+21] gives commitments as input to the mix-net, while the mix-net
of [Ara+22] requires BGV ciphertexts as input.

1.4.1 Our Contribution

We present a lattice-based voting phase suitable for electronic voting with return codes, extending
the framework by Aranha et al. [Ara+21; Ara+22]. Like [Swi21], our return code-based voting
protocol does not assume a trustworthy voting server but does assume that at least one so-called
control component is trustworthy. With the given trust assumptions, our protocol achieves sent-
as-intended integrity and privacy.

1.5 Outline

The first sections of the report present background material needed to build an electronic voting
protocol. Some preliminaries are presented in Section 2. Hard problems that can be used to assure
the security of cryptographic building blocks are presented in Section 3. Sections 4, 5, 6 present
cryptographic building blocks needed in a voting system. Encryption schemes are presented in
Section 4, commitment schemes in Section 5 and zero-knowledge proofs in Section 6. For each
building block, we present both dlog-based and lattice-based schemes. Desired properties of a
voting protocol are presented in Section 7.

The Swiss Post voting protocol [Swi21] from 2021 is presented in Section 8. We present syntax
and the two-round return code-based voting protocol and we discuss the security of the protocol.
The lattice-based voting protocol by Aranha et al. [Ara+21] from 2021 is presented in Section 9.
We present the one-round return code-based voting protocol and discuss why this protocol cannot
be used directly to make return-codes for the shuffle by Aranha et al. [Ara+22] from 2022.

Our voting protocol is presented in Section 10. We present the two-round return code-based voting
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protocol and compare it with the protocols of [Swi21] and [Ara+21]. We argue why our protocol
can be used to make return-codes for the shuffle by Aranha et al. [Ara+22] from 2022. We give
an informal security analysis. In Section 11, we give concrete communication sizes and timings of
our protocol and discuss its performance. Some final concluding remarks are given in Section 12.

2 Preliminaries

We define the rings Rq and Rp, the norms of elements and vectors, and we explain what we mean
by ”short” elements.

Let N be a power of 2 and p ≪ q primes. Let Rq = Zq[X]/⟨XN + 1⟩ and Rp = Zp[X]/⟨XN + 1⟩
be rings of polynomials modulo XN + 1 with integer coefficients modulo q and p respectively.

We define the norms of elements f(X) =
∑
αiX

i ∈ Rq to be the norms of the coefficient vector
as a vector in ZNq

||f ||1 =
∑
|αi|, ||f ||2 = (

∑
α2
i )

1/2, ||f ||∞ = max
i∈[1,...,n]

{|αi|}

For an element f̄ ∈ Rq, we choose coefficients as the representatives in [− q−1
2 , q−1

2 ], and then we
compute the norms as if f̄ is an element in R. For vectors a = (a1, . . . , , ak) ∈ Rk we define the
norms ℓ1, ℓ2 and ℓ∞ as

||a||1 =
∑
||ai||1, ||a||2 = (

∑
||ai||22)1/2, ||a||∞ = max

i∈[1,...,n]
{||ai||∞}

For any positive integer β, we define the set [β] = {−β, . . . − 1, 0, 1, . . . , β}. We extend the
notation to N-dimensional polynomials. We mean by short polynomial in [β] a polynomial with
N integer coefficients that all have maximum absolute value β. Then we extend the notation to
polynomial vectors. We mean by short polynomial vector in [β]k a polynomial vector consisting of
k polynomials each with N integer coefficients that each have maximum absolute value β.

3 Hard Problems

Cryptographic protocols can base their security on problems that are easy in one direction, while
hard in the other direction. We briefly present a few such problems. First, we present the discrete
logarithm problem (Dlog) and a few other dlog-based problems: the computational Diffie-Hellman
problem (CDH), the decisional Diffie-Hellman problem (DDH), and the extended subgroup gener-
ated by small primes problem (ESGSP). Then we present a few lattice-based problems: the Short
Integer Solution problem (SIS), which is a computational problem, then the decisional version
of the Learning With Errors problem (LWE), and the decisional version of the Learning With
Rounding problem (LWR).

3.1 Dlog-Based Problems

Let q be a prime and let Gq be a multiplicative cyclic group of order q with generator g.

The Discrete Logarithm Problem (Dlog) Given (g, y ∈ Gq), the dlog problem asks to compute
a such that ga = y.

The Computational Diffie Hellman Problem (CDH) Given (g, ga, gb) where a, b
$← Zq, the

CDH problem asks to compute gab.
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The Decisional Diffie-Hellman Problem (DDH) Given (g, ga, gb) where a, b
$← Zq, the DDH

problem asks to distinguish gab from a random element of Gq.

Let q be a prime such that p = 2q + 1 is also a prime, then the quadratic residues of the finite
field with p elements is a finite cyclic group Qp of prime order q. Let l1 ∈ Qp be the group element
corresponding to the smallest prime that is a quadratic residue modulo p.

The Extended Subgroup Generated by Small Primes Problem (ESGSP)Given (gs, g1, l1)

where s
$← Zq, g1

$← Qp, the ESGSP problem asks to distinguish (gs1, l
s
1) from random elements of

Qp.

Assuming the ESGSP problem is hard is a similar but stronger assumption than assuming that
the DDH problem is hard. While for the DDH problem the base element is known, for the ESGSP
problem we use the same exponent several times for different bases and we want to hide not only
the exponent, but also the base.

3.2 Lattice-Based Problems

Let N be a power of 2 and q a prime. Let Rq = Zq[X]/⟨XN + 1⟩.

The Short Integer Solution Problem (SIS) Given A ∈ Rn×mq where m ≥ 2n and t ∈ Rnq , the
SIS problem asks to compute short s ∈ [β]m so that As = t.

The Decisional Learning With Error Problem (LWE) Given A ∈ Rn×mq , the LWE problem
asks to distinguish As + e, where s ∈ [β]m and e ∈ [β]n, from a random polynomial vector from
the ring.

LWE can also be defined with s ∈ Rmq , and the presented definition is a special case.

Let p be a prime so that p ≪ q. Divide the elements of Rq into p contiguous intervals of roughly
q/p elements each. Define the rounding function ⌊·⌉ : Rq → Rp that maps x ∈ Rq into the index of
the interval that x belongs to in Rp. Let the rounding function be extended to vectors by applying
it componentwise.

The Decisional Learning With Rounding Problem (LWR) Given A ∈ Rn×mq , the LWR
problem asks to distinguish ⌊As⌉, where s ∈ [β]m, from a random polynomial vector from the ring.

LWR can also be defined with s ∈ Rmq , and the presented definition is a special case.

Knapsack Problems The Search Knapsack Problem is essentially the module SIS problem. The
Decisional Knapsack Problem is essentially the module LWE problem.

4 Public Key Encryption

Let λ be a security parameter. A public-key encryption scheme E = (KeyGen,Enc,Dec) is a triple
of efficient algorithms.

• (pk, sk)← KeyGen(λ) The key generation algorithm is a probabilistic algorithm that on input
a security parameter λ, outputs the public/private key pair (pk, sk).

• c ← Enc(m, pk) The encryption algorithm is a probabilistic algorithm that on input the
public key pk and a message m, outputs a ciphertext c.

• m ← Dec(c, sk) The decryption algorithm is a deterministic algorithm that on input the
secret key sk and a ciphertext c, outputs a message m.

Messages are assumed to lie in some finite message spaceM and ciphertexts in some finite cipher-
text space C. We say that E = (KeyGen,Enc,Dec) is defined over (M, C).
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4.1 Properties

4.1.1 Correctness

Perfect correctness of an encryption scheme implies that decryption undoes encryption. That is,
for all honestly generated keys (pk, sk) from KeyGen and for all messages m, we have the relation
Dec(Enc(m, pk), sk) = m.

Not all encryption schemes have perfect correctness. Decryption does not perfectly undo encryp-
tion. This is the case if the encryption algorithm includes some noise in the ciphertext. We can
define correctness less strictly and say that the encryption scheme is correct if decryption with
overwhelming probability undoes encryption. That is, given honestly generated keys (pk, sk) from
KeyGen, then we have Pr [Dec(Enc(pk,m), sk) = m] ≥ 1− ϵ(λ).

We will in this thesis only describe encryption schemes with homomorphic properties. Additive
homomorphic decryption implies that we can add two or more ciphertexts that are encrypted with
the same public key and then decrypt the sum with the secret key, and get the same result as if we
had first decrypted each ciphertext with the secret key and then taken the sum of the messages. For
slightly homomorphic ciphertexts, only a limited number of ciphertexts can be added until the noise
will be so large that the ciphertext cannot be decrypted anymore. Multiplicative homomorphic
decryption is similar, with multiplication instead of adding.

In Section 4.3 we will define BGV ciphertexts and see that they are only slightly additive homo-
morphic. In Section 10 we will need the possibility to send BGV ciphertexts made in the voting
protocol through a mix-net that adds encryptions of zero to the encrypted vote. This will require
that a limited number of ciphertexts can be added and still be decrypted correctly. Therefore we
define τ -correctness. The definition is from [Ara+22, Section 2.4].

Definition 1 (τ-Correctness). We say that E is τ -correct if the sum of τ honestly generated
ciphertexts with overwhelming probability decrypts to the sum of the τ encrypted messages. Given
keys (pk, sk) honestly generated from KeyGen(λ), and ciphertexts {ci}i∈[τ ] honestly computed from
Enc(pk, {mi}i∈[τ ]). Then

Pr

Dec(∑
i∈[τ ]

ci, sk) =
∑
i∈[τ ]

mi

 ≥ 1− ϵ(λ)

where the probability is taken over the random coins of KeyGen and Enc.

4.1.2 Chosen Plaintext Security

The following definition of security against chosen plaintext attacks (CPA-security) is from [Ara+22,
Section 2.4].

Definition 2 (CPA-Security). We say that the public key encryption scheme is CPA-secure if
an efficient adversary A, after choosing two messages m0 and m1 and receiving an encryption c
of either m0 or m1 (chosen at random), cannot distinguish which message the ciphertext c is an
encryption of. Given keys (pk, sk) honestly generated from KeyGen(λ), the adversary computes

the messages (m0,m1, st) ← A(pk), receives a ciphertext c ← Enc(mb, pk) where b
$← {0, 1} and

outputs a bit b′ ← A(c, st). Then

|Pr[b = b′]− 1

2
| ≤ ϵ(λ)

where the probability is taken over the random coins of KeyGen and Enc.

There exist stronger security notions of encryption schemes than CPA-security, for example security
against chosen ciphertext attacks (CCA-security). However, CCA-secure schemes do not have
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homomorphic properties. Homomorphic properties will be important when designing a voting
system, and we will therefore not consider stronger security notions.

4.2 ElGamal Encryption

ElGamal [ElG85] is a public-key encryption scheme whose security is based on the DDH problem
from Section 3. Let Gq be a cyclic group of order q with generator g, where q is a large prime.
The ElGamal encryption scheme consists of the following algorithms:

• KeyGen(λ) The key generation algorithm takes as input a security parameter λ. It samples

a random sk
$← Zq and computes pk = gsk ∈ Gq. It outputs the public/private key pair

(pk, sk).

• Enc(m, pk) The encryption algorithm takes as input a message m ∈ Gq and the public key

pk ∈ Gq. It samples a random r
$← Zq and computes

c = (u, v) = (gr, pkr ·m) ∈ G2
q. (1)

It outputs the ciphertext c.

• Dec(c, sk) The decryption algorithm takes as input the ciphertext c = (u, v) ∈ G2
q and the

private key sk ∈ Zq. It computes m = v · u−sk. It outputs the message m.

We observe that the ElGamal encryption scheme has perfect correctness. For any key pair gener-
ated by the key generation algorithm, it holds that Dec(Enc(m, pk), sk) = m for all m ∈ Gq.

The ciphertexts are multiplicatively homomorphic. We can multiply two or more ciphertexts that
are encrypted with the same public key and then decrypt the product with the secret key, and
get the same result as if we had first decrypted each ciphertext with the secret key and then
taken the product of the messages. For two ElGamal ciphertexts c and c′ we have the relation

c · c′ = Enc(m, pk; r) · Enc(m′, pk; r′) = (gr, pkr ·m) · (gr′ , pkr
′
·m′) = (g(r+r

′), pk(r+r
′) · (m ·m′)) =

Enc(m′′, sk; r′′) = c′′ for m′′ = (m ·m′) and r′′ = (r + r′).

An attacker against CPA-security of the ElGamal encryption scheme is an attacker against the
DDH assumption.

Multi-Recipient ElGamal When encrypting messages for multiple recipients with different pub-
lic keys, we can share the encryption randomness r. The multi-recipient ElGamal encryption
scheme [BBS03] uses the same key generation algorithm, but instead of the encryption and de-
cryption algorithms it has a multi-encrypt and a multi-decrypt algorithm.

• MultiEnc(m,pk) The encryption algorithm takes as input messages m ∈ Glq and a vector

of public keys pk ∈ Gkq . It samples a random r
$← Zq. If l > k, there are more messages

than public keys, and the algorithm outputs an error. Otherwise, if l = k, there are as many
messages as public keys. Then the algorithm computes

c = (u, v1, . . . , vl) = (gr, pkr1 ·m1, . . . , pk
r
k ·ml) ∈ Gl+1

q (2)

Otherwise, if l < k, there are less messages than public keys. Then the algorithm computes

c = (u, v1, . . . , vl−1, vl) = (gr, pkr1, ·m1, . . . , pk
r
l−1 ·ml−1, (pkl ·pkl+1 · · ··pkk)r ·ml) ∈ Gl+1

q (3)

The algorithm outputs the ciphertexts c ∈ Gl+1
q .

• MultiDec(c, sk) The decryption algorithm takes as input the ciphertexts c ∈ Gl+1
q and a

vector of private keys sk ∈ (Zq)k. If l > k, there are more ciphertexts than private keys,
and the algorithm outputs an error. Otherwise, the messages are computed so that mi =
vi · u−ski ∈ Gq. If l < k, there are less ciphertexts than secret keys, and the last message ml

requires a compression of the secret keys such that ml = vl · u−(skl−1+skl+···+skk) ∈ Gq. The
algorithm outputs the messages m ∈ Glq.
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4.3 BGV Encryption

We recall from Section 2: Let N be a power of 2 and p≪ q primes. Let Rq = Zq[X]/⟨XN +1⟩ and
Rp = Zp[X]/⟨XN + 1⟩ be rings of polynomials modulo XN + 1 with integer coefficients modulo q
and p respectively.

We mean by short e ∈ [β] a polynomial with integer coefficients that all have maximum absolute
value β. There is a natural mapping from messages in ZNp to polynomials in Rq with coefficients
modulo p.

The BGV encryption scheme [BGV14], named after Brakerski, Gentry, and Vaikuntanathan,
consists of the following algorithms:

• KeyGen(λ) The key generation algorithm takes as input a security parameter λ. It samples

a
$← Rq and short s

$← [β] and short noise e
$← [β]. It sets sk := (s, e) and computes

pk = (a, b) = (a, as+ pe). It outputs the public/private key pair (pk, sk).

• Enc(m, pk) The encryption algorithm takes as input a message m ∈ ZNp and the public key

pk. It samples short r
$← [β] and short noise e′, e′′

$← [β] and computes

c = (u, v) = (ar + pe′, br + pe′′ +m) (4)

It outputs the ciphertext c.

• Dec(c, sk) The decryption algorithm takes as input the ciphertext c = (u, v) and the private
key sk ∈ Zq. It computes m = (v − s · u mod q) mod p. It outputs the message m.

BGV ciphertexts are slightly additively homomorphic. That is, only a limited number of ciphertexts
can be added until the noise will be so large that the ciphertext cannot be decrypted anymore.
The BGV encryption scheme scheme is τ -correct for a limited number of ciphertexts τ if p ≪ q,
and β is sufficiently small so that the noise values are sufficiently small. More precisely, we must
have τ ||v − su||∞ < ⌊q/2⌉. An attacker against CPA-security of the scheme is an attacker against
the LWE problem [BGV14, Section 5.5]. As the scheme encrypts polynomials, a multi-encrypt
version like we have seen for ElGamal in Section 4.2, is not necessary.

5 Commitments

Commitment schemes were first introduced by Blum [Blu83]. A commitment scheme is a protocol
with two participants: The prover and the verifier. The commitment scheme consists of two phases,
the commitment phase, and the opening phase. In the commitment phase, the prover commits to
a value while hiding the actual value to the verifier. In the opening phase, the prover reveals which
value she committed to. A commitment scheme is designed to be binding and hiding. Binding
means that in the opening phase, the prover cannot reveal another value than the value committed
to in the commitment phase. Hiding means that in the commitment phase, the verifier learns
nothing about the hidden value.

Let λ be a security parameter. A commitment scheme consists of the following three algorithms:
KeyGen,Com and Open.

• pp← KeyGen(λ) The key generation algorithm is a probabilistic algorithm that on input the
security parameter λ outputs the public parameters pp containing a definition of the message
spaceM.

• JmK, r ← Com(pp,m) The commit algorithm is a probabilistic algorithm that on input the
public parameters pp and a message m ∈M outputs a commitment JmK and opening r.

• b ← Open(pp,m, JmK, r) The open algorithm is a deterministic algorithm that on input pp,
m, JmK, r, outputs a bit b ∈ {0, 1}.

10



Often the notation c is used for a commitment. We here use the notation JmK for a commitment, to
clearly distinguish a commitment from a ciphertext. The notation we chose has the disadvantage
that it seems that there is only one possible opening m of a commitment JmK. As we will see in
Definition 5, this is not necessarily the case.

Figure 2 shows how a prover P communicates with a verifier V in a commitment scheme. The
public parameters pp can be generated by P or V before the communication begins. In some
schemes it will be necessary for the party who generated the public parameters to convince the
other party that pp were correctly generated with with KeyGen.

Prover P Verifier V

JmK, r ← Com(pp,m)

JmK

m, r

b← Open(pp,m, JmK, r)

Figure 2: The public parameters pp are known to both the prover and the verifier. A message
m ∈M is input to the prover. The commitment scheme consists of two phases. In the commitment
phase, the commitment JmK is sent from the prover to the verifier. In the opening phase, the
message m and opening r are sent from the prover to the verifier, which verifies that m is indeed
the opening of JmK given r.

5.1 Properties

The following definitions of completeness, hiding and binding are from [Ara+22, Section 2.6].

Definition 3 (Completeness). We say that the commitment scheme is complete if an honestly
generated commitment is accepted by the opening algorithm. Given pp honestly generated with
KeyGen(λ) and JmK, r honestly generated with Com(pp,m). Then,

Pr [Open(m, JmK, r) = 1] = 1

where the probability is taken over the random coins of KeyGen and Com.

Definition 4 (Hiding). We say that a commitment scheme is hiding if an adversary A, after
choosing two messages m0 and m1 and receiving a commitment JmbK to either m0 or m1 (chosen at
random), cannot distinguish which message JmbK is a commitment to. This is equivalent to that the
adversary cannot distinguish between a commitment of a message m of her choice and a uniformly-
random element in the space of commitments. Given parameters pp honestly generated from
KeyGen(λ), the adversary computes the messages (m0,m1, st) ← A(pp), receives a commitment

JmbK← Com(mb) where b
$← {0, 1} and outputs a bit b′ ← A(JmbK, st). Then,

|Pr[b = b′]− 1

2
| ≤ ϵ(λ)

where the probability is taken over the random coins of KeyGen and Com.

Definition 5 (Binding). We say that a commitment scheme is binding if an adversary A,
after creating a commitment JmK, cannot find two valid openings to JmK for different messages
m and m′. Given parameters pp honestly generated from KeyGen(λ), the adversary computes
(JmK,m, r,m′, r′)← A(pp). Then,
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Pr

 m ̸= m′

Open(m, JmK, r) = 1
Open(m′, JmK, r′) = 1

 ≤ ϵ(λ)
where the probability is taken over the random coins of KeyGen.

The properties hiding and binding are illustrated in Figure 3 and Figure 4. It is not possible
to get both properties binding and hiding against computationally unbounded adversaries at the
same time. We can get either hiding or binding against computationally unbounded adversaries.
The other property will be against bounded-complexity adversaries, under assumptions on the
primitives of the construction.

Prover P Adversary A

m0,m1

b
$← {0, 1}

JmbK, r = Com(pp,mb)
JmbK

Figure 3: For an attack against the hiding property, the verifier is the adversary. The adversary
sends messages m0,m1 to the prover. The prover flips a coin and depending on the outcome the
prover commits to one of the messages. Then JmbK is sent to the adversary. If the adversary is not
able to tell if JmbK is the commitment to message m0 or m1, the scheme is hiding.

Adversary A Verifier V

JmK, r = Com(pp,m)
JmK

m, r,m′, r′

b← Open(pp,m, JmK, r)

b← Open(pp,m′, JmK, r′)

Figure 4: For an attack against the binding property, the prover is the adversary. In the com-
mitment phase, the adversary sends a commitment JmK to the verifier. In the opening phase, the
adversary sends two messages m ̸= m′. If the verifier accepts both messages, then the binding
property is broken.

Homomorphic Properties For a homomorphic commitment scheme we have for two commit-
ments Com(m, r) and Com(m′, r′) the relation Com(m, r)⊕Com(m′, r′) = Com(m′′, r′′) where there
is some simple relation between the messages m,m′ and m′′ and some simple relation between the
randomnesses r, r′ and r′′. If m′′ = m +m, we say that the commitment scheme is additive ho-
momorphic. If m′′ = m ·m, we say that the commitment scheme is multiplicative homomorphic.
The commitment schemes we present here are either additive homomorphic or multiplicative ho-
momorphic. The commitment schemes we present here all have r′′ = r+r′ and ⊕ is either addition
or multiplication.

5.2 Dlog-Based Commitments

A discrete logarithm instance at its own is not a commitment scheme. Let c = gm mod q. This
scheme would be perfectly binding, following from the fact that there is one unique solution for
m = logg c mod q. To find this discrete logarithm is hard, still the scheme would not be hiding.
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An adversary could attack the hiding property like in Figure 3 by sending their message m of
choice to the prover and then check if the returned commitment c satisfies gm mod q = c. A
discrete logarithm instance by itself is not a commitment scheme, still we can use the discrete
logarithm problem to construct commitment schemes. In the following we present two well-known
commitment schemes with their security based on the Diffie-Hellman assumptions from Section 3.

ElGamal Commitments We recall the ElGamal encryption scheme of Section 4.2, with encryp-
tion algorithm Enc(m, pk) = c = (u, v) = (gr, pkr ·m) over Gq. This scheme is also a commitment
scheme. If a prover reveals randomness r and message m to the verifier, the verifier can verify the
opening without learning the secret key sk = logg pk.

The first component u makes the ElGamal commitment unconditionally binding. Given u and g
there exists a unique solution of r = logg u mod q. This locks the prover to this specific r. Thus,
m is also locked to a specific value and we have unconditionally binding of the message. The second
component v hides the message m. r is chosen uniformly random, thus pkr is uniformly random,
thus pkrm is also uniformly random. An adversary attacking hiding could try to break the dlog-
assumption by computing the discrete logarithm r = logg u, and break hiding by computing the
message m = v(pkr)−1. There could be better attacks against DDH, and so the ElGamal scheme
is computationally hiding based on the DDH assumption. The ElGamal commitment scheme is
obviously not hiding against those knowing the private key sk.

An ElGamal commitment can be opened by only publishing the randomness r, and not the message
m. The verifier can compute the message as m = v · (pkr)−1 and verify by checking u = gr.

ElGamal commitments are multiplicatively homomorphic. Multiplying a commitment to message
m and randomness r with a commitment to messagem′ and randomness r′ results in a commitment
to messagem′′ = m·m′ with randomness r′′ = r+r′. We have the relation Com(m, r)·Com(m′, r′) =

(gr, pkr ·m) · (gr′ , pkr
′
·m′) = (g(r+r

′), pk(r+r
′) · (m ·m′)) = Com(m′′, r′′), where m′′ = m ·m′ and

r′′ = r + r′.

Pedersen Commitments Another widely used commitment scheme was proposed by Pedersen

[Ped91]. Let Gq be a group of prime order q, with multiplicative generators g, h
$← Zq. A Pedersen

commitment is computed as JmK = gmhr where r
$← Zq.

To break binding, an adversary must find randomness r′ satisfying the relation JmK = gm
′
hr

′
for

a message m′ ̸= m. An adversary against binding of the scheme is an adversary against the dlog-
assumption. An adversary trying to find a randomness to break binding must compute the discrete
logarithm instance r′ = logh(JmK(gm

′
)−1). The Pedersen scheme is unconditionally hiding. When

r is chosen uniformly random, then also hr is uniformly random and thus also JmK is uniformly
random.

Pedersen commitments are additively homomorphic under multiplication. Multiplying a commit-
ment to message m with randomness r with a commitment to message m′ with randomness r′

results in a commitment to message (m + m′) with randomness (r + r′). We have the relation
Com(m, r) · Com(m′, r′) = gmhr · gm′

hr
′
= g(m+m′)h(r+r

′) = Com(m′′, r′′), where m′′ = m +m′

and r′′ = r + r′.

It is important that the public parameters g and h are chosen uniformly random, to avoid that
the prover constructs a backdoor to break the binding property. In particular the prover should
not be allowed to choose g and h so that she learns logg h. In other words, h should not equal gs

for some s known by the prover. If so, the prover could easily break the binding by computing
another message m′ = m + s(r − r′) that corresponds to the same commitment c as message m
does. If it is the prover who generates the public parameters, the prover must convince the verifier
that they were correctly generated so that no such backdoor could be made.

We observe that the Pedersen commitment scheme cannot be used as an encryption scheme. Also,
for opening a commitment the message m must be published together with the randomness r.
Only publishing the randomness r is not enough to open the message m.
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The Pedersen commitment scheme is computationally binding and unconditionally hiding. The
unconditional hiding cannot be attacked, even by a future quantum computer. Assuming there
exists no quantum computer that can attack the computational binding, using Pedersen commit-
ments for a voting system could provide both integrity today and privacy in the future. However,
for a voting system we would still need computationally hiding primitives in other parts of the
system. We need ElGamal ciphetexts for the mix-net, and Chaum-Pedersen ZK-proofs for proving
relations between commitments. Both these primitives are only computationally hiding based on
dlog assumptions and so the system as a whole would still not provide long-term privacy against
quantum computers.

5.3 Lattice-Based Commitments

Baum, Damg̊ard, Lyubashevsky, Oechsner, and Peikert [Bau+18] presented in 2018 an additively
homomorphic commitment scheme based on structured lattice assumptions, together with a zero-
knowledge proof of opening knowledge. The scheme is at present more efficient than all other
lattice-based commitment schemes.

We recall from Section 2: Let N be a power of 2 and q a prime. Let Rq = Zq[X]/⟨XN + 1⟩ be a
ring of polynomials modulo XN +1 with integer coefficients modulo q. We mean by short v ∈ [β]k

a polynomial vector consisting of k polynomials with integer coefficients that all have maximum
absolute value β.

Let λ be a security parameter. Let the challenge space C = {c ∈ [1], ∥c∥1 = ν} be the set consisting
of all polynomials in Rq with exactly ν non-zero coefficients taken from the set {−1, 1}. ν is chosen

so that C has at least 2λ elements. Thus we choose ν such that 2ν ·
(
N
ν

)
> 2λ. Assume N is large

enough for such a ν to exist. We define the set of differences C̄ = {c− c′|c ̸= c′ ∈ C}.

Let Ik ∈ Rk×k be the identity matrix of dimension k over R. σ is a standard deviation for Gaussian
sampled polynomials over Rq.

We commit to messages m ∈ Rℓq. The three algorithms KeyGen,Com and Open are given as follows.

• KeyGen(λ) Create public parameters that can be used to commit to messagesm ∈ Rℓq. Create
the following matrices A1 ∈ Rn×kq and A2 ∈ Rℓ×kq as

A1 =
[
In A′

1

]
, where A′

1
$← Rn×(k−n)

q

A2 =
[
0ℓ×n Iℓ A′

2

]
, where A′

2
$← Rℓ×(k−n−ℓ)

q

The output is the public matrices A1 and A2.

• Com(pp,m) To commit to messages m ∈ Rℓq, choose randomly a short polynomial opening

vector r
$← [β]k and output the commitment

JmK = Com(m, r) = (c1, c2) = (A1r,A2r +m) (5)

• Open(pp,m, JmK, r.f) A valid opening of a commitment JmK is a 3-tuple (m, r, f), where
m ∈ Rℓq, r ∈ [β]k, and f ∈ C̄. The verifier checks that for all i, ∥ri∥2 ≤ 4σ

√
N , and that

f ·
[
c1
c2

]
=

[
A1

A2

]
· r + f ·

[
0n

m

]
(6)

We observe that the commitment opening consists not only of opening randomness r and message
m, but also includes a polynomial f ∈ C̄. This is because of the zero-knowledge proofs that will
be presented in Section 6.2.2. An (honest) prover that wants to simply open a commitment can
output (r,m) from (5) and f = 1.
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An attacker against the binding property of the commitment scheme is an attacker against the
Search Knapsack Problem and an attacker against the hiding property of the scheme is an attacker
against the Decisional Knapsack Problem [Bau+18, Section 4.2].

The commitments are additively homomorphic. Adding a commitment to message m and ran-
domness r with a commitment to message m′ and randomness r′ results in a commitment to
message (m + m′) with randomness (r + r′). We have the relation Com(m, r) + Com(m′, r′) =
(A1r,A2r +m) + (A1r

′, A2r
′ +m′) = (A1(r + r′), A2(r + r′) + (m +m′)) = Com(m′′, r′′), where

m′′ = m+m′ and r′′ = r + r′.

5.4 Comparison of Commitment Schemes

In the following we compare the lattice-based commitments by Baum et al. with the two dlog-based
commitment schemes by ElGamal and Pedersen and comment on some of the common properties.
The three commitment schemes are shown in Table 1.

Commitment Binding Hiding
ElGamal JmK = (c1, c2) = (gr, pkrm) ✓ DDH
Pedersen JmK = gmhr Dlog ✓
Baum JmK = (c1, c2) = (A1r,A2r +m) SIS LWE

Table 1: Here, m is the message, r is the randomness and JmK is the commitment. Public values
g, h, A1 and A2 are chosen uniformly random. pk is a public key for which only the decryptor
knows the secret key sk = logg pk. The checkmark ✓ implies unconditional.

The commitments of all three schemes are homomorphic. Commitment schemes do not necessarily
have algebraic properties, for example commitment schemes based on hash functions. We are for
the purposes of this thesis only interested in homomorphic schemes and will only describe these.

Just like for ElGamal commitments, the first component (c1) of a Baum commitment provides
binding, while the second component (c2) provides hiding. While the binding of the ElGamal
commitment scheme is perfect, the binding of the Baum commitment scheme is based on the
computational problem SIS. c1 is a SIS-instance which locks the prover to a randomness r. If the
randomness r is fixed to a specific value, also the message m = c2−A2r is fixed to a specific value.
An adversary prover must solve a SIS-instance to find another r′ ̸= r satisfying c1 = A1r

′ in order
to find another message m′ ̸= m satisfying m′ = c2 − A2r

′. While the hiding property ElGamal
is based on the DDH problem, the hiding property of the Baum commitment scheme is based on
the LWE problem. c2 is an LWE-instance that hides the message m.

For dlog-based commitment schemes we must choose if we want perfect hiding and computational
hiding with Pedersen or perfect binding and computational hiding with ElGamal. Because the
binding of the Baum commitment scheme is based on SIS and the hiding is based on LWE, the
scheme comes with different settings. By varying the parameters, we can choose statistical binding
and computational hiding, computational binding and statistical hiding, or both hiding and binding
computational. When we choose the third setting, the computational binding and hiding will be
stronger than the computational hiding/binding of the first two settings. This is because we choose
SIS and LWE to be equally difficult, which will make each of them more difficult than when we let
only one of them be computational. We recall the SIS problem from Section 3. The SIS problem
becomes harder when we set β to a smaller value. If we set β to a sufficiently small value, we
get a statistical binding commitment scheme. With certain parameters, we could even achieve
an unconditionally binding commitment scheme, when there exists only one solution of the SIS
problem. Hiding is then computational. We recall the decisional LWE problem from Section 3.
When setting β to a larger value, the LWE problem will become harder, and at some point, we
have a statistically hiding scheme. Binding is then computational. By choosing β something in
the middle, such that the hardness of the two problems SIS and LWE is equivalent, we achieve the
most favourable overall security.

Just like in the Pedersen commitment scheme where the public parameters g and h must be
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chosen uniformly random, for the Baum commitment scheme the public matrices A1 and A2 must
be chosen uniformly random. If not, the matrices can be constructed so that a cheating prover
has a backdoor to break the binding property or a cheating verifier has a backdoor to break
hiding. In practice, some string from a well-known trusted parameter can be chosen, like π or
the Euler’s number e, then this string could be hashed and then used as the parameter. When
choosing parameters like this, they should be uniformly random and there should then be no
relation between the parameters.

Just like the Pedersen commitment scheme, the Baum commitment scheme cannot be used as an
encryption scheme. Just like ElGamal scheme, a message could be opened without publishing the
actual message m. If the prover only publishes the randomness r, and not the message m, the
verifier could still compute the message as m = c2 −A2r and verify by checking c1 = A1r.

6 Zero-Knowledge Proof System

In the following protocols we have a secret witness and a public statement about the witness.
The witness can contain a secret key, some secret randomness or both, depending on the specific
protocol. We have two players: the prover and the verifier. A prover wants to prove to the verifier
that the public statement is true without revealing any additional information about the witness.
The verifier either accepts or rejects the proof.

We distinguish between honest and dishonest players. An honest prover is a prover who actually
knows the witness she tries to prove a statement about. A dishonest prover will try to prove that
a statement is true without knowing the witness. An honest verifier is a verifier who follows the
protocol honestly opposed to the dishonest verifier who may deviate from the protocol to learn
more information about the witness.

Zero-Knowledge Proofs (ZKP) were first introduced by Goldwasser et al. [GMR89]. A Zero-
Knowledge Proof is an interactive protocol where the prover wants to prove some statement to a
verifier, so that the verifier does not learn anything else about the witness, than that the statement
is true. A Zero-Knowledge Proof must fulfil the following three properties:

• Completeness: The honest prover is able to convince the honest verifier that a true statement
is true.

• Soundness: The probability that the dishonest prover can convince the honest verifier that
a false statement is true is negligible.

• Zero-Knowledge: The protocol only proves that the statement is true and leaks no additional
information about the witness to the verifier.

The first two of these are properties of more general interactive proof systems. The third property
is what makes the proof zero-knowledge. Sometimes we are not able to prove zero-knowledge (ZK)
but only Honest-Verifier Zero-Knowledge (HVZK), which is ZK only when the verifier follows the
protocol honestly.

Zero-Knowledge Proof of Knowledge (ZKPoK) We have just seen that a Zero-Knowledge
protocol has the property of soundness. For a Zero-Knowledge Proof of Knowledge protocol we
require the stronger soundness property Proof of Knowledge (PoK), as first defined by Bellare and
Goldreich [BG92].

• Proof of Knowledge: There exists a method to extract the witness by interaction with the
prover.
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Σ-Protocol A Sigma Protocol is a ZKPoK in three rounds. The Greek letter Σ visualizes the flow
of the protocol. Before the 3-move protocol can be run, the prover computes a public statement
and a private witness. The prover publishes the public statement to the verifier, while the secret
witness is kept secret. Then the prover interacts with the verifier in three moves as in the following:

1. Commitment phase: The prover commits to some randomness.

2. Challenge phase: The verifier replies with a challenge chosen at random.

3. Response phase: After receiving the challenge, the prover computes the response based on
the randomness, the secret witness, and the challenge, and sends this response to the verifier.

The protocol transcript consisting of commitment, challenge and response is then accepted or
rejected by the verifier.

The easiest way to prove Proof of Knowledge (PoK) of a Σ-protocol is by proving special soundness.
Special soundness implies PoK which again implies soundness.

• Special Soundness: We can extract a witness from accepted proofs which have the same
randomness (first message of the protocol) but distinct challenges (second messages).

If some dishonest prover would be able prove statements without knowing the witness, this prover
could extract the witness from her own proofs, thus in practice, a prover who can prove statements,
also knows the witness. Special soundness is proved by rewinding, which is a technique where we
let the prover prove two statements with the same randomness. Then we extract the witness from
these two statements. To sum up, if we have a ZKP and can prove special soundness by rewinding,
we have PoK and thus the protocol is a ZKPoK.

6.1 Properties

The following formal definitions of interactive proofs, completeness, knowledge soundness and
honest-verifier zero-knowledge are taken directly from Aranha et al. [Ara+22, Section 2.7]. The
definitions are based on Goldwasser et al. [GMR89].

Let L be a language, and let R be a NP-relation on L. Then, x is an element in L if there exists a
witness w such that (x,w) ∈ R. We let P,P∗, V and V∗ be polynomial time algorithms. Let λ be
a security parameter.

Definition 6 (Interactive Proofs). An interactive proof protocol Π consists of two parties: a
prover P and a verifier V, and a setup algorithm Setup that on input the security parameter λ,
outputs public setup parameters sp. The protocol consists of a transcript T of the communication
between P and V, with respect to sp, and the conversation terminates with V outputting either 1
or 0. Let ⟨P(sp, x, w),V(sp, x)⟩ denote the output of V on input x after its interaction with P, who
holds a witness w.

Definition 7 (Completeness). We say that a proof protocol Π is complete if V outputs 1 when P
knows a witness w and both parties follow the protocol. Hence, for any efficient sampling algorithm
P0 we want that

Pr

⟨P(sp, x, w),V(sp, x)⟩ = 1 :
sp← Setup (λ)
(x,w)← P0(sp)

(x,w) ∈ R

 = 1,

where the probability is taken over the random coins of Setup, P and V.
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Definition 8 (Knowledge Soundness). We say that a proof protocol Π is knowledge sound if,
when a cheating prover P∗ that does not know a witness w is able to convince an honest verifier
V, there exists a polynomial time algorithm extractor E which, give black-box access to P∗, can
output a witness w such that (x,w) ∈ R. Hence, we want that

Pr

(x,w) ∈ R :
sp← Setup (λ)

⟨P∗(sp, x, ·),V(sp, x)⟩ = 1

w ← EP∗(·)(sp, x)

 ≥ 1− ϵ(λ)

where the probability is taken over the random coins of Setup, P∗ and E .

Definition 9 (Honest-Verifier Zero-Knowledge). We say that a proof protocol Π is honest-
verifier zero-knowledge if an honest but curious verifier V⋆ that follows the protocol cannot learn
anything beyond the fact that x ∈ L. Hence, we want for real accepting transcripts T⟨P(sp, x, w),V(sp, x)⟩
between a prover P and a verifier V, and an accepting transcript S⟨P(sp, x, ·),V(sp, x)⟩ generated
by simulator S that only knows x, that

|Pr

b = b′ :

sp← Setup (λ)
T0 = T⟨P(sp,x,w),V(sp,x)⟩ ← Π(sp, x, w)
T1 = S⟨P(sp,x,·),V(sp,x)⟩ ← S(sp, x)
b

$← {0, 1}, b′ ← V⋆(sp, x,Tb)

− 1

2
| ≤ ϵ(λ)

where the probability is taken over the random coins of Setup, S and V∗.

An interactive honest-verifier zero-knowledge proof protocol can be made non-interactive using the
Fiat-Shamir transform [FS86].

6.2 Zero-Knowledge Proofs for Commitments

Zero-Knowledge Proofs of Knowledge can be used to prove properties of commitments without
revealing the openings. As we have seen in Section 5, the verifier can, when given an opening
(m, r), use the algorithm Open to verify that commitment JmK actually opens to message m. The
prover might not want to reveal opening (m, r) of commitment JmK, but still want to convince the
verifier about her knowledge of an opening. The prover also might want to prove specific properties
of one or several messages, without revealing the openings. This reminds us of digital signatures,
where a prover reveals the message m which has been signed but does not reveal the randomness
used in the computation.

6.2.1 Zero-Knowledge Proofs for Dlog-Based Commitments

The following proof systems can be used to prove properties of the ElGamal ciphertexts from
Section 4.2. All the proofs are based on the Chaum-Pedersen protocol [CP92]. The protocols are
complete, an attacker against soundness is an attacker against CDH and an attacker against HVZK
is an attacker against DDH.

• πExp [Swi21, Section 7.3.2] is a proof of exponentiation. Given vectors g = (g1, . . . gn) and
y = (y1, . . . yn), it proves y = (y1, . . . yn) = (gx1 , . . . g

x
n), that is, vector y has been obtained

by exponentiation of the elements of vector g to the same exponent x.

• πEqEnc [Swi21, Section 7.3.3] is a plaintext equality proof. It proves that two ElGamal
ciphertexts encrypt the same plaintext. Given two ElGamal ciphertexts c = (u, v) and

c′ = (u′, v′) under public keys pk and pk′, it proves (u, u′, v/v′) = (gr, gr
′
, pkr/pkr

′
), where r

is the random exponents used to encrypt c and r′ is the random exponents used to encrypt
c′.
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• πDec [Swi21, Section 7.3.4] is a proof of correct decryption. Given the ElGamal ciphertext
c = (u, v) under the public key pk = gsk and plain text m resulting from decrypting c
using secret key sk, it proves that (pk, v/m) = (gsk, usk). Similarly, given the multi-recipient
ElGamal ciphertext c = (u,v) = (u, v1, . . . vn) under public keys pk1, . . . pkn with pki = gski

and plain texts m1, . . .mn resulting from decrypting c using secret keys sk1, . . . skn, it proves
that (pk,v/m) = (gsk1 , . . . , gskn , usk1 , . . . uskn).

6.2.2 Zero-Knowledge Proofs for Lattice-Based Commitments

The following proofs can be used to prove properties of the commitments from Section 5.3. We
remember the commitment opening of Equation (6) consists not only of opening d and message
m, but also includes a polynomial f ∈ C̄. Existing zero-knowledge proofs proving knowledge of d
and m satisfying (5) are not efficient. Therefore, the extractor for our zero-knowledge protocols
does not guarantee that it will extract f = 1 from the prover. If the prover is honest, then the
extractor will exactly recover the d,m from (5) and f will be 1.

Honest-Verifier Zero-Knowledge of the protocols is ensured by rejection sampling. Therefore, the
prover might have to use several attempts in producing one proof.

• πNEx [Lyu19, Section 5.2] is a proof of bounded opening. The prover in possession of a witness
(m, r) satisfying Equation (5) for commitment JmK wants to demonstrate knowledge of an
opening (m, r, f) satisfying Equation (6), where them, r are from an interval somewhat larger
than [β] and f ∈ C̄. The protocol is complete. Special soundness can be proved by rewinding.
From two accepted proofs πNEx with two different challenges, a polynomial opening vector r
together with f ∈ C̄ satisfying Equation (6) can be extracted. Therefore, an attacker against
special soundness is an attacker against SIS. An attacker against HVZK is an attacker against
LWE.

• πOPEN [Bau+18, Section 3.1] is also a proof of bounded opening, but here the prover only
proves that r is bounded, and not m.

• πLIN [Ara+22, Section 3.3] is a proof of linear relation α1m1 + · · · + αnmn = αn+1 with
respect to commitments Jm1K, . . . JmnK and public scalars αi.

More formally, we assume that there are n̂ commitments JmiK =

[
ci,1
ci,2

]
for 1 ≤ i ≤ n̂

where ci,2 ∈ Rℓq. The commitments are made like in Section 5.3. x is the statement and w

is the witness. For the public scalar vector α = (α1, . . . , αn̂−1) ∈ Rn̂−1
q the prover wants to

demonstrate that the following relation RLIN holds:

RLIN =

{
(x,w) |

x =
(
pk, {JmiK}i∈[n̂] ,α

)
∧ w =

(
f, {mi, ri}i∈[n̂]

)
∧

∀i ∈ [n̂] : Openpk (JmiK,mi, ri, f) = 1 ∧mn̂ =
∑n̂−1
i=1 αimi

}
(7)

Completeness is ensured if the randomnesses ri of the commitments JmiK are sufficiently
bounded, an attacker against special soundness is an attacker against the SIS problem for
β = 4σ

√
N , and an attacker against HVZK is an attacker against LWE.

• πAEx [Ara+22, Section 3.4] is an amortized exact proof of short openings. Let A be a r × v
matrix over Rq. The prover wants to demonstrate that the following relation holds for a
bounded si:

ti = Asi (8)

The proof is complete when the secrets have ternary coefficients. An attacker against special
soundness is an attacker against the SIS problem for β = 1, and an attacker against HVZK
is an attacker against LWE.

All these zero-knowledge proofs have been proved secure in the random oracle model, but not in
the quantum random oracle model.
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7 Desired Properties of a Voting Protocol

In this section, we briefly explain four desired properties of a voting protocol. We present the
definitions of the following properties: coercion resistance, privacy, integrity, and verifiability. The
definitions are based on [Ara+21, Appendix B.6].

We separate between honest, corrupt, and malicious voters. The corrupt voters are those who are
(willingly or not) coerced by the coercer and must obey instructions given. Malicious voters try
to attack the system themselves.

7.1 Coercion Resistance

A voting system is coercion resistant if a coercer who demands voters to vote in a particular way, is
not able to decide if the voters resisted the demands. This property prevents voters being bought or
blackmailed by adversaries who intend to unlawfully influence the results of the election. Coercion
resistance is modelled as a game with a coercer and a set of voters. The coercer communicates
with the voters before and possibly after the election, and receives all public information published
during the election. The coercer is trying to make the voter cast a vote in a particular way. Obvious
special cases are that the coercer specifies the vote entirely or tries to prevent someone from voting.
In the game, the coercer may coerce one or more voters. A voter can obey or disobey the demands
of the coercer. The coercer may also ask voters to cast ballots uncoerced. The coercers may
observe the voter while the voter is casting a ballot and may assist the voter in the casting process.
Eventually, there is a tally, and the coercer receives the outcome. The system is coercion resistant
if the coercer cannot decide if the voters obeyed their demands or not. The coercer only has access
to public information from the infrastructure players, and cannot monitor networks. However, the
coercer may have access to private information about the voter. In a real-world system, we can
imagine the coercer being someone in the voter’s family, the boss from the working place or the
leader of some organization or religious network. The coercer could try to coerce the voter by
threatening, or by promising some reward if the voter does as the coercer demands.

An online voting protocol could use re-voting to resist coercion. The Norwegian Voting Protocol
[Gjø11] uses this method.

7.2 Privacy

Privacy in a voting system means confidentiality of the cast ballots against an adversary who
corrupts infrastructure players. Privacy is modelled as an indistinguishability game between an
adversary and a set of voters, some of them honest and some of them possibly corrupt. The
adversary can corrupt infrastructure players. The adversary gives pairs of ballots to the honest
voters, who cast one of the two. We have privacy if the adversary is not able to decide which ballot
they cast.

Election results could unavoidably leak some information about the cast votes, for example if all
honest voters select the same voting option or if only one voter cast their vote. Therefore, a system
might have to define vote privacy as the inability to learn information about the cast votes, beyond
what is unavoidably leaked by the election results.

While a coercing adversary tries to learn what the voter votes by interacting with the voter directly,
an adversary against privacy tries to learn what the voter votes by compromising the infrastructure
players.

An online voting protocol can use encryption of votes and distribution of trust to ensure privacy
of the system.
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7.3 Integrity

Integrity of a voting system means that a third party can check that everything in the election was
computed correctly so that the election result corresponds to the intention of the voters.

Integrity for a voting system is modelled as a game between an adversary and a set of voters. Some
of the voters are honest and some of them may be corrupt. The adversary tells the corrupt voters
what ballots to cast. After the count phase when we have an election result, the adversary wins if
the election result is inconsistent with the ballots accepted as cast by the honest voters. We can
define a variant notion called ε-integrity where we allow a small error and say that the adversary
wins if the election result is inconsistent with any (1−ε) fraction of the ballots accepted as cast by
the honest voters. We need this since return codes for a single voter must be human-comparable
and can therefore collide with some non-negligible probability.

7.4 Verifiability

A voting system can provide verifiability to let voters and third parties verify the integrity of
all components of the system. We divide verifiability into individual verifiability and universal
verifiability.

For individual verifiability, the voter receives a receipt that her vote was sent as intended and
recorded as confirmed. Sent as intended implies that the intended vote arrives to the voting server
without being altered by an adversarial voting client. Recorded as confirmed implies that an
adversarial voting server cannot drop the confirmed vote of an honest voter (vote rejection), and
that an adversarial voting client or voting server cannot cast a vote on behalf of an honest voter
(vote injection). The voters accept or reject their receipts.

Universal verifiability means that an adversary is unable to undetectably alter the election result.
Any infrastructure manipulation would be detected. For the universal verifiable voting system, an
election proof must be provided together with the election outcome, and a verification algorithm
accepts or rejects the election proof. This verification is comparable to the recounting of physical
ballots.

For a verifiable voting system the following claim must hold: if all the receipts accepted by the
honest voters verify as accepted with the election proof, then the outcome of the election is con-
sistent with the honest voter’s cast ballots. We have limited verifiability if the same claim holds
when certain participants are honest during the election.

An online voting protocol can use return codes to ensure individual verifiability. For ensuring
universal verifiability the infrastructure players can log all operations and make necessary ZK-
proofs that auditors can verify.

8 The Swiss Post Voting System

The Swiss Post voting system [Swi21] is a return code-based electronic voting protocol. The
protocol consists of a configuration phase, a voting phase, and a tally phase. We will focus on the
voting phase which is a two-round protocol consisting of a SendVote protocol and a ConfirmVote
protocol.

8.1 Syntax

The protocol consists of the following participants: voters (V), voting client (VC), voting server
(VS), control components (CC) which are used as return codes control components (CCR) and
mixing control components (CCM), setup component (SC), printing component (PC), auditors (A),
verifiers (Ver), election administrators (EA) and electoral board (EB). In the following we focus
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on the voting phase and assume that SC and PC from the configuration phase are trustworthy.
More specific, all private and public keys of the election, all generated by SC, were honestly
generated and private keys were provided only to the right owners. The voting cards generated
by SC were correctly generated, printed by PC and sent to V though a trusted channel. The
mapping tables generated by SC were correctly computed corresponding to the voting cards and
sent to VS though a trusted channel. A trusted channel from SC to Ver is assumed for delivering
the necessary information for Ver to verify the elections. The participants relevant for the voting
phase are described in the following:

V: The voters participate in the election by choosing their preferred options, check the return
codes, and confirm their vote. Each voter holds a personal voting card including secret keys and
return codes. We assume that that at least some honest voters verify the correctness of their return
codes. We assume that that at least some voters verify the correctness of their return codes. We
assume that some voters might collude with the adversary. For instance, they might reveal their
keys or codes or try to impersonate another voter. A trusted channel from V to VC is assumed.

VC: The voting client is in charge of casting a ballot given the voting options selected by the
voter. It encodes voting options, encrypts the vote, computes the ballot, and sends it to the voting
server. We assume the voting client untrustworthy for integrity. However, as the voting client sees
the voting options of the voter in clear text, it must be trusted for privacy.

VS: The voting server receives, processes, and stores the ballots. It combines the return code
shares from the CCR components to compute the return codes. We assume the voting server
untrustworthy.

CCR: The return codes control component consists of several components. Each of them computes
return code shares based on the ballots. We assume at least one of the components is trustworthy.

Further we have auditors and verifiers. The auditors detect misbehaviour of untrustworthy parties
and, therefore, ensure the security goals of the system. The auditors conduct a verification after
all three phases, verifying all proofs and checking the consistency of the logs. Each auditor uses
a verifier which is a software capable of checking cryptographic proofs. A trusted channel from
an auditor to her verifier is assumed. It is assumed that at least one honest auditor verifies the
election using a trustworthy verifier.

8.2 The Voting Protocol

The voting protocol is a two-round protocol consisting of a SendVote protocol and a ConfirmVote
protocol. The protocol uses ElGamal Encryption and ElGamal Multi-Encryption as described in
Section 4.2, and ZK-proofs based on the Chaum-Pedersen protocol as described in Section 6.2.1.

The voter holds a voting card consisting of the start voting key k, return codes cc for each possible
voting option of the election, the ballot casting key k′ and a confirmation return code VCC. In the
SendVote protocol, the return codes cc are used by the voter to verify that their vote is sent as
intended. In the ConfirmVote protocol, the return code VCC is used by the voter to verify that
their vote is recorded as confirmed. The control components hold two different user-specific keys
for making the return codes: kj used in the SendVote protocol and k′j used in the ConfirmVote
protocol. The voting server holds a mapping table linking long return codes lCC with short return
codes cc⋆. ELpk is the public election key.
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8.2.1 The SendVote Protocol

The SendVote Protocol shown in Figure 5 consists of the following steps:

1. V enters to VC the start voting key k from the voting card and selects voting options v
corresponding to return codes cc.

2. VC computes the ballot b containing the encrypted vote ρ and encrypted partial return codes
pCC. VC sends b to VS which forwards to CCR. Both verifies the ballot. CCR conducts a
distributed decryption to retrieve pCC.

3. CCR generates return code shares lCCj and sends them to VS.

4. VS combines the shares from CCR. With a mapping table it extracts return codes cc⋆ that
are sent to VC and shown to V.

5. V verifies cc⋆ shown on the screen by checking that they are equal to cc.

V5) cc⋆
?
= cc VC VS CCR

1) k, v

4) cc⋆

2) b

4) cc⋆

2) b

3) lCCj

(p1, . . . pψ)← Encode(v)

ρ =
ψ∏
i=1

pi

pCC = (pk1, . . . p
k
ψ)

cρ ← Enc(ρ,ELpk)
cpCC ← MultiEnc(pCC, pkCCR)

b = (cρ, cpCC)

skCCR, kj
pCC← MultiDec(cpCC, skCCR)

hpCC = H(pCC)
lCCj= hpCCkj

lCC =
∏

lCCj

cc⋆ = table(lCC)

Figure 5: The SendVote protocol of the Swiss Post voting system.

The Ballot The ballot b computed by VC in step 2 includes in addition to the two ciphertexts
cρ and cpCC as shown in Figure 5, also one additional ciphertext c̃ρ and zero-knowledge proofs πExp

and πEqEnc proving that the initial ciphertexts were computed correctly with respect to ρ. Finally,
b includes the identity of the voter vcd and a signature [Swi21, Sec 12.2.1.2]. The zero-knowledge
proofs ensures that the ciphertexts cρ and cpCC were computed with the same voting options. We
recall the ciphertext

cρ = Enc(ρ,ELpk; r) = (u, v) = (gr,ELpk
rρ)

which is an encryption of the vote ρ under public key ELpk and with randomness r.
By exponentiating u and v of ciphertext cρ to the start voting key k we get

c̃ρ = (ũ, ṽ) = (uk, vk) = (grk,ELpk
rkρk) = Enc(ρk,ELpk; rk)

which is an encryption of ρk under public key ELpk and randomness rk. Further we recall the
ciphertext

cpCC = MultiEnc(pCC, pkCCR; r
′) = (u′, v′1, . . . v

′
ψ) = (gr

′
, pkCCR1

r′pk1, . . . pkCCRψ
r′pkψ)

which is a multi-recipient encryption of the partial return codes (pCC1, . . . pCCψ) = (pk1, . . . p
k
ψ) un-

der public key pkCCR = (pkCCR1 , . . . pkCCRψ ) and with randomness r′. By ”compressing” ciphertext
cpCC we obtain
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c̃pCC = (ũ′, ṽ′) = (u′,

ψ∏
i=1

v′i) = (gr
′
,

ψ∏
i=1

pkCCRi

r′pki ) = (gr
′
,

ψ∏
i=1

pkCCRi

r′ · ρk) = Enc(ρk,

ψ∏
i=1

pkCCRi ; r
′)

which is an encryption of ρk under public key
ψ∏
i=1

pkCCRi and with randomness r′.

The proofs included in the ballot prove the following: πExp proves that c̃ρ was computed by
exponentiating u and v of ciphertext cρ to the start voting key k. πEqEnc proves that c̃ρ and c̃pCC
encrypt the same plaintext under two different public keys.

The Return Code Shares The return code shares lCCj computed by the CCR components in

step 3 are computed as lCCj = hpCCkj where hpCC = H(pCC). Here, H is a hash function and kj
is a secret user-specific key. Each CCR component must in addition to the return code share also
provide a zero-knowledge proof πExp of correct exponentiation. This proof proves that lCCj was
computed by exponentiating hpCC to the key kj [Swi21, Sec 12.2.1.6].

Verifying the Return Codes In step 5, V verifies the return codes. If the return codes cc⋆

shown on the screen are not equal to the return codes cc shown in the voting card of the user,
V must report this to the auditors. If the return codes are equal, V must proceed with the
ConfirmVote protocol.

8.2.2 The ConfirmVote Protocol

The ConfirmVote protocol [Swi21, Sec 12.2.2] is only initiated by V if the verification from step 5
is successful. The protocol is similar to the SendVote protocol.

The ConfirmVote Protocol shown in Figure 6 consists of the following steps:

1. V enters to VC the ballot casting key k′ from the voting card.

2. VC computes the confirmation key CK and sends it to VS which forwards to CCR.

3. CCR generates return code shares lVCCj and sends them to VS.

4. VS combines the shares from CCR. With a mapping table it extracts a confirmation return
code VCC⋆ that is sent to VC and shown to V.

5. V verifies VCC⋆ shown on the screen by checking that it is equal to VCC from the voting
card. Only after successfully verifying VCC⋆, V has completed the voting process.

V5) VCC⋆
?
= VCC VC VS CCR

1) k′

4) VCC⋆

2) CK

4) VCC⋆

2) CK

3) lVCCj

k

CK = H(k′)k

k′j
hCK = H(CK)
lVCCj= hCK k′j

lVCC =
∏

lVCCj

VCC⋆ = table(lVCC)

Figure 6: The ConfirmVote protocol of the Swiss Post voting system.
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The Confirmation Return Code Shares lVCCj computed by the CCR components in step 3

are computed as lVCCj = hCKk′j where hCK = H(CK). Here, H is a hash function and k′j is a secret
user-specific key. Each CCR component must in addition to the return code share also provide a
zero-knowledge proof πExp of correct exponentiation. This proof proves that lVCCj was computed
by exponentiating hCK to the key k′j [Swi21, Sec 12.2.2.2].

8.2.3 Verifying the Voting Phase

During the voting phase, the players must log all communication. At the end of the voting phase,
and before starting the tally phase, a verification of the voting phase is done by the auditors using
their verifiers, ensuring that all logs are consistent and verifying all ZK-proofs. In particular, the
auditors ensure that the CCR components have the same set of ballots, that they performed the
decryption of step 2 of the SendVote protocol on the same set of partial return codes and for
the same set of voters, and that they performed the exponentiation of step 3 of the SendVote
protocol for the same set of voters. Further they ensure that the valid ballots stored by VS and
CCR are identical, and that these ballots were cast by the same set of voters. By checking that
the number of confirmation attempts stored by VS and CCR are identical they ensure that a
successful confirmation attempt was not overrode by VS after V received her confirmation code.
Further the auditors verify the proofs πExp generated by the CCR components in the SendVote and
the ConfirmVote protocol, and that all codes lCC and lVCC have matching entries in the mapping
table.

8.3 Discussion

8.3.1 Simplifications

For simplicity, the following aspects of [Swi21] have been excluded from our description.

The return code shares lCCj, the long return codes lCC and the return codes cc⋆ are all vectors,
where each element corresponds to one element of the vector pCC. Each return code of the vector
cc⋆ corresponds to one chosen voting option of the voter. All operations on the vectors, like hashing
and exponentiation, are done element wise.

We have not elaborated on the distributed decryption of pCC [Swi21, Section 12.2.1.3]. We have
excluded further explanation on this topic for simplicity, and because the security reductions for
privacy [Swi21, Section 19.4] omit the encryption of pCC.

In our figures, the key k is sent directly from V to VC. In the actual protocol, a start voting key
called SVK is sent from V to VC, and VC used this key to open a key store and find the key k
[Swi21, Section 12.2.1.1].

We have kept the description simplified by only including operations which are related to the dlog-
based cryptography. The following operations could be kept as they are for a lattice-based system
and are therefore not further discussed. The contents of the table held by VS are held secret
with a symmetric encryption scheme [Swi21, Section 12.1.1.7]. Hash operations with a value called
correctnessID are used to ensure vote compliance. The votes that get registered and counted must
be of the correct format, for example the vote ρ must be a combination of valid voting options
[Swi21, Section 15.2].

8.3.2 Observations

The encodings pi of the voting options are in fact prime numbers, as explained in [Swi21, Section
10.3]. The encodings are multiplied and encrypted together in the ciphertext cρ. After being mixed
and decrypted, the original primes can be computed by factorizing. When working over a group,
using this construction with primes is straight forward, opposed to if the protocol had worked over
elliptic curves.
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The hash operation done on pCC in the SendVote protocol and on CK in the ConfirmVote protocol
result in group elements. This is important for the following exponentiation that requires the base
to be a group element.

It might seem impractical that we need one return code for each voting option of the election. Using
one single return code representing the total combination of the voter’s chosen voting options might
seem tempting. A voting event has ψ questions each with n options. When using one return code
for each voting option, the voter must verify all ψ received return codes. The voting card must
include ψ ·n different return codes. If one single return code represents the total combination of the
voter’s chosen voting options, the voter must only verify 1 return code. However, the voting card
must include ψn return codes. This quickly scales up, resulting in an exceptionally large voting
card.

In step 2, VC sends a confirmation key CK=H(k′)k. We observe that no exponentiation proof is
given for this computation [Swi21, Section 12.2.2.1]. An incorrect exponentiation can only result in
a not successful confirmation attempt and cannot change the vote. Blocking communication from
the voter can always be done by VC, thus an exponentiation proof would not change the security
analysis.

We remember that bugs (that do not have anything to do with the cryptography of the system)
could result in the voter being shown the wrong return codes. The voter could in this case notify
the auditor, who could find the bug and tell the voter to try again. Although this does not affect
the security of the system, it could damage the voter’s trust in the system.

8.4 Security Analysis

We informally discuss the security of the protocol, mainly focusing on the voting phase. We will see
that the protocol provides no coercion resistance. The voting phase provides individual verifiability
assuming at least one trustworthy control component and at least one honest auditor verifying the
voting phase with a trustworthy verifier. The voting phase provides privacy assuming VC is honest.
For the voting phase, an attacker against individual verifiability is an attacker against the CDH
problem and an attacker against privacy is an attacker against the SGSP problem.

8.4.1 Coercion Resistance

The protocol is not coercion resistant. Switzerland evaluates the risk of coercion as low in their
elections, and do not strive to achieve a coercion resistant voting system. Through their extensive
use of postal voting, the possibility of vote selling is already present. All cantons accept votes by
postal mail and around 90% of Swiss people use this voting channel.4

8.4.2 Individual Verifiability

The protocol offers individual verifiability if at least one component of CCR is honest. Individual
verifiability is something that must be instant, a voter cannot wait for an auditor to check all ZK-
proofs before showing the return codes. We divide individual verifiability into sent-as-intended,
which is achieved in the SendVote protocol, and recorded-as-intended, which is achieved in the
ConfirmVote protocol.

A malicious VC could try to modify the intended voting options without detection with two
different approaches. The first approach is to attack sent-as-intended by modifying the contents
of the ballot, while showing to the voter return codes corresponding to the voters chosen voting
options (instead of return codes corresponding to the modified ballot). The second attack approach
is to attack recorded-as-confirmed by vote injection, by confirming a vote without the participation

4https://www.nzz.ch/meinung/kommentare/digitale-demokratie-verlangt-pioniergeist-ld.2175?reduced=true
Accessed the 29th of May 2022
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of the voter. A malicious VS could attack recorded-as-confirmed by vote rejection, by rejecting
already confirmed votes.

Sent-as-Intended For the attack against sent-as-intended, VC achieves voting options v from
V corresponding to voting options (p1, . . . pψ) and vote ρ, but computes a ballot with a ciphertext
cρ′ of another vote ρ′ ̸= ρ so that cρ′ does not include the same voting options as the correctly
computed partial return codes pCC = (pk1, . . . p

k
ψ). VC includes in the ballot none or invalid ZK-

proofs connecting cρ′ and pCC. If one CCR component is honest, it will discover the missing or
invalid ZK-proofs and not send any return codes back. If VC is able to make such valid ballot, is
also an attacker against the soundness of the ZK-proofs connecting cρ′ and pCC and thus also an
attacker against the CDH problem.

Another approach, if VC cooperates with some of the CCR components, it could make a valid ballot
based on a wrong vote ρ′ ̸= ρ with ciphertext cρ′ and partial return codes pCC′ = ρ′ + k and the
valid proofs connecting cρ′ and pCC′. Then VC communicates to the dishonest CCR components
that they should make return code shares rather corresponding to pCC = ρ + k. However, if at
least one CCR component is honest, it will make its return code share based on pCC′, and the
dishonest CCR components will not be able to make shares cancelling the share of the honest CCR
component because they do not know the key of the honest CCR.

Thus, the only strategy left for the dishonest VC is to guess the return codes the voter expects. A
brute force attack cannot be done in this case since the voter will detect consecutive attempts of
displaying wrong return codes. [Swi21, Section 19.3] proves sent-as-intended of the protocol.

Recorded-as-Confirmed (Vote Injection) For the attack against recorded-as-confirmed by
vote injection the VC could generate a fake confirmation message CK that will result in fake
confirmation return code shares lVCCj. When VS combines these shares to lVCC it will not find an
entry for this fake lVCC in the table but could if dishonest still output a fake confirmation return
code VCC⋆ (which will not be shown to the voter). However, the auditors will in the verification
phase observe that there is no entry for lVCC in the table and can discard this vote before the tally
phase begins. The alternative is that the voting client guesses a valid confirmation message. In
order to limit the possibility of a brute force attack, the voting server allows a limited number of
retries. [Swi21, Section 19.5] proves recorded-as-confirmed (vote injection) of the protocol.

Recorded-as-Confirmed (Vote Rejection) A malicious VS could try to attack recorded-as-
confirmed by rejecting confirmed votes. VS would here override the successful confirmation attempt
where V received her confirmation code. As described in Section 8.2.3, the auditors check at the end
of the voting phase that the number of confirmation attempts stored by VS and CCR are identical.
In this way, if at least one CCR component is honest and has the correct confirmation attempts
stored, the auditors would detect this attack. [Swi21, Section 19.4] proves recorded-as-confirmed
(vote rejection) of the protocol.

The Importance of the Trust Assumptions We have the trust assumption that at least
one of the control component is trustworthy. Without this trust assumption, it is easy to imagine
attacks against individual verifiability. Imagine an attacker controlling VS, all components of CCR,
and VC of some voter V. This attacker could change or discard the vote of V, but still let V think
she has successfully verified her vote. The attack against sent-as-intended to change the vote is
executed by VC as already described. Now, since they are all under the attacker’s control, VS and
all CCR components verify the invalid ZK-proofs as valid. Then all CCR components make return
code shares and corresponding (correct) proofs based on pCC as usual. VS combines the shares
as usual and sends the expected return codes cc⋆ to V. The voter receives the correct return code
although the ciphertext cρ′ contained in the ballot encrypts the fake vote ρ′ ̸= ρ. In the verification
phase, only the exponentiation proofs from CCR will be checked by the auditors and these are
indeed correct. The system could also attack recorded-as-confirmed to discard a vote. The attack
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is run by VS as already described. Now that none CCR components are trustworthy, they all store
the same number of confirmation attempts as VS, so that the auditors cannot detect the attack.

8.4.3 Universal Verifiability

The voting phase protocols offer universal verifiability. No infrastructure player must be assumed
trustworthy for this security property, but it is assumed that at least one honest auditor verifies
the results with a trustworthy verifier [Swi21, Section 2.1.1: Auditors]. This auditor verifying ZK-
proofs and checking that logs are consistent would detect any manipulation of the infrastructure.
[Swi21, Section 17 and Section 19.6] prove universal verifiability of the protocol.

8.4.4 Privacy

The voting phase protocols offer privacy with the given trust assumptions. We assume that VC
is honest. The voter types their voting options directly to VC, thus if VC is compromised, it
could leak this information. For privacy we also need that the voting card contents must only be
known to the voter. This means the setup component SC and the printing component PC must
be trustworthy. We assume that SC and PC do not give away the voting card contents to anyone,
and that they are destroyed or turned off before the voting phase begins. We must also assume
some trusted channel to send the voting cards to the voters. In practice the voting cards will be
sent by postal service, which means this channel must be trusted.

An attacker knowing the voting card contents of some voter and knowing which device the voter
uses as her voting client, can attack privacy by tracking the outgoing and incoming traffic to VC.
They could get information about the vote ρ using pCC from the outgoing communication from
VC and k from the voting card, or they could match the return codes cc⋆ from the incoming
communication to VC with the return codes cc from the voting card content.

Assuming the mentioned trust assumptions, an adversary against vote privacy is also an adversary
against either the CPA security of the encrypted vote cρ, the hiding of the partial return codes
pCC or the HVZK of the ZK-proofs πExp or πEqEnc. The CPA security of cρ relies on DDH, the
hiding of pCC relies on ESGSP, and the HVZK of the ZK-proofs relies on DDH. The strongest
assumption of these is the ESGSP assumption, thus the partial return codes are for privacy the
weakest part of the system.

Finally, even if it is possible for a malicious voter to copy the vote of another voter and cast it as
it was theirs, this voter will not have any individual verifiability of their vote. Malicious voters
copying a vote of another voter and casting it as it was theirs, receive return codes which they
cannot understand. They do not receive return codes matching those in their voting card, because
the return codes belong to another voting card.

8.4.5 Availability

A malicious VC, VS or CCR component could prevent the voter from receiving return codes and in
this way attack availability. If VC shows no return codes or the wrong ones, the voter could change
to another VC and continue the process. If VS or CCR prevent the generation of return codes,
an investigation can be started. The logs will show which component is attacking the system and
this component can be replaced.

9 The Voting Protocol by Aranha et al.

Published in 2021, ’Lattice-Based proof of Shuffle and Applications to Electronic Voting’ [Ara+21]
by Aranha, Baum, Gjøsteen, Silde, and Tunge, presents the first practical verifiable shuffle of
known values for lattice-based commitments. The shuffle can be used to prove that a collection of
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commitments opens to a given collection of known messages. The scheme is the first construction
from candidate post-quantum assumptions to defend against compromise of the voter’s device
using return codes. For privacy of the ballots, the protocol assumes that the voting server does
not cooperate with the mixing server. For sent-as-intended integrity, the protocol assumes that
the return code server does not cooperate with the voting client.

All ciphertexts in this section are computed like in Section 4.3 and all commitments are computed
like in Section 5.3. The ZK-proofs used were presented in Section 6.2.2. In the following we focus
on the voting phase and assume that all private and public keys and all voting cards of the election
were honestly generated, private keys are only known by the right owners and the voting card is
only known by the voter.

V: The voters participate in the election by choosing their preferred options and check the return
codes. Each voter holds a personal voting card including secret keys and return codes. We assume
that that at least some voters verify the correctness of their return codes. We assume that some
voters might collude with the adversary. For instance, they might reveal their keys or codes or try
to impersonate another voter. A trusted channel from V to VC is assumed.

VC: The voting client is in charge of casting a ballot given the voting options selected by the
voter. It encodes voting options, encrypts the vote, computes the ballot, and sends it to the voting
server. For integrity, we assume that the voting client does not cooperate with the return code
server. The voting client can see the voting options of the voter in clear text, thus it must be
trusted for privacy.

VS: The voting server receives, processes, and stores the ballots. For privacy, we assume the voting
server does not cooperate with the mixing server.

CCR: The return code server computes return code based on the ballots. For integrity, we assume
that the return code server does not cooperate with the voting client.

We assume auditors that check proofs and consistency of the logs. It is assumed that at least one
honest auditor verifies the election.

V4) cc⋆
?
= cc VC VS CCR

1) k, v

3) cc⋆

2) b

3) cc⋆

2) b

3) cc⋆

ρ← Encode(v)
JρK← Com(ρ, dM )

cdM ← Enc(dM , pkCCM)
pCC = ρ+ k mod p

JpCCK← Com(pCC, dR)
cdR ← Enc(dR, pkCCR)

b = (JρK, JpCCK, cdM , cdR)

skCCR
dR ← Dec(cdR, skCCR)

pCC← Open(JpCCK, dR)
cc⋆ ← PRF(pCC, vcd)

Figure 7: The voting phase of [Ara+21].

Figure 7 shows a simplified version of the lattice-based send vote-phase of [Ara+21, Figure 6]. A
commitment JkK is public information. V has a voting card including the start voting key k and a
list of all possible voting options, each voting option linked to a return code cc. The protocol has
the following steps:

1. V enters to VC the start voting key k and her selected voting options v.

2. VC creates the ballot b by using the voters selected voting options v and the start voting key
k. VC sends the ballot to VS which forwards it to CCR.

3. CCR validate the proofs. Then, CCR decrypts opening dR and uses this opening to find the
partial computed return code pCC. Then it computes a return code cc⋆ that is sent back to
the voter V.
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4. The voter verifies the short choice return codes shown on the screen of the voting client cc⋆ by
checking that they are equal to the corresponding short choice return codes from the voting
card cc.

The Ballot The ballot is computed by VC on input a vote ρ and a start voting key k. In addition
to the commitments to ρ and pCC and the encrypted openings of these commitments, the ballot
includes the voter’s id vcd, and several proofs: Two proofs of opening πOPEN prove that dM is
a valid opening of JρK and dR is a valid opening of JpCCK. A proof πLIN proves that the linear
relation pCC = ρ + k holds. Another proof πLIN proves that the message pCC behind commitment
JpCCK with opening dR is equal to the message behind JρK+ JkK with opening dM + d. Finally, a
shortness proof of ρ ensures correctness of the ciphertext.

The Return Codes The return codes are computed by CCR on input JpCCK and cdR . CCR
decrypts the opening dR with its secret key skCCR and then computes the partial return code pCC
by opening the commitment JpCCK with dR. Then the return codes cc⋆ are computed with a
pseudo-random function with input the partial return code pCC and the identity vcd of the voter.

The Tally Phase After the voting phase is completed, the tally phase can begin. VS makes
a sorted list of the commitments JρK, a sorted list of the identities vcd and a sorted list of the
encrypted openings cdM under the public key pkCCM of the mixing server. All these sorted lists
are sent to the mixing server. The mixing server opens the commitments and finds the plaintexts ρ,
then mixes these plaintexts with a secret permutation. The mixing server publishes the permuted
list of votes and a proof π of correctly shuffled votes.

The Openings of Commitments We recall that a commitment JkK is public information. Let
the opening of JkK be d. For the ballot computations we have pCC = ρ + k, so the message behind
commitment JpCCK with opening dR is equal to the message behind JρK+ JkK with opening dM +d,
but JpCCK ̸= JρK+ JkK. The commitment to pCC is not done with the opening dM + d. Because
both openings dM and d are short, committing to pCC with opening dM + d could have revealed
information about pCC.

Discussion The presented voting phase from [Ara+21] could not be used for the protocol of
[Swi21]. The protocol of [Swi21] assumes an untrustworthy voting server and several components
for return code computation and mixing, where only one control component is assumed trustworthy.
For the voting phase of [Ara+21], the voting server must be trusted to not cooperate with the
mixing server, and to actually sort the list of votes in the beginning of the tally phase, because if
not, the mixing server learns what the voters voted when opening the commitments. As the shuffle
is a shuffle of known content and opens the commitments before mixing them, it does not make
any sense to have several components of the mixer. The protocol also only includes one return code
component. The protocol could be changed to include several components of CCR. This would
require a a distributed decryption of the opening of commitment JpCCK. There is no ConfirmVote
protocol, rather it is assumed that voters will complain to the auditors if they receive the wrong
return codes. A ConfirmVote protocol could be implemented similar to the SendVote protocol.

10 Our Voting Protocol

Cryptographic primitives based on discrete log-type assumptions are used in the Swiss Post voting
system described in Section 8. This applies for steps 2 and 3 of the SendVote protocol shown in
Figure 5, and for steps 2 and 3 of the ConfirmVote protocol shown in Figure 6. We focus on these
parts in this section. The hash-functions used are considered post-quantum secure.
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10.1 The Voting Protocol

We describe protocols SendVote and a ConfirmVote that use cryptographic primitives based on
lattice assumptions. Our SendVote protocol is inspired by the voting protocol by Aranha et al.
described in Section 9. Unlike the voting protocol by Aranha et al., the ballots computed in our
protocol contain ciphertexts cρ under the election public key ELpk, and these ciphertexts can be
used as input to the shuffle described in [Ara+22]. This makes our voting protocol compatible
with the trust assumptions of [Swi21].

All ciphertexts in this section are computed like in Section 4.3 and all commitments are computed
like in Section 5.3. The ZK-proofs used were presented in Section 6.2.2. The syntax is equivalent
to the syntax of the Swiss Post voting system, described in Section 8.1. The workflow of protocols
SendVote and ConfirmVote is equivalent to the workflow described in Section 8.2.1 and Section
8.2.2.

10.1.1 The SendVote Protocol

Figure 8 presents a SendVote protocol using primitives based on lattice assumptions. In our
protocol, VC does not encrypt the partial return code pCC as the protocol security reductions for
privacy [Swi21, Sec 19.4] omit this encryption (but it could, if required). ELpk is the public election
key. Commitments to the polynomials k and kj are public information. The vote ρ is a bit-string
which represents the voting options v chosen by V. There is a natural mapping from bit-strings
to polynomials in Rq with coefficients modulo p = 2. The rounding function ⌊·⌉ rounds a decimal
value down to the next integer value.

V5) cc⋆
?
= cc VC VS CCR

1) k, v

4) cc⋆

2) b

4) cc⋆

2) b

3) lCCj

ρ← Encode(v)
cρ ← Enc(ρ,ELpk)

pCC = ρ+ k mod p
b = (cρ, pCC)

kj
hpCC = H(pCC)

lCCj= hpCC · kj+ ej

lCC = ⌊p/q ·
∑

lCCj⌉
cc⋆ = table(lCC)

Figure 8: Our SendVote protocol for lattice-based electronic voting.

In step 2, when VC computes pCC mod p, this might produce some computational overflow which
must be stored in a secret overflow binary vector z. VC computes commitments to z and to the
randomness used in cρ. A proof πLIN proves correct computation of pCC by proving that pCC + 2
z = ρ+ k mod q. Proofs πLIN prove correct computation of cρ as in Equation (4). An amortized
shortness-proof πAEx ensures that z and the randomness used in cρ is binary.

In step 3, each CCR component computes lCCj, a commitment to the added noise ej, a proof πLIN
proving that lCCj was computed correctly with respect to hpCC, and a proof πNEx proving that
the noise value is bounded.

10.1.2 The ConfirmVote Protocol

Figure 9 presents a ConfirmVote protocol using primitives based on lattice assumptions. Commit-
ments to the polynomials k′ and k′j are public information.
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V5) VCC⋆
?
= VCC VC VS CCR

1) k′

4) VCC⋆

2) CK

4) VCC⋆

2) CK

3) lVCCj

k
CK = k′ + k mod p

k′j
hCK = H(CK)

lVCCj= hCK · k′j+ ej
′

lVCC = ⌊p/q ·
∑

lVCCj⌉
VCC⋆ = table(lVCC)

Figure 9: Our ConfirmVote protocol for lattice-based electronic voting.

In step 3, each CCR component computes lVCCj, a commitment to the added noise ej
′, a proof

πLIN proving that lVCCj was computed correctly with respect to hCK, and a proof πNEx proving
that the noise value is bounded.

10.1.3 Verifying the Voting Phase

Just like in [Swi21], the players log all communication during the voting phase. At the end of the
voting phase, and before starting the tally phase, a verification of the voting phase is done by the
auditors using their verifiers, ensuring that all logs are consistent and verifying the ZK-proofs πLIN
and πNEx computed by the CCR components in step 3 of the SendVote protocol and in step 3 of
the ConfirmVote protocol.

10.2 Comparison with Swiss Post and Aranha et al.

Our voting protocol is inspired by the voting protocol by Aranha et al. [Ara+21]. While that
protocol assumes a trusted VS, our protocol allows for an untrustworthy VS and only assumes
that at least one of the CCR components is trustworthy. These are the same trust assumptions as
the trust assumptions by [Swi21].

Table 2 compares our two-round lattice-based protocol (as described in Section 10.1) with the
two-round d-log based voting protocol by Swiss Post (as described in Section 8) and the one-round
lattice-based voting protocol by Aranha et al. (as described in Section 9).

[Swi21] [Ara+21] Our Voting Protocol
1 VC p1, . . . , pψ ←Encode(v) m1, . . . ,mψ ←Encode(v) m1, . . . ,mψ ←Encode(v)
2 VC ρ = p1 · · · pψ ρ = [m1| . . . |mψ] ρ = [m1| . . . |mψ]
3 VC cρ← Enc(ρ, ELpk) JρK←Com(ρ, dM ) cρ← Enc(ρ, ELpk)
4 VC pCC = [pk1, . . . , p

k
ψ] pCC = ρ + k mod p pCC = ρ + k mod p

5 VC cpCC ←MultiEnc(pCC,pkCCR) JpCCK = Com(pCC, dR) pCC
6 VC πExp, πEqEnc πOPEN, πLIN, πANEx πLIN, πANEx

7 CCR lCCj= H(pCC)kj cc⋆= PRF(pCC, vcd) lCCj= H(pCC) · kj+ ej
8 CCR πExp – πLIN, πNEx

9 VS cc⋆= table(Π lCCj) – cc⋆= table(⌊p/q ·
∑

lCCj⌉)
10 VC CK = H(k′)k – CK = k+ k′ mod p

11 CCR lVCCj= H(CK)k
′
j – lVCCj= H(CK) · k′j+ ej

12 CCR πExp – πLIN, πNEx

13 VS VCC⋆= table(Π lVCCj) – VCC⋆= table(⌊p/q ·
∑

lVCCj⌉)

Table 2: Column 2 shows which component computes the values shown in columns 3-5. VC is
the voting client, VS is the voting server, and CCR is the control component(s). CCR is only one
component in [Ara+21], while CCR consists of several components in [Swi21] and in our protocol.
Rows 1-9 describe the SendVote protocol and rows 10-13 describe the ConfirmVote protocol. Rows
8-13 are not relevant for the one-round protocol by [Ara+21].
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• Row 1 shows how VC encodes the voting options. While in [Swi21] the voting options are
encoded to prime numbers, in [Ara+21] and in our protocol the voting options are encoded
to bit messages.

• Row 2 shows how VC computes the total vote. While in [Swi21] the prime numbers are
multiplied, in [Ara+21] and in our protocol a concatenation of the bit messages to a bit
string is done.

• Row 3 shows what VC computes that is sent to the mixing component(s) of the system. In
our voting protocol, just like in [Swi21], a ciphertext is sent. In [Ara+21], a commitment is
sent. Therefore also the opening dM , encrypted under the public key pkCCM, must be sent
together with the commitment.

• Row 4 shows how VC computes the partial return codes. For SPVS, the hiding of the partial
return codes pCC = [pk1, . . . , p

k
ψ] is based on ESGSP. In the protocol of [Ara+21] and in our

protocol, the partial return code pCC = ρ+ k is truly uniformly random.

• Row 5 shows what VC sends to CCR. In our protocol, the partial return code pCC is sent as
it is. In [Swi21], an encryption of pCC is sent. In [Ara+21], a commitment to pCC is sent.
Therefore also the opening dR, encrypted under the public key pkCCR, must be sent together
with the commitment.

As the security reductions for privacy [Swi21, Section 19.4] omit the encryption of pCC, we
have decided not to encrypt pCC in our protocol. If desired, pCC could be encrypted with
BGV encryption just like the vote ρ. This would however result in additional proofs and a
distributed decryption for the CCR components, which would make the protocol less efficient.

In [Swi21], pCC consists of as many components as selected voting options, and a multi-
encryption scheme is needed for the encryption. BGV encryption can encrypt several coef-
ficients of a polynomial simultaneously, thus, no multi-encryption scheme would have been
needed if we were to encrypt pCC in our protocol.

• Row 6 shows which proofs VC must provide as part of the ballot.

• Row 7 shows for [Swi21] and our protocol how each CCR component compute a return code
share lCCj. For [Ara+21], row 7 shows how the one single CCR component already computes
the return codes cc⋆.

• Row 8 shows which proofs each CCR component must provide together with the return code
share.

• Row 9 shows how VS computes the return codes cc⋆ by combining the shares from all the
CCR components.

• Rows 10-13 describe the ConfirmVote protocol. Row 10 shows how VC computes the con-
firmation key. Row 11 shows how the CCR components compute the confirmation return
code shares. Row 12 shows which proofs each CCR component must provide together with
the return code shares. Row 13 shows how VS computes the confirmation return code by
combining the shares from all CCR components.

As we have seen in Section 5, ElGamal can be used both as an encryption scheme and a commitment
scheme. It is efficient to make ZK-proofs about ElGamal commitments. In the lattice setting, BGV
encryption could also be used both as an encryption scheme and a commitment scheme and by
making ZK-proofs about the BGV ciphertexts we would get verifiable encryption. However, this
produces large ZK-proofs and results in an inefficient scheme. To get an efficient scheme, the BGV
encryption scheme is combined with lattice commitments.
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10.3 Security Analysis

VC computes proofs πLIN and πANEx as part of the ballot in the SendVote protocol. These proofs
leave no options for an untrustworthy VC to compute cρ and pCC with different values of ρ or to
add too much noise in the ciphertext cρ. If too much noise would be added in the ciphertext, the
vote could become unreadable when decrypted. Here, exact proofs of shortness are required in
order to keep the overall parameters of the system low.

The CCR components must for both the SendVote and ConfirmVote protocol provide proofs πLIN
and πNEx together with the return code shares. If VS is not able to compute a return code based
on the shares from the CCR components, the proofs allow an auditor to find out which CCR
component is not doing its job. Here, bounded proofs are sufficient because when q >> p, it is
improbable that the added noise in the return code shares change the value computed by VS when
rounding the sum.

Attacks against recorded-as-confirmed (vote injection and vote rejection) will either be detected
by the auditors or includes guessing of correct codes and will be limited by having a large enough
code space. (See choice of parameters [Swi21, Section 20.2].)

The partial return code pCC is truly uniformly random and thus perfectly hiding.

Theorem 1 (Cast-As-Intended Integrity) Let A0 be an adversary against integrity of the
protocol with advantage ϵ0. Then there exist adversaries A1 and A2 against soundness for ΠLIN

and ΠANEx, respectively, with advantages ϵ1 and ϵ2, such that ϵ0 ≤ ϵ1 + ϵ2. The runtime of A1

and A2 are essentially the same as the runtime of A0.

We sketch the argument. An adversary A0 controlling VC attacks sent-as-intended verifiability. An
adversary that includes different voting options in cρ and pCC is an adversary against soundness
of ΠLIN. An adversary that adds too much noise in the ciphertext cρ is an adversary against
soundness of ΠANEx.

A successful attack against soundness of ΠLIN or ΠANEx is also a successful attack against binding
of the commitments, therefore no attacker against binding of commitments is included.

Theorem 2 (Privacy) Let A0 be an adversary against privacy of the protocol with advantage
ϵ0. Suppose ΠLIN and ΠANEx are honest-verifier zero-knowledge. Then there exists a simulator for
the protocol such that for any distinguisher A0 for this simulator with advantage ϵ0, there exists a
distinguisher A1 with advantage ϵ1 for the simulator of ΠLIN, a distinguisher A2 with advantage ϵ2
for the simulator of ΠANEx, an adversary A3 with advantage ϵ3 against hiding of the commitment
scheme, and an adversary A4 with advantage ϵ4 against CPA-security of the encryption scheme
such that ϵ0 ≤ ϵ1 + ϵ2 + ϵ3 + ϵ4. The runtime of A1, A2, A3 and A4 are essentially the same as
the runtime of A0.

We sketch the argument. The simulator simulates the arguments of protocols ΠLIN and ΠANEx,
replaces all commitments by random commitments and replaces the ciphertext with a random
ciphertext. We replace the protocols first, and then the ciphertext at last. (If we were to replace the
ciphertexts first then we would not have anything that could be proven in the remaining protocols.)
First, we replace the ΠLIN arguments by simulated arguments, which gives us a distinguisher A1

for the ΠLIN honest verifier simulator. Second, we replace the ΠANEx arguments by simulated
arguments, which gives us a distinguisher A2 for the ΠANEx honest verifier simulator. Third, we
replace the commitments to the secrets and the noises by random commitments, which gives us
an adversary A3 against hiding for the commitment scheme. Fourth, we replace the ciphertext cρ
with a random ciphertext, which gives us an adversary A4 against CPA-security of the encryption
scheme. After the four changes, we are left with a transcript where no secrets were used in the
computations. Obviously, an adversary cannot get any information out of this transcript.
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11 Performance of Our Protocol

We use equations, parameters, and computed values from [Ara+22] to compute communication
size and timings of our voting protocol.

11.1 Communication Size

Sizes of ciphertexts, commitments, and the proof πLIN are found in [Table 3].

Size of πAEx From [Equation 2] we can compute the size of an exact amortized zero-knowledge
proof of knowledge of ternary openings in terms of prover-to-verifier communication. In our pro-
tocol we prove knowledge of binary openings. By interchanging the 3τ of [Equation 2] with 2τ we
achieve the following equation for the proof size of πAEx of knowledge of binary openings

|cd|+ |rd|+ |M|+ (2vN + (2τ + 4)η) log2 q + λη(1 + log2 l) bits (9)

We use the following parameters from [Section 7.4]: |cd| = 256, |rd| = 256, |M| = 256, v = k+ ℓ =
3+1 = 4, N = 4096, η = 325, q = 278, λ = 128, l = 220.3. The width v of the commitment matrix
is the length of the secret vector consisting of randomness of dimension k and ℓ messages. N is the
dimension of the polynomials (number of coefficients). With Equation (9) we compute the size of
πAEx for binary secrets and τ commitments to (443 + 6.3τ)KB.

Size of πNEx We compute the proof size of πNEx for only one commitment. While the πNEx from
[Lyu19, Section 5.2] uses values chosen from a uniform distribution we use values chosen from a
Gaussian distribution like in [Ara+22].

From [Table 1] we have the standard deviation for one-time commitments σC = 0.954 · ν ·β ·
√
kN .

The factor 0.954 is used to control the rejection rate of the proofs. ν is the number of non-zero
coefficients of the challenge polynomial, as defined in Section 5.3. β

√
kN is the maximal 2-norm

of the randomness vector of k polynomials each with N coefficients of maximal absolute value β.

The standard deviation σNEx of the commitment of the one-time proof πNEx must be chosen to
hide both the commitment randomness and the message. We need not only the k = 3 polynomials
of the commitment randomness r to be short, but the also the message polynomial m must be
short. Therefore, we use v = k + 1 in our equation:

σNEx = 0.954 · ν · β ·
√
vN (10)

From [Table 2] we have ν = 36 and N = 4096. We use β = 1. With Equation (10) we compute
σNEx ≈ 212.

To hide both the randomness and the message we sample a vector with v = 4 polynomials each
with N = 4096 coefficients from a Gaussian distribution with the standard deviation σNEx. This
gives us the following proof size for πNEx:

v ·N · log2(6 · σNEx) bits (11)

We use the factor 6 because Gaussian values with very high probability are within +/- 6 times
the standard deviation. With Equation (11) we compute the proof size of πNEx to 240631 bits ≈
30KB.
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Ciphertext Commitment πLIN πAEx πNEx

Size 80KB 80KB 17.5τ KB (443 + 6.3τ)KB 30KB

Table 3: Size of the ciphertexts, commitments and proofs. τ is the number of commitments.

Protocol Elements For the SendVote protocol, VC sends 1 ciphertext, 5 commitments, πLIN
for 8 commitments, and πAEx for 5 commitments. Each CCR component sends 1 commitment,
πLIN for 2 commitments, and πNEx for 1 commitment. For the ConfirmVote protocol, each CCR
component sends 1 commitment, πLIN for 2 commitments, and πNEx for 1 commitment.

Total Communication Size For the SendVote protocol we achieve a communication of 1095KB
from VC, and 145KB from each CCR component. For the ConfirmVote protocol we achieve a
communication of 145KB from each CCR component. As a concrete example having four CCR
components the communication size of SendVote is 1.7MB, the communication size of ConfirmVote
is 0.6MB, and the total communication size of the two-round voting phase is 2.3MB.

11.2 Communication Timings

We use timings of cryptographic operations to encrypt and commit from [Table 4]. The timings of
protocols ΠLIN, ΠANEx, ΠAEx from [Table 5] are average protocol timings per commitment when
the protocols are run with an input of 1000 commitments. For our protocol, we need protocol
timings per commitment when the input is only 1-5 commitments. We can expect the average
timing per commitment to be smaller when the input is smaller. For the protocol ΠLIN we use
the given timings directly as a pessimistic guess. We assume the timings of ΠNEx are at most the
given timings of ΠANEx although not amortized. The timings of ΠAEx from [Table 5] are by far
the most expensive with 1009τ ms for ΠAEx and 20τ ms for ΠAExV. By contacting the authors of
[Ara+22] we received the following timings for an input of 10 commitments: 90τ ms for ΠAEx and
60τ ms for ΠAExV.

Encrypt Commit ΠLIN + ΠLINV ΠNEx + ΠNExV ΠAEx + ΠAExV

Time 2.5ms 0.45ms (10.7 + 15.7)τ ms (30 + 25)ms (90 + 60)τ ms

Table 4: Timings of cryptographic operations and protocols. τ is the number of commitments.

Protocol Operations For the SendVote protocol, VC computes 1 ciphertext, 5 commitments,
πLIN for 8 commitments, and πAEx for 5 commitments. Each CCR component verifies the proofs
πLIN for 8 commitments, and πAEx for 5 commitments, then computes 1 commitment, πLIN for 2
commitments, and πNEx for 1 commitment. For the ConfirmVote protocol, each CCR component
computes 1 commitment, πLIN for 2 commitments, and πNEx for 1 commitment.

Total Timings For the SendVote protocol we achieve a timing of 498ms for VC and 404ms
for each CCR component, including verifying the proofs from VC. The components of CCR com-
pute this in parallel. This results in a total timing of 902ms. For the ConfirmVote protocol we
achieve a timing of 65ms for each CCR component, which they compute in parallel. In total, the
communication timing for the two-round protocol is less than 1 s.

11.3 Discussion

We have neglected sizes of simple elements like the partial return code pCC and the return codes
cc⋆. We have neglected timings of standard operations like hashing and checking mapping tables.
The ring-elements and the proofs are much more size- and time-consuming.
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The communication size quickly scales up for a real-world election including many voters. With
100 000 voters the total proof size from the voting phase is about 230GB. Auditors would need
to download this to their verifiers.

The waiting time for V until return codes are shown could be reduced if VC starts computing
commitments and proofs while V is typing the voting options. We emphasize that the waiting
time is not only dependent on the timing of the cryptographic operations but would in practice be
dominated by human operations and network-latency.

Among the cryptographic operations, the proofs of exact shortness are the most expensive, both in
terms of size and timing. Because exact proofs keep the overall parameters of the system low, they
are to prefer over relaxed proofs of boundedness. We expect that future work on more efficient
lattice-based zero-knowledge proofs of exact shortness will improve the concrete efficiency of our
protocol.

12 Concluding Remarks

We have presented an approach for creating return codes for lattice-based electronic voting, ex-
tending the framework by Aranha et al. [Ara+21; Ara+22]. For a voting system with four control
components and two-round communications our scheme results in a total of 2.3MB of communic-
ation per voter, taking less than 1 s of computation. The presented voting phase uses the same
trust assumptions of [Swi21], allowing for an untrustworthy voting server while assuming one out
of several control components to be trustworthy.

The Swiss Post voting protocol [Swi21], and other electronic voting protocols in use or planned
for use in elections are all based on discrete log-type assumptions. Constructing a system based
on lattice-assumptions is motivated by the potential future threat by quantum computers, against
future integrity of voting systems, and privacy of votes cast today.

As we have seen in Section 8.4.4, the partial return codes used in [Swi21] are for privacy the
weakest part of the cryptographic protocol, with or without quantum computers. These partial
return codes could be made uniformly random, like in our voting protocol presented in Section
10, and therefore not be an issue for long-term privacy. Still, these partial return codes must
somehow be linked to the encrypted vote to avoid attacks from a cheating voting client. The ZK-
proofs needed must also be post-quantum secure to achieve long-time privacy of the voting system.
Therefore, when constructing a post-quantum secure voting system, not only the tally phase as
described by [Ara+22] must be considered, but also the voting phase, which we have described in
this thesis.

Together, the shuffle and the decryption protocols by Aranha et al. [Ara+21; Ara+22] and the
return codes presented here can be used to build a post-quantum secure cryptographic voting
scheme offering privacy, individual verifiability, and universal verifiability.
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