
SIDE-CHANNEL ATTACKS 3:
PUBLIC KEY CRYPTO

TTM4205 – Lecture 9
Caroline Sandsbråten

04.10.2024



Contents

Previous Lecture

SCA on RSA

CT Arithmetic

SCA on ECC

Interesting papers

2



Contents

Previous Lecture

SCA on RSA

CT Arithmetic

SCA on ECC

Interesting papers

3



Black Box Crypto

We design the security of a cryptographic scheme to follow Kerckhoff’s
principle: if everything about the scheme, except for the key, is known,
then the scheme should be secure.

We analyze the scheme mathematically as black-box algorithms that take
some (public or secret) input and give some (public or secret) output, and
prove it secure concerning the algorithm description and the public data.

However, security depends on your model. In practice, it matters how these
algorithms are implemented and what kind of information the physical system
leaks about the inner workings of the algorithm computing on secret data.

4



Leakage

▶ The time it takes to compute. . .

▶ The power usage while computing. . .

▶ The electromagnetic radiation. . .

▶ The temperature variation. . .

▶ The memory pattern accessed. . .

▶ The sounds your laptop makes. . .

5



Attack Categories

▶ Remote vs physical attacks

▶ Software and hardware attacks

▶ Passive vs active attacks

▶ Invasive vs non-invasive attacks

6



Symmetric SCA

▶ How AES works.

▶ Power analysis on AES.

▶ Correlation analysis.

▶ Timing attacks.

▶ Masking.

▶ Bitslicing.

7



Contents

Previous Lecture

SCA on RSA

CT Arithmetic

SCA on ECC

Interesting papers

8



RSA Exponentiation

In the RSA cryptosystem (encryption, decryption, signing
and verification), we need to compute an exponentiation.

If the exponent is a secret (decryption or signing) key, we
must protect this value against side-channel attacks.

9



Assumptions

In this example we assume a few things:

▶ the RSA primes are generated securely

▶ order phi is computed as lcm(p− 1, q − 1)

▶ we have a way of representing larger integers

10



Weaknesses and Defenses

In the following slides we will look at the common ways to
compute modular exponentiation. For each algorithm, try
to come up with attacks and defenses for the algorithm.

11



Square and Multiply

12



Potential Weaknesses

The following might trivially leak the key:

▶ timing or power traces might leak the 1’s in d

▶ multiplication might not be constant time

▶ modular reduction might not be constant time

13



Potential Defenses

We must at least ensure the following:

▶ algorithm must be independent of the 1’s in d

▶ bit int multiplication must be constant time

▶ modular reduction must be constant time

Assume that the two latter operations are constant time.

14



Square and Always Multiply

15



Potential Weaknesses

▶ dummy operations might leak memory information

▶ "smart" compilers might skip dummy operations

▶ fault injections might expose dummy operations

16



Potential Defenses

▶ make the result dependent on every operation

▶ perform the same operations independent of d

17



Montgomery Ladder

18



Potential Weaknesses

There might still be issues:

▶ if c is chosen adaptively, many power traces might leak d

19



Potential Defenses

Randomization to the rescue:

▶ randomize the computation to make it independent of c

20



Randomized Montgomery Ladder

21



Potential Weaknesses

There might still be issues:

▶ if key is fixed, many power traces might leak d

22



Potential Defenses

Randomization to the rescue (again):

▶ randomize the exponent to mask the key d

23



Doubly randomized Montgomery Ladder

24



Summary

Protecting secret key computations are difficult. We need:

▶ all binary operations to be constant time

▶ the algorithmic operations to be constant time

▶ correctness of output to depend on all operations

▶ the base element to be randomized (masked)

▶ the exponent to be randomized (masked)

25



Contents

Previous Lecture

SCA on RSA

CT Arithmetic

SCA on ECC

Interesting papers

26



Representing Large Integers

This is usually done by representing them as a list of integers of 32 or 64 bits.
Binary operations is then done over the list of integers and must remember
the carry when it overflows.

For example, a RSA-4096 moduli can be represented using a list of 128
integers of 32 bits or 64 integers of 64 bits.

27



Intel IMUL

Takes in two 32 bit integers to be multiplied and outputs
two 32 bit integers representing the upper and lower 32
bits of the product. This operation is constant time.

Disclaimer 1: this depends on the machine your are using.

Disclaimer 2: this depends on the compiler your are using.

28



Arm MUL

Figure: https://www.bearssl.org/ctmul.html
29

https://www.bearssl.org/ctmul.html


Modular Montgomery multiplication

30



Bear SSL

Figure: https://www.bearssl.org/constanttime.html

31

https://www.bearssl.org/constanttime.html


Montgomery Modular Multiplication

Figure: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication

32

https://en.wikipedia.org/wiki/Montgomery_modular_multiplication


Constant Time IF

A possible way to compute an IF in constant time:

(t < N) · t+ (1− (t < N)) · (t−N)

Disclaimer: "smart" compilers might make it a regular IF.

33



Contents

Previous Lecture

SCA on RSA

CT Arithmetic

SCA on ECC

Interesting papers

34



SCA on ECC

We can essentially re-use most mechanisms for RSA in ECC.

Q: Do you see any immediate differences between the two?

35



SCA on ECC

We can essentially re-use most mechanisms for RSA in ECC.

A:We need to be a bit careful about the following:

▶ scalar multiplication must depend on curve params

▶ addition formulas involve inversion of secret elements

▶ addition formulas depends on the input points

36



SCA on ECC

We can essentially re-use most mechanisms for RSA in ECC.

Sol: Some possible solutions to avoid the above:

▶ verify points and use curve-dependent formulas

▶ use curves and formulas that are universal

▶ compute inversion in constant time (Fermat trick)

▶ avoid (most) inversions using projective coordinates

37



EC Diffie-Hellman

1: Inputs: Elliptic curve E, base point G, private key a for Alice, private key b
for Bob, prime p

2: Outputs: Shared secret S
3: procedure ECDH
4: Alice computes PA := a ·G on curve E ▷ Public key computation
5: Alice sends PA to Bob, Bob verifies PA is on curve E
6: Bob computes PB := b ·G on curve E ▷ Public key computation
7: Bob sends PB to Alice, Alice verifies PB is on curve E
8: Alice computes S := a · PB ▷ Shared secret
9: Bob computes S := b · PA ▷ Shared secret
10: Both Alice and Bob now share the same secret S
11: end procedure

38



Blinded Scalar Multiplication (Alice PoV)

1: Inputs: Elliptic curve E, base point G, private key a for Alice, private key b
for Bob, prime p

2: Outputs: Shared secret S
3: procedure ECDH
4: Alice generates a random blinding factor rA ∈ [1, p− 1]
5: Alice computes the masked public key PA = (a+ rA) ·G− rA ·G
6: Alice sends PA to Bob, receives PB from Bob, Alice and Bob verifies PB

and PA is on curve E, respectively
7: Alice computes the shared secret as SA = (a+ rA) · PB − rA · PB

8: Both Alice and Bob now share the same secret S = SA = SB

9: end procedure

39



Randomized Point Addition (Alice PoV)

1: Inputs: Elliptic curve E, base point G, private key a for Alice, private key b
for Bob, prime p

2: Outputs: Shared secret S
3: procedure ECDH
4: Alice generates a random point RA on the elliptic curve
5: Alice computes the masked public key PA = a · (G+RA)− a ·RA

6: Alice sends PA to Bob, receives PB from Bob, Alice and Bob verifies PB

and PA is on curve E, respectively
7: Alice computes the shared secret as SA = (a+ rA) · PB − rA · PB

8: Alice computes the shared secret as SA = a · (PB +RA)− a ·RA

9: Both Alice and Bob now share the same secret S = SA = SB

10: end procedure

40



Curve-dependent formulas
Algorithm 1 Point Multiplication
1: Inputs: Point P = (x, y) on elliptic curve E, scalar k (private key), prime p
2: Outputs: Point kP = (xn, yn)
3: procedure PointMultiplication
4: R = (0, 1) ▷ Initialize to the point at infinity (identity)
5: Q = P ▷ Initialize Q as the input point P
6: for each bit ki of k from left to right do
7: if ki = 1 then
8: R = PointAddition(R,Q) ▷ Add Q to R if bit is 1
9: end if
10: Q = PointDoubling(Q) ▷ Double the point Q each iteration
11: end for
12: return R
13: end procedure

41



Potential Weaknesses

The following might trivially leak the key:

▶ timing or power traces might leak the 1’s in k

▶ multiplication might not be constant time

▶ modular reduction might not be constant time

42



Potential Defenses

We must at least ensure the following:

▶ algorithm must be independent of the 1’s in k

▶ multiplication must be constant time

▶ modular reduction must be constant time

And other similar defenses as for the square and multiply algorithm earlier in
the lecture.

43



Doubly Randomized Point Multiplication
1: Inputs: Point P = (x, y) on elliptic curve E : y2 = x3 + ax+ b, scalar k, prime

p, curve order n
2: Outputs: Point kP = (xk, yk)
3: Random values r ∈ Z and zr ∈ R+

4: procedure DoublyRandomizedPointMultiplication
5: Step 1: Randomize the scalar
6: Generate a random integer r ∈ [1, n− 1]
7: Let k′ = k + r · n
8: Step 2: Randomize the point coordinates
9: Generate a random non-zero scalar zr
10: Transform the input point:

Pr = (xr, yr) = (zr · x, zr · y) mod p

11: Step 3: Montgomery Ladder with Randomized Inputs
12: Initialize R0 = Pr and R1 = 2Pr

13: for each bit k′i of k′ from left to right do
14: if k′i = 1 then
15: Swap R0 and R1

16: end if
17: R0 = PointDoubling(R0)
18: R1 = PointAddition(R0, Pr)
19: end for
20: Step 4: Remove the randomization
21: Recover the coordinates by dividing by the random scalar:

(xk, yk) = (R0.x/zr, R0.y/zr) mod p

22: return (xk, yk)
23: end procedure

44



Figure: https://tjerandsilde.no/files/Comparative-Study-of-ECC-Libraries-for
-Embedded-Devices.pdf

45

https://tjerandsilde.no/files/Comparative-Study-of-ECC-Libraries-for-Embedded-Devices.pdf
https://tjerandsilde.no/files/Comparative-Study-of-ECC-Libraries-for-Embedded-Devices.pdf


Contents

Previous Lecture

SCA on RSA

CT Arithmetic

SCA on ECC

Interesting papers

46



Paper: https://eprint.iacr.org/2023/1068

47

https://eprint.iacr.org/2023/1068


Paper: https://eprint.iacr.org/2023/923

48

https://eprint.iacr.org/2023/923


Where did the idea come from?

▶ Had previously used a photo
diode to recover speech based
on intensity of LED light.

▶ How did they do this?

Paper:
https://iacr.org/submit/files/slid
es/2024/rwc/rwc2024/1/slides.pptx 49

https://iacr.org/submit/files/slides/2024/rwc/rwc2024/1/slides.pptx
https://iacr.org/submit/files/slides/2024/rwc/rwc2024/1/slides.pptx


Video Based Cryptanalysis

▶ Detecting the when an ECDSA
signing operation starts and
finishes.

▶ How did they do this? Paper:
https://iacr.org/submit/files/slid
es/2024/rwc/rwc2024/1/slides.pptx

50

https://iacr.org/submit/files/slides/2024/rwc/rwc2024/1/slides.pptx
https://iacr.org/submit/files/slides/2024/rwc/rwc2024/1/slides.pptx


Questions?

51


	Previous Lecture
	SCA on RSA
	CT Arithmetic
	SCA on ECC
	Interesting papers

