

LEGACY CRYPTO 1: CRYPTO WARS

TTM4205 - Lecture 5

Tjerand Silde

10.09.2024

Contents

Announcements

Legacy Crypto

Crypto Wars

An Old Cipher

Crypto AG

Newer Ciphers

Newest Ciphers

Contents

Announcements

Legacy Crypto

Crypto Wars

An Old Cipher

Crypto AG

Newer Ciphers

Newest Ciphers

Reference Group

I am looking for an MTKOM student to join the reference group. We will meet three times during the semester, and your feedback is extremely valuable.

Send me an email and/or talk to me in the break:)

Contents

Announcements

Legacy Crypto

Crypto Wars

An Old Cipher

Crypto AG

Newer Ciphers

Newest Ciphers

► Old and outdated crypto

- Old and outdated crypto
- ► Insecure, weakened, or flawed crypto

- Old and outdated crypto
- Insecure, weakened, or flawed crypto
- Crypto regulated by export control

- Old and outdated crypto
- ► Insecure, weakened, or flawed crypto
- Crypto regulated by export control
- Potentially backdoored crypto

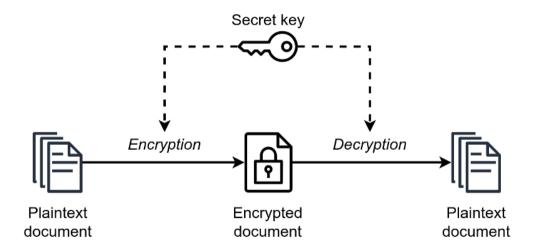
- Old and outdated crypto
- ► Insecure, weakened, or flawed crypto
- Crypto regulated by export control
- Potentially backdoored crypto
- Key escrow and surveillance

- Old and outdated crypto
- ► Insecure, weakened, or flawed crypto
- Crypto regulated by export control
- Potentially backdoored crypto
- Key escrow and surveillance
- Downgradable crypto protocols

Two Categories

Secret Key Crypto

Public Key Crypto


Today

Secret Key Crypto

Public Key Crypto

Secret Key Crypto

Contents

Announcements

Legacy Crypto

Crypto Wars

An Old Cipher

Crypto AG

Newer Ciphers

Newest Ciphers

Crypto Wars

Essentially 30+ year ongoing debate between policymakers and technologists about encryption and surveillance

Typically portrayed as "Safety" vs. "Privacy" to get "Security"

► The 1990s: Wire-tapping vs. cryptography

- ► The 1990s: Wire-tapping vs. cryptography
- ► AT&T phone calls encrypted with DH and DES

- ► The 1990s: Wire-tapping vs. cryptography
- ► AT&T phone calls encrypted with DH and DES
- The Clipper-chip and key escrow (broken)

- ► The 1990s: Wire-tapping vs. cryptography
- ► AT&T phone calls encrypted with DH and DES
- The Clipper-chip and key escrow (broken)
- Law vs. technology, export control, free speech

- ► The 1990s: Wire-tapping vs. cryptography
- ► AT&T phone calls encrypted with DH and DES
- The Clipper-chip and key escrow (broken)
- Law vs. technology, export control, free speech
- ▶ EFF DES cracker broke 56 bit DES in 1998

- ► The 1990s: Wire-tapping vs. cryptography
- ► AT&T phone calls encrypted with DH and DES
- The Clipper-chip and key escrow (broken)
- Law vs. technology, export control, free speech
- ▶ EFF DES cracker broke 56 bit DES in 1998
- ightharpoonup The US government allows crypto from \sim 2000

Figure: https://darknetdiaries.com/episode/12

▶ Roughly the years 2010-2016: The "Going dark" debate

- ▶ Roughly the years 2010-2016: The "Going dark" debate
- Communication (calls, messages) usually not encrypted

- ▶ Roughly the years 2010-2016: The "Going dark" debate
- Communication (calls, messages) usually not encrypted
- ▶ The stored data on phones and laptops was encrypted

- ▶ Roughly the years 2010-2016: The "Going dark" debate
- Communication (calls, messages) usually not encrypted
- ▶ The stored data on phones and laptops was encrypted
- ▶ The 2013 Snowden revelations and mass surveillance

- Roughly the years 2010-2016: The "Going dark" debate
- Communication (calls, messages) usually not encrypted
- The stored data on phones and laptops was encrypted
- ▶ The 2013 Snowden revelations and mass surveillance
- ► Crypto vs Mass Surveillance http://cms16.item.ntnu.no

- Roughly the years 2010-2016: The "Going dark" debate
- Communication (calls, messages) usually not encrypted
- ▶ The stored data on phones and laptops was encrypted
- ▶ The 2013 Snowden revelations and mass surveillance
- ► Crypto vs Mass Surveillance http://cms16.item.ntnu.no
- ► The FBI vs. Apple case and breaking into devices

- Roughly the years 2010-2016: The "Going dark" debate
- Communication (calls, messages) usually not encrypted
- The stored data on phones and laptops was encrypted
- ▶ The 2013 Snowden revelations and mass surveillance
- ► Crypto vs Mass Surveillance http://cms16.item.ntnu.no
- ► The FBI vs. Apple case and breaking into devices
- Standardized crypto backdoored by NSA (next lecture)

Crypto War II: Update from the trenches

Matt Blaze Sandy Clark University of Pennsylvania

Figure: https://youtu.be/bB68G8tLh38

The Moral Character of Cryptographic Work*

Phillip Rogaway

Department of Computer Science University of California, Davis, USA rogaway@cs.ucdavis.edu

> December 2015 (minor revisions March 2016)

Figure: https://web.cs.ucdavis.edu/~rogaway/papers/moral-fn.pdf

▶ 2017-now: The ongoing "Safety vs. Privacy" debate

- 2017-now: The ongoing "Safety vs. Privacy" debate
- ► EARN IT ACT, ONLINE SAFETY BILL, CHAT CONTROL 2.0

- 2017-now: The ongoing "Safety vs. Privacy" debate
- ► EARN IT ACT, ONLINE SAFETY BILL, CHAT CONTROL 2.0
- Age verification, content scanning, liable providers

- ▶ 2017-now: The ongoing "Safety vs. Privacy" debate
- ► EARN IT ACT, ONLINE SAFETY BILL, CHAT CONTROL 2.0
- Age verification, content scanning, liable providers
- Essentially breaks end-to-end encryption in practice

- ▶ 2017-now: The ongoing "Safety vs. Privacy" debate
- ► EARN IT ACT, ONLINE SAFETY BILL, CHAT CONTROL 2.0
- Age verification, content scanning, liable providers
- Essentially breaks end-to-end encryption in practice
- Wants to use Al to discover illegal online content

- ▶ 2017-now: The ongoing "Safety vs. Privacy" debate
- ► EARN IT ACT, ONLINE SAFETY BILL, CHAT CONTROL 2.0
- Age verification, content scanning, liable providers
- Essentially breaks end-to-end encryption in practice
- Wants to use AI to discover illegal online content
- Swiss Police in 2022: "80 % of reports are false"

- ▶ 2017-now: The ongoing "Safety vs. Privacy" debate
- ► EARN IT ACT, ONLINE SAFETY BILL, CHAT CONTROL 2.0
- Age verification, content scanning, liable providers
- Essentially breaks end-to-end encryption in practice
- Wants to use AI to discover illegal online content
- Swiss Police in 2022: "80 % of reports are false"
- ▶ No one knows what is target of scanning = backdoor

Keys Under Doormats:

MANDATING INSECURITY BY REQUIRING GOVERNMENT ACCESS TO ALL DATA AND COMMUNICATIONS

Harold Abelson, Ross Anderson, Steven M. Bellovin, Josh Benaloh, Matt Blaze, Whitfield Diffie, John Gilmore, Matthew Green, Susan Landau, Peter G. Neumann, Ronald L. Rivest, Jeffrey I. Schiller, Bruce Schneier, Michael Specter, Daniel J. Weitzner

Figure: https://www.schneier.com/wp-content/uploads/2016/09/paper-keys-under-doormats-CSAIL.pdf

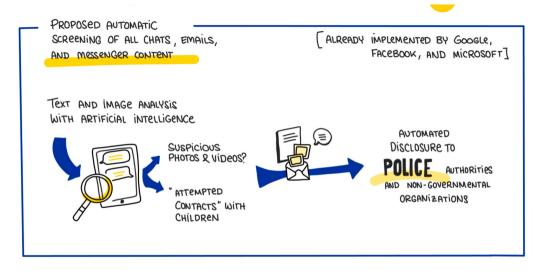


Figure: https://www.patrick-breyer.de/en/posts/chat-control

Contents

Announcements

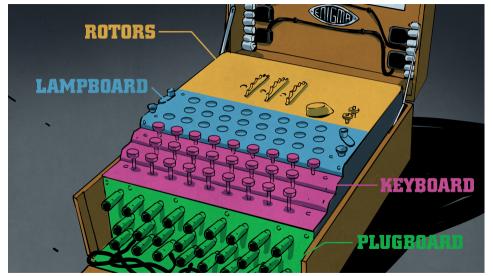
Legacy Crypto

Crypto Wars

An Old Cipher

Crypto AG

Newer Ciphers


Newest Ciphers

Enigma Machine

Code Table

Datum	Walzenlage	Ri	ngstell	ung			S	tocke	rver	bind	unge	n			J	Kenng	ruppe	n		4	
31.	I II V	10	14	02	BF	SD	AY	HG	OU	QC	WI	RL	XP	ZK	yqv	vuc	xxo	gví			
30.	A IA I	04	25	01	DI	ZL	RX	UH	QK	PC	VY	GA	SO	EM	mqy	vts	gvt	csx			
29.	III V III	13	11	06	ZM	BQ	TP	YX	FK	AR	WH	SO	NJ	DG	aky	vdv	оуо	tzt			
28.	I III II	09	16	12	NE	MT	RL	OY	HV	IU	GK	FW	PZ	XC	nfh	vco	tur	wnb	1		
27.	III II I	06	03	15	BF	GR	SZ	OM	WQ	TY	HE	JU	XN	KD	bec	jmv	vtp	xdb			
26.	I III V	19	26	08	GS	VD	CQ	LR	HI	BO	JP	UZ	FT	RN	wvu	yem	· buz	rjk			
25.	II I IV	05	01	16	KA	ZH	QP	GR	MF	LJ	OT	EN	BD	YW	ktv	muq	cqm	cpm			
24.	III II IV	22	02	06	PI	KM	JB	YU	QS	OV	ZA	GW	CH	XF	zcd	iwo	urp	glg	1		
23.	IV III II	08	11	. 07	SX	TD.	QP	HU	FB	YN	CO	IK	WE	GZ	epm	mgz	ygg	vsm			13
22.	I V II	13	02	26	GP	XH	IW	BO	NU	MD	SA	ZK	QR	LT	aam	mvý	jqq	wqm	-		By
21.	IV I V	17	24	03	XC	AQ	OT	UZ	'HD	RG	KM	BL	NS.	JW	1t1	blu	frk	xrh	1		18
20.	IV I III	15	22	12	PO	TV	QC	ZS	EX	WR	BJ	DK	FU	LA	non	lic	oxr	usr			
19.	V I III	13	24	21	HA	GM	DI	VK	JP	YU	EF	TB	ZL	XQ.	ecd	ciq	uvr	ppt	1		NARA
18.	IV V .I	. 23	09	80	X¥	PZ	SQ	GR	AJ.	UO	CN	BA	TM	KI	fjh-	ets	uqu	oft-	-		2
17.	III II V	21	24	15	UT	ZC	YN	BE	PK	JX	RS	GF.		QH	.oub	eci	pyf	rqi	1		Date
16.	IV III V	07	01	13	IN	YJ	SD	UV	GF	BH	TK	QE	AR	OP	kex	. paw	flw	onw			1 =
15.	I IV II	.15	04	25	TM	IJ	VK	OY	NX	PR	WL	GA	BU	SF	sdr	pbu	pan	khb			3
14.	III II IV	10	23	21	WT	RE	PC	FY	JA	VD	OI	HK	NX	ZS	mhz	lff	lnq	giy			100
13.	V I II	14	04	12	AN	IV	LH	YP	WM	TR	XU	FO	ZB	ED	rqh	ucm	ldi	ods			1
12.	II V I	07	19	02	HR	NC	IU	DM	TW	GV	FB	ZL	EQ	OX	asy	XZa	uvo	fmr	1		
11.	I V IV	13	15	11	NX.	EC	RV	GP	SU	DK	IT	FY	BL	AZ	gyd	iuq	och	vef	12		
10.	y II I	09	20	19	FN	TA	YJ	80	EG	PC	. VD	KI	XH	WZ	pyz	ace	pru	uyc			
9.	I IV V	14	10	25	VK	DW	LH	RF	JS	CX	PT	YB	ZG	MU	nyh	fbd	ohs	jrp			
8.	IV V I	22	04	16	PV	XS	ZU	EQ	BW	CH	AO	RL	JN	TD	tck	rts	nro	mk1	100		
7.	V I IV	18	11	25	TS	IK	AV	QP	HW	FM	DX	NG	CY	UE	mhw	lwb	- mdm	ybe	1		
6.	IV I III	02	17	20 -	KZ	FI	WY	MP	DS	HR	c'n	XE	Q.A.	NT	uwu	vdk	lrh	mgd	122		
5.	I V IV	26	09	14	VW	LT	PB	FO	ZK.	GS	RI	QJ	1FM	XE	suw	tsv	nfp	yjc	100		
4.	IV III V	07	01	12	Q.S	YA	XW	KR	MP	HT	DU	OV	CL	FZ JU	uby	usi	mhh	mwb	17		

Choose three rotors out of five

- ► Choose three rotors out of five
- ► Each rotor has 26 starting positions

- ► Choose three rotors out of five
- ► Each rotor has 26 starting positions
- Plugboard connecting ten letter-pairs

- Choose three rotors out of five
- ► Each rotor has 26 starting positions
- Plugboard connecting ten letter-pairs
- ► Leads to roughly 2⁶⁷ possible settings

- Choose three rotors out of five
- ► Each rotor has 26 starting positions
- Plugboard connecting ten letter-pairs
- Leads to roughly 2⁶⁷ possible settings
- ► Impossible to break until recent years...

► A plaintext letter can never be encrypted to itself

- ► A plaintext letter can never be encrypted to itself
- They had access to known plaintexts every day

- A plaintext letter can never be encrypted to itself
- They had access to known plaintexts every day
- Each contradiction removed millions of settings

- A plaintext letter can never be encrypted to itself
- They had access to known plaintexts every day
- Each contradiction removed millions of settings
- It took two hours to brute force a key each day

- A plaintext letter can never be encrypted to itself
- They had access to known plaintexts every day
- Each contradiction removed millions of settings
- It took two hours to brute force a key each day
- Alan Turing and his team broke the code in 1941

▶ The UK disclosed that they broke it in 1970

- ▶ The UK disclosed that they broke it in 1970
- ► There are roughly 300 (publicly known) copies

- ▶ The UK disclosed that they broke it in 1970
- ► There are roughly 300 (publicly known) copies
- Some versions of Enigma have four rotors

- ▶ The UK disclosed that they broke it in 1970
- ► There are roughly 300 (publicly known) copies
- Some versions of Enigma have four rotors
- ► The auction value is between 3 and 5 MNOK

Enigma at NTNU

More Enigma

Figure: Numberphile: https://youtu.be/G2_Q9FoD-oQ, and at Computerphile: https://youtube.com/playlist?list=PLzH6n4zXuckodsatCTEuxaygCHizMSO_I

Contents

Announcements

Legacy Crypto

Crypto Wars

An Old Cipher

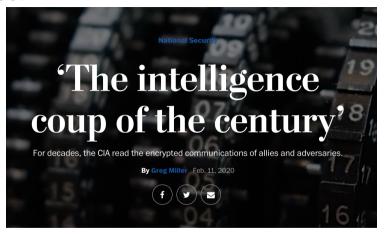
Crypto AG

Newer Ciphers

Newest Ciphers

Crypto AG

A Swiss company named Crypto AG, funded by the Swede named Boris Hagelin, sold encryption machines to nation states all over the world after the second world war. They were similar to the Enigma machine.


Widespread Usage

THE AMERICAS	EUROPE	AFRICA	MIDDLE EAST	REST OF ASIA	
Argentina	Austria	Algeria	Iran	Bangladesh	
Brazil	Czechoslovakia	Angola	Iraq	Burma	
Chile	Greece	Egypt	Jordan	India	
Colombia	Hungary	Gabon	Kuwait	Indonesia	
Honduras	Ireland	Ghana	Lebanon	Japan	
Mexico	Italy	Guinea	Oman	Malaysia	
Nicaragua	Portugal	Ivory Coast	Qatar	Pakistan	
Peru	Romania	Libya	Saudi Arabia	Philippines	
Uruguay	Spain	Mauritius	Syria	South Korea	
Venezuela	Turkey	Morocco	U.A.E.	Thailand	
	Vatican City	Nigeria		Vietnam	
	Yugoslavia	Rep. of the Congo			
		South Africa			
		Sudan			
		Tanzania			
WORLDWIDE		Tunisia			
ORGANIZATION		Zaire			
United Nations		Zimbabwe			

The records show that at least four countries - Israel, Sweden, Switzerland and the United Kingdom — were aware of the operation or were provided intelligence from it by the United States or West Germany.

CIA Backdoor

Figure: https://www.washingtonpost.com/graphics/2020/world/national-security/cia-crypto-encryption-machines-espionage

Contents

Announcements

Legacy Crypto

Crypto Wars

An Old Cipher

Crypto AG

Newer Ciphers

Newest Ciphers

Legacy Ciphers

Several newer ciphers developed in the 1990s and 2000s were the leading standard for many years, and we still find them in a variety of protocols and products that are still used on or connected to the Internet today.

There has been a variety of attacks, and here are some examples...

- ► Hash function outputting 128 bits
- Designed by Ron Rivest in 1991
- ► First specific collisions found in 2004
- ► First general collisions found in 2006
- Used to create fake X509 certificates
- Revoked in most (!) applications by 2014 (!)

Year	Identical-prefix collision cost	Chosen-prefix collision cost
< 2004	2 ⁶⁴ generic	2 ⁶⁴ generic
2004	2 ⁴⁰ [WY05]	_
2005	2 ³⁷ [Kli05]	_
2006	2 ³² [Kli06, Ste06]	2 ⁴⁹ [SLdW07c]
2007	2 ²⁵ [Ste07]	_
2008	2 ²¹ [XLF08]	_
2009	2 ¹⁶ [SSA+09]	2 ³⁹ [SSA ⁺ 09]
2020	2 ¹⁶ [SSA+09]	2 ³⁹ [SSA+09]

Figure: https://www.marc-stevens.nl/research/papers/CC21Chapter-S.pdf

RADIUS/UDP vulnerable to improved MD5 collision attack

2024-07-09

Sharon Goldberg

Miro Haller (Guest Author)

Nadia Heninger (Guest Author)

Michael Milano (Guest Author)

Dan Shumow (Guest Author)

Marc Stevens (Guest Author)

Adam Suhl (Guest Author)

Figure: https://blog.cloudflare.com/radius-udp-vulnerable-md5-attack

RADIUS/UDP Considered Harmful

Sharon Goldberg *Cloudflare*

Miro Haller UC San Diego

Nadia Heninger UC San Diego Mike Milano BastionZero Dan Shumow Microsoft Research

Marc Stevens
Centrum Wiskunde & Informatica

Adam Suhl UC San Diego

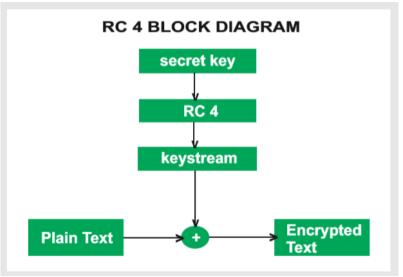
Figure: https://www.blastradius.fail/pdf/radius.pdf

SHA-1

- ► Hash function outputting 160 bits
- Designed by the NSA in 1995
- ► First specific collisions found in 2017
- ► First general collisions found in 2020
- Revoked in most (!) applications by 2020 (!)

SHA-1

Year	Identical-prefix collision cost		Chosen-prefix collision cost	
< 2005	2^{80}	generic	2^{80}	generic
2005	2^{69}	[WYY05b]	_	
	$(u:2^{63})$	[WYY05a])	_	
2007	$(u:2^{61})$	[MRR07])	_	
2009	$(w:2^{52})$	[MHP09])	_	
2013	2^{61}	[Ste13b]	2^{77}	[Ste13b]
2017	$G: 2^{63.1}$	[SBK ⁺ 17]	_	
2019	_		$G: 2^{67}$	[LP19]
2020	$2^{61} / G : 2^{61.2}$	² [Ste13b] / [LP20]	$G: 2^{63.4}$	[LP20]



RC4

- Symmetric stream cipher using at least 40 bit keys
- Designed by Ron Rivest in 1987 (public in 1994)
- Used in the WEP (1997), WPA (2003), SSL/TLS (1995)
- Detectable bias after only 256 bytes of data
- ▶ Long list of attacks. Broken in WEP in 2004.
- Revoked in most (!) applications by 2015 (!)

RC4

RC4

Weaknesses in the Key Scheduling Algorithm of RC4

Scott Fluhrer¹, Itsik Mantin², and Adi Shamir²

Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134 sfluhrer@cisco.com

² Computer Science department, The Weizmann Institute, Rehovot 76100, Israel. {itsik,shamir}@wisdom.weizmann.ac.il

Figure: https://www.mattblaze.org/papers/others/rc4_ksaproc.pdf

3DES

- ▶ DES: Symmetric block cipher using 56 bit keys
- Proposed in 1981, standardized in 1995 by NIST
- ▶ 3DES: Using DES three times with three keys
- ► Meet-in-the-Middle attack: 112 bits of security
- Revoked in most applications by 2019

Contents

Announcements

Legacy Crypto

Crypto Wars

An Old Cipher

Crypto AG

Newer Ciphers

Newest Ciphers

ARADI and LLAMA

ARADI and LLAMA: Low-Latency Cryptography for Memory Encryption

Patricia Greene Mark Motley Brvan Weeks

National Security Agency 9800 Savage Road, Fort Meade, MD 20755, USA

{ppgreen, mjmotle}@nsa.gov, beweeks@uwe.nsa.gov

Abstract

In this paper, we describe a low-latency block cipher (ARADI) and authenticated encryption mode (LLAMA) intended to support memory encryption applications.

Figure: https://eprint.iacr.org/2024/1240.pdf

ARADI and LLAMA

A Note on ARADI and LLAMA

Roberto Avanzi^{1,2}, Orr Dunkelman³ and Shibam Ghosh³

```
<sup>1</sup> Qualcomm Germany GmbH, Munich, Germany ravanzi@qti.qualcomm.com
<sup>2</sup> Caesarea Rothschild Institute, University of Haifa, Haifa, Israel roberto.avanzi@gmail.com
<sup>3</sup> Computer Science Department, University of Haifa, Haifa, Israel orrd@cs.haifa.ac.il, sghosh03@campus.haifa.ac.il
```

Abstract. Recently, the NSA has proposed a block cipher called ARADI and a mode of operation called LLAMA for memory encryption applications. In this note, we comment on this proposal, on its suitability for the intended application, and describe an attack on LLAMA that breaks confidentiality of ciphertext and allows a straightforward forgery attack breaking integrity of ciphertext (INT-CTXT) using a related-Initialization Vector (IV) attack. Both attacks have negligible complexity.

Figure: https://eprint.iacr.org/2024/1328.pdf

Questions?

