NTNU | Norwegian University of Science and Technology

LEGACY CRYPTO 2: ATTACKS ON TLS

TTM4205 – Lecture 6

Tjerand Silde

13.09.2024

Contents

Announcements

Legacy Crypto

Legacy PKC

Attacks on TLS

Backdoors

Contents

Announcements

Legacy Crypto

Legacy PKC

Attacks on TLS

Backdoors

Reference Group Meeting

We now have four reference group members:

- Adrian Tokle Storset (adriats), from MSTCNNS
- Daniel Nils Braun (danienbr), exchange student
- Jiaqi Chen (jiaqic), from SECCLO
- Emil Bragstad (emil.bragstad), from MTKOM

The first meeting will be on September 23rd.Please provide feedback!

ChipWhisperer Lab

- The assignment will be made available on Monday September 16
- ► The lab submission deadline will be Friday December 6th
- Caroline will give a setup tutorial on Tuesday September 17th
- > You will get access to a computer lab and ChipWhisperer equipment
- ► The lab consists of four parts, each part worth 5 points
- Each part consists of several tasks that you need to complete
- ▶ There is a bonus problem worth 5 points if you are interested

Contents

Announcements

Legacy Crypto

Legacy PKC

Attacks on TLS

Backdoors

Legacy Crypto is...

- Old and outdated crypto
- Insecure, weakened, or flawed crypto
- Crypto regulated by export control
- Potentially backdoored crypto
- Key escrow and surveillance
- Downgradable crypto protocols

Secret Key Crypto

Public Key Crypto

Secret Key Crypto

Public Key Crypto

Public Key Crypto

Contents

Announcements

Legacy Crypto

Legacy PKC

Attacks on TLS

Backdoors

Legacy Ciphers

While we have attacks against symmetric key ciphers making them obsolete, we do not have groundbreaking attacks against legacy public key ciphers.

However, we need to be careful when setting parameters and composing different schemes in more complex protocols.

Here are some examples...

 \blacktriangleright Improved discrete log \rightarrow Must use larger keys

- \blacktriangleright Improved discrete log \rightarrow Must use larger keys
- ▶ Non-prime group $\mathbb{Z}_q^* \rightarrow$ Leaks Legendre symbol of *m*
 - computing DL depends on largest prime factor p|(q-1)
 - messages with different Legendre symbol \rightarrow break DDH
 - need generator g to be of order p for CPA security

 \blacktriangleright Improved discrete log \rightarrow Must use larger keys

- ▶ Non-prime group $\mathbb{Z}_q^* \rightarrow$ Leaks Legendre symbol of *m*
 - computing DL depends on largest prime factor p|(q-1)
 - messages with different Legendre symbol \rightarrow break DDH
 - need generator g to be of order p for CPA security
- Supersingular curves \rightarrow Can break Decisional DH

 \blacktriangleright Improved discrete log \rightarrow Must use larger keys

- ▶ Non-prime group $\mathbb{Z}_q^* \rightarrow$ Leaks Legendre symbol of *m*
 - computing DL depends on largest prime factor p|(q-1)
 - messages with different Legendre symbol \rightarrow break DDH
 - need generator g to be of order p for CPA security
- Supersingular curves \rightarrow Can break Decisional DH
- ▶ Choose safe curves? \rightarrow Standardized P-256, X25519, ...

ECC in Practice

Elliptic Curve Cryptography in Practice

Joppe W. Bos¹, J. Alex Halderman², Nadia Heninger³, Jonathan Moore, Michael Naehrig¹, and Eric Wustrow²

¹ Microsoft Research
 ² University of Michigan
 ³ University of Pennsylvania

Figure: https://eprint.iacr.org/2013/734.pdf

• Improved factoring \rightarrow Must use larger keys

- Improved factoring \rightarrow Must use larger keys
- If $d < \frac{1}{3}N^{1/4} \rightarrow$ Wiener's attack to recover d

- Improved factoring \rightarrow Must use larger keys
- If $d < \frac{1}{3}N^{1/4} \rightarrow$ Wiener's attack to recover d
- Small key $e \rightarrow$ Håstad's attack to recover m

- $\blacktriangleright \text{ Improved factoring} \rightarrow \text{Must use larger keys}$
- If $d < \frac{1}{3}N^{1/4} \rightarrow$ Wiener's attack to recover d
- Small key $e \rightarrow$ Håstad's attack to recover m
- Several attacks by Don Coppersmith (NSA since 2005)
 - Efficient factoring when e is very small
 - Message recovery against short padding
 - Factoring given partial bits of p

- $\blacktriangleright \text{ Improved factoring} \rightarrow \text{Must use larger keys}$
- If $d < \frac{1}{3}N^{1/4} \rightarrow$ Wiener's attack to recover d

Small key $e \rightarrow$ Håstad's attack to recover m

- Several attacks by Don Coppersmith (NSA since 2005)
 - Efficient factoring when e is very small
 - Message recovery against short padding
 - Factoring given partial bits of p
- If $e < \sqrt{N}$, given $\frac{1}{4} \log_2 N$ bits of $d \rightarrow$ Can reconstruct d

- $\blacktriangleright \text{ Improved factoring} \rightarrow \text{Must use larger keys}$
- If $d < \frac{1}{3}N^{1/4} \rightarrow$ Wiener's attack to recover d

Small key $e \rightarrow$ Håstad's attack to recover m

- Several attacks by Don Coppersmith (NSA since 2005)
 - Efficient factoring when e is very small
 - Message recovery against short padding
 - Factoring given partial bits of p
- If $e < \sqrt{N}$, given $\frac{1}{4} \log_2 N$ bits of $d \rightarrow$ Can reconstruct d
- $\blacktriangleright\,$ PKCS 1 padding \rightarrow Bleichenbacher's padding attack

Twenty Years of Attacks on the RSA Cryptosystem

Dan Boneh dabo@cs.stanford.edu

Figure: https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf

RSA Challenges

Challenge		h	Bits		Factored by	
Name		Digits		Date Factored		
ī	RSA-100	100	330	Apr 1, 1991	A. K. Lenstra	
	RSA-110	110	364	Apr 14, 1992	A. K. Lenstra and M.S. Manasse	
1	RSA-120	120	397	Jul 9, 1993	T. Denny et al.	
1	RSA-130	130	430	Apr 10, 1996	A. K. Lenstra et al.	
1	RSA-140	140	463	Feb 2, 1999	H. te Riele et al.	
	RSA-150	150	496	Apr 16, 2004	K. Aoki et al.	
	RSA-155	155	512	Aug 22, 1999	H. te Riele et al.	
	RSA-160	160	530	Apr 1, 2003	J. Franke et al.	
	RSA-170	170	563	Dec 29, 2009	D. Bonenberger and M. Krone	
	RSA-576	174	576	Dec 3, 2003	J. Franke et al.	
1	RSA-180	180	596	May 8, 2010	S. A. Danilov and I. A. Popovyan	
1	RSA-190	190	629	Nov 8, 2010	A. Timofeev and I. A. Popovyan	
	RSA-640	193	640	Nov 2, 2005	J. Franke et al.	
	RSA-200	200	663	May 9, 2005	J. Franke et al.	
	RSA-210	210	696	Sep 26, 2013	R. Propper	
RSA-704 21		212	704	Jul 2, 2012	S. Bai, E. Thomé and	
					P. Zimmermann	
1	RSA-220	220	729	May 13, 2016	S. Bai, P. Gaudry, A. Kruppa,	
					E. Thomé and P. Zimmermann	
1	RSA-230	230	762	Aug 15, 2018	S. S. Gross	
	RSA-768	232	768	Dec 12, 2009	T. Kleinjung et al.	
	RSA-240	240	795	Nov 24, 2019	F. Boudot, P. Gaudry, A. Guille-	
					vic, N. Heninger, E. Thomé and	
					P. Zimmermann	
1	RSA-250	250	829	Feb 28, 2020	F. Boudot, P. Gaudry, A. Guille-	
					vic, N. Heninger, E. Thomé and	
					P. Zimmermann	

Table 1. The solved RSA Challenges

Figure: https://eprint.iacr.org/2021/894.pdf

Key Sizes

			Future System Use		
	Parameter	Legacy	Near Term	Long Term	
Symmetric Key Size	k	80	128	256	
Hash Function Output Size	m	160	256	512	
MAC Output Size	m	80	128	256	
RSA Problem	$\ell(n) \ge$	1024	3072	15360	
Finite Field DLP	$\ell(p^n) \ge$	1024	3072	15360	
	$\ell(p), \ell(q) \ge$	160	256	512	
ECDLP	$\ell(q) \ge$	160	256	512	
Pairing	$\ell(q^n) \ge$	1024	3072	15360	
	$\ell(p), \ell(q) \ge$	160	256	512	

Table 2. Key Size Analysis, where $\ell(\cdot)$ refers to the bit-length of the parameter.

Figure: https://eprint.iacr.org/2021/894.pdf

Contents

Announcements

Legacy Crypto

Legacy PKC

Attacks on TLS

Backdoors

▶ A MitM attack on TLS ≤ 1.2 can choose weak ciphers

▶ A MitM attack on TLS ≤ 1.2 can choose weak ciphers

Export Diffie-Hellman accept 512 bit prime groups

▶ A MitM attack on TLS ≤ 1.2 can choose weak ciphers

- Export Diffie-Hellman accept 512 bit prime groups
- ▶ One week of pre-computation \rightarrow DL takes 1 min

- ▶ A MitM attack on TLS ≤ 1.2 can choose weak ciphers
- Export Diffie-Hellman accept 512 bit prime groups
- One week of pre-computation \rightarrow DL takes 1 min
- 2015: two 1024 groups break 18% HTTPS and 26% SSH

Logjam Attack

Figure: https://weakdh.org/imperfect-forward-secrecy.pdf

Old Attacks on TLS

RC4

- Roos's Bias 1995
- Fluhrer, Martin & Shamir 2001
- Klein 2005
- Combinatorial Problem 2001
- Royal Holloway 2013
- Bar-mitzvah 2015
- NOMORE 2015

RSA-PKCS#1 v1.5 Encryption

- Bleichenbacher 1998
- Jager 2015
- DROWN 2016

Renegotiation

- Marsh Ray Attack 2009
- Renegotiation DoS 2011
- Triple Handshake 2014

3DES

Sweet32

AES-CBC

- Vaudenay 2002
- Boneh/Brumley 2003
- BEAST 2011
- Lucky13 2013
- POODLE 2014
- Lucky Microseconds 2015

Compression

CRIME 2012

MD5 & SHA1

- SLOTH 2016
- SHAttered 2017

Figure: https://owasp.org/www-chapter-london/assets/slides/OWASPLondon20180
125_TLSv1.3_Andy_Brodie.pdf

Downgrade Attacks on TLS

TLS: a long year of downgrade attacks

- POODLE TLS 1.2 → SSLv3 [Dec'14]
- FREAK RSA-2048 → RSA-512 [Mar'15]
- LOGJAM DH-2048 → DH-512 [May'15]
- BLEICH? RSA-Sign → RSA-Enc [Aug'15]
- SLOTH RSA-SHA256 → RSA-MD5 [Jan'16]

Figure: https://rwc.iacr.org/2016/Slides/Downgrade.pdf

Removed RSA for key exchange

Removed RSA for key exchange

Removed RC4, 3DES and Camellia

- Removed RSA for key exchange
- Removed RC4, 3DES and Camellia
- Removed MD5 and SHA-1 hash functions

- Removed RSA for key exchange
- Removed RC4, 3DES and Camellia
- Removed MD5 and SHA-1 hash functions
- Removed AES-CBC encryption mode

- Removed RSA for key exchange
- Removed RC4, 3DES and Camellia
- Removed MD5 and SHA-1 hash functions
- Removed AES-CBC encryption mode
- Removed static (EC) Diffie-Hellman

- Removed RSA for key exchange
- Removed RC4, 3DES and Camellia
- Removed MD5 and SHA-1 hash functions
- Removed AES-CBC encryption mode
- Removed static (EC) Diffie-Hellman
- Only standardized groups/curves

New Cipher Suits

TLS 1.3 only allows for 5 different cipher suits:

- (EC)DHE-AES-128-GCM-SHA256
- (EC)DHE-AES-256GCM-SHA384
- ► (EC)DHE-CHACHA20-POLY1305-SHA256
- (EC)DHE-AES-128-CCM-SHA256
- (EC)DHE-AES-128-CCM-8-SHA256

Matthew Green's Blog

Standards: https://blog.cryptographyengineering.com/2011/10/04/ho w-standards-go-wrong-constructive

Logjam: https://blog.cryptographyengineering.com/2015/05/22/attack -of-week-logjam

FREAK: https://blog.cryptographyengineering.com/2015/03/03/attack -of-week-freak-or-factoring-nsa

Contents

Announcements

Legacy Crypto

Legacy PKC

Attacks on TLS

Backdoors

PRNG designed by NSA and standardized by NIST

PRNG designed by NSA and standardized by NIST

It is provably random from DDH over elliptic curves

- PRNG designed by NSA and standardized by NIST
- It is provably random from DDH over elliptic curves
- The input is a random seed s and two points P, Q

- PRNG designed by NSA and standardized by NIST
- It is provably random from DDH over elliptic curves
- ▶ The input is a random seed *s* and two points *P*, *Q*
- ▶ The points *P* and *Q* are chosen at random

- PRNG designed by NSA and standardized by NIST
- It is provably random from DDH over elliptic curves
- ▶ The input is a random seed *s* and two points *P*, *Q*
- ▶ The points *P* and *Q* are chosen at random
- Let x(P) output the x coordinate of the point P

- PRNG designed by NSA and standardized by NIST
- It is provably random from DDH over elliptic curves
- ▶ The input is a random seed *s* and two points *P*, *Q*
- ▶ The points *P* and *Q* are chosen at random
- Let x(P) output the x coordinate of the point P
- Let ϕ be a function that truncates x(P) to bits

A Security Analysis of the NIST SP 800-90 Elliptic Curve Random Number Generator

Daniel R. L. Brown^{*} and Kristian Gjøsteen[†]

February 15, 2007

Figure: https://eprint.iacr.org/2007/048.pdf

This is provably biased if you know DLOG $\log_P Q$

DUAL_EC Backdoor (Simplified)

$$s_{i+1} = P^{s_i} = (Q^x)^{s_i} = (Q^{s_i})^x = r_i^x \mod N$$

Figure: https://www.cs.au.dk/~orlandi/orlandi_backdoors.pdf

Matthew Green's Blog

- Dual-EC-DRBG: https://blog.cryptographyengineering.com/2013/09/18/ the-many-flaws-of-dualecdrbg
- RSA warning: https://blog.cryptographyengineering.com/2013/09/20/rs a-warns-developers-against-its-own
- NSA random number: https://blog.cryptographyengineering.com/2013/ 12/28/a-few-more-notes-on-nsa-random-number
- Juniper backdoor: https:

//blog.cryptographyengineering.com/2015/12/22/on-juniper-backdoor

Micali-Schnorr?

On the Possibility of a Backdoor in the Micali-Schnorr Generator

Hannah Davis¹ Matthew Green² Nadia Heninger¹ Keegan Ryan¹ Adam Suhl¹

Figure: paper: https://eprint.iacr.org/2023/440.pdf, talk: https://www.youtube.com/watch?v=608NQdTn39Q&t=2629s, slides: https://iacr.org/submit/files/slides/2023/rwc/rwc2023/119/slides.pdf

Micali-Schnorr?

Unclear how to recover the state using RSA decryption.

Questions?

