Norwegian University of
Science and Technology O NTNU |

RANDOMNESS 3: BREAKING ECDSA

TTM4205 – Lecture 4

Caroline Sandsbråten

30.08.2024

Contents

[Elliptic Curves](#page-2-0)

[Elliptic Curve Digital Signature Algorithm](#page-5-0)

[Breaking ECDSA in theory](#page-9-0)

[Breaking ECDSA in practice](#page-28-0)

[Interesting Literature](#page-35-0)

Contents

[Elliptic Curves](#page-2-0)

[Elliptic Curve Digital Signature Algorithm](#page-5-0)

[Breaking ECDSA in theory](#page-9-0)

[Breaking ECDSA in practice](#page-28-0)

[Interesting Literature](#page-35-0)

Elliptic Curves

 \blacktriangleright Let \mathbb{F}_p be a finite field of prime order p.

$$
\blacktriangleright E_{a,b} = \{(x, y) \in \mathbb{F}_p \mid y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}
$$

▶ Given two points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ on $E_{a,b}$ we can compute $P + Q$ as follows

If
$$
P = \mathcal{O}
$$
, then $P + Q = Q$.

If
$$
x_1 = x_2
$$
 and $y_1 = -y_2$, then $P + Q = O$.

▶ Otherwise, let $x_3 = \lambda^2 - x_1 - x_2$ and $y_3 = -y_1 - \lambda$ mod $(x_3 - x_1)$, where

$$
\lambda = \begin{cases} \frac{3x_1^2 + a}{2y_1} & \text{if } P = Q\\ \frac{y_1 - y_2}{x_1 - x_2} & \text{otherwise,} \end{cases}
$$

and output $R = (x_3, y_3)$.

Scalar multiplication of points is denoted as $Q = [x]P$ where $2P = P + P$.

Norwegian University of Science and Technology

Why Elliptic Curves?

Hard problems

- \triangleright (DLP) Let p be a prime, and let a, b be integers such that a mod $p \neq 0$ and b mod $p \neq 0$. Assume there exists an integer x such that $a^x \equiv b \mod p$ The DLP is then to find x such that $a^x \equiv b \mod p.$ More generally, we have the following.
- ▶ Using Elliptic Curves, the same problems becomes the ECDLP:
- ▶ (ECDLP) Let $P, Q \in E(\mathbb{F}_p)$, where $E(\mathbb{F}_p)$ is an ellitpic curve and p is prime. P and Q is points on $E(\mathbb{F}_p)$. The ECDLP is then to find an integer x satisfying the equation $[x]P = Q$.

Contents

[Elliptic Curves](#page-2-0)

[Elliptic Curve Digital Signature Algorithm](#page-5-0)

[Breaking ECDSA in theory](#page-9-0)

[Breaking ECDSA in practice](#page-28-0)

[Interesting Literature](#page-35-0)

ECDSA Signature Algorithm

(Input): Message m , private key sk, the elliptic curve $E_{a,b}$, and the domain parameters, G, and n.

(Output): Digital signature r, s.

(Algorithm):

$$
h \leftarrow H(m)
$$
\n
$$
k \leftarrow s \{0, ..., n\}
$$
\n
$$
Q = (x, y) \leftarrow kG
$$
\n
$$
r \leftarrow x \mod n
$$
\n
$$
s \leftarrow k^{-1} \cdot (h + r \cdot sk) \mod n
$$
\n**return** r, s

\blacktriangleright What would happen if k is not random?

(Input): Message m, public key Q, the elliptic curve E, and domain parameters of the elliptic curve G, and n.

(Output): Boolean value. True if the signature is verified as being correct, False if not.

ECDSA Signature Verification

if $Q = O$ or Q is not on E **then return** False **end if** $h \leftarrow H(m)$ $u_1 := h \cdot s^{-1} \mod n$ $u_2 := r \cdot s^{-1} \mod n$ $(x, y) := u_1 \cdot G + u_2 \cdot Q$ **if** (x, y) = O **then return** False **end if if** r ≡ x mod n **then return** True **end if return** False

Contents

[Elliptic Curves](#page-2-0)

[Elliptic Curve Digital Signature Algorithm](#page-5-0)

[Breaking ECDSA in theory](#page-9-0)

[Breaking ECDSA in practice](#page-28-0)

[Interesting Literature](#page-35-0)

Reused randomness

- \blacktriangleright If the same k is used to sign two different messages, the private key can be recovered.
- \triangleright This is because the signature is (r, s) where $r = x_1$ mod n and $s = k^{-1}(z + r$ sk) mod *n*.
- ▶ If *k* is reused, then $s_1 = k^{-1}(z_1 + r_1 \cdot sk)$ and $s_2 = k^{-1}(z_2 + r_2 \cdot sk)$. $s_1 - s_2 = k^{-1}(z_1 + r_1 \cdot sk) - k^{-1}(z_2 + r_2 \cdot sk)$ $s_1 - s_2 = k^{-1}(z_1 - z_2 + r_1 \cdot sk - r_2 \cdot sk)$ $s_1 - s_2 = k^{-1}(z_1 - z_2 + (r_1 - r_2) \cdot$ sk) $s_1 - s_2 = k^{-1}(z_1 - z_2)$ $k = \frac{z_1 - z_2}{\sqrt{z_1 - z_2}}$ $s_1 - s_2$

Lattices

Definition

Let $B=[b_1,\ldots,b_k]\in \mathbb{R}^{n\cdot k}$ be a linearly independent set in $\mathbb{R}^n.$ A lattice, denoted $\Lambda(B)$, that is generated by matrix B is the set of all linear combinations of the columns of B with integer coefficients. B is thus a basis for lattice $\Lambda(B)$.

$$
\Lambda(B) = \left\{ Bx : x \in \mathbb{Z}^k \right\} = \left\{ \sum_{i=1}^k x_i \cdot b_i : x_i \in \mathbb{Z} \right\}
$$

Lattices (intuition)

O

Lattice Problems

Definition (Shortest Vector Problem.)

Given a lattice Λ, find a vector $v \in \Lambda \setminus \{0\}$ such that $||v|| \le ||u_i|| \forall u_i \in \Lambda \setminus \{0\}$

Lattice Problems

Definition (Shortest Vector Problem.)

Given a lattice Λ, find a vector $v \in \Lambda \setminus \{0\}$ such that $||v|| \le ||u_i|| \forall u_i \in \Lambda \setminus \{0\}$

Definition (Closest Vector Problem.)

Given a lattice Λ , and a vector u , find the lattice vector v such that $||u - v|| \le ||u - v_i||, \forall v_i \in \Lambda.$

Solving Lattice Problems

```
Algorithm 1 LLL (Simplified)
    Input: A basis B = \{b_1, b_2, \ldots, b_n\} for a lattice Λ
     Output: A reduced basis B' = \{b'_1, b'_2, \ldots, b'_n\} where vectors are shorter and
    nearly orthogonal
    Step 1: Gram-Schmidt Orthogonalization
    Compute the Gram-Schmidt orthogonalization \tilde{B} = \{\tilde{b}_1, \tilde{b}_2, \ldots, \tilde{b}_n\} of the
     basis B.
    Step 2: Size Reduction
    for k = 2 to n do
        for i = k - 1 to 1 do
              Set \mu_{k,j} = \frac{\mathbf{b}_k \cdot \mathbf{\bar{b}}_j}{\|\mathbf{\bar{b}}_j\|^2}if |\mu_{k,j}| > \frac{1}{2} then
                 Update b_k = b_k - | \mu_k |j b_iend if
         end for
    end for
    Step 3: Lovász Condition Check
    <b>do
          if \|\widetilde{\mathbf{b}}_k\|^2 < \left(\delta - \mu_{k,k-1}^2\right) \|\widetilde{\mathbf{b}}_{k-1}\|^2\triangleright \delta \in (1/4, 1) is a constant
             Swap b_k and b_{k-1}Recompute Gram-Schmidt orthogonalization for the updated basis
             Go back to Step 2
         end if
    end for
    Step 4: Return the reduced basis
     step 4. Neturn the reduce<br>return B' = \{b'_1, b'_2, ..., b'_n\}
```
ONTNU Norwegian University of
Science and Technology

How is this helping us?

- \triangleright With \star luck \star the shortest vector in the new basis is the shortest vector in the lattice.
- \blacktriangleright It should at least be closer to the shortest vector than the original basis.
- \triangleright So how will we use this? Let us look at ECDSA signatures that use short randomness.

Short Randomness

Prerequisites

We have m number of signatures on the form

$$
s_i \equiv k_i^{-1}(h_i + r_i \cdot sk) \mod p, \quad \text{for } i \in [m]
$$

If the randomness is "too short" we can assume the rest of the MSB are 0. In our first example, let us have $m = 3$ signatures signed using 128-bit randomness, while in reality it should be 256 bit randomness for security.

What can we do?

First, we now know that each randomness k_i is on the form

$$
k_i = 2^{128}a + b_i, \quad b_i < 2^{128}
$$

Short randomness: What can we do?

$$
s_i \equiv k_i^{-1}(h_i + r_i \cdot sk) \mod p
$$

\n
$$
s_i \equiv (2^{128}a + b_i)^{-1}(h_i + r_i \cdot sk) \mod p
$$

\n
$$
b_i + 2^{128}a \equiv s_i^{-1}(h_i + r_i \cdot sk) \mod p
$$

\n
$$
b_i + 2^{128}a \equiv s_i^{-1}h_i + s_i^{-1}r_i \cdot sk \mod p
$$

Now we have some equation describing the randomness $k_i.$ But how can we actually use this to recover sk?

 \blacktriangleright First, we know that $a = 0$ because of our short randomness.

$$
b_i \equiv s_i^{-1}h_i + s_i^{-1}r_i \cdot sk \mod p
$$

Answer: The Hidden Number problem

- ▶ Our problem: Recovering an unknown scalar sk, knowing only partial information about multiples of the scalar.
- \triangleright What we know: Some partial information about the randomness k_i
- \blacktriangleright We also know: s_i , r_i , h_i , p .
- \triangleright So we can reformulate our problem a bit to make it easier to deal with by letting $t_i = s_i^{-1}$ s_i^{-1} r_i and $u_i = s_i^{-1}$ \mathbf{h}_i^{-1} h $_i$. We also have that $\mathbf{a}=0$ because our randomness is short. We then have

$$
b_i \equiv t_i \cdot sk + u_i \mod p
$$

Formalizing the Hidden Number Problem (HNP)

Adversary is given m pairs of integers $\{(t_i, u_i)\}_{i=1}^m$ $i=1$ Such that $t_i x - u_i \mod p = b_i$ Where $\left|b_{i}\right|< B$, for some $B<\rho$ (1)

Solving the Hidden Number Problem

Let us set up our problem as a system of linear equations, assuming b_i is 128 $\,$ bit long (128 0-bits preceding it to form $\mathit{k_{i}}$), and $\mathit{m}=3$ is our amount of signatures:

> $b_1 \equiv t_1 \cdot sk + u_1 \mod p$ $b_2 \equiv t_2 \cdot sk + u_2 \mod p$. . . $b_m \equiv t_m \cdot sk + u_m \mod p$

We know that b_i should be relatively short, so this should be able to be formed as an instance of the shortest vector problem, and (hopefully) solved using LLL.

Solving the Hidden Number Problem

Our goal is now to construct a lattice where the shortest vector in the lattice is our solution. Setting up our system of equations as a matrix equation yields us:

$$
\begin{bmatrix} j_1 & j_2 & j_3 & \text{sk} & 1 \end{bmatrix} \begin{bmatrix} p & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 \\ 0 & 0 & p & 0 & 0 \\ t_1 & t_2 & t_3 & B/p & 0 \\ u_1 & u_2 & u_3 & 0 & B \end{bmatrix} = \begin{bmatrix} b_1 & b_2 & b_3 & \text{sk} \cdot B/p & B \end{bmatrix}
$$

Because all the b_{i} 's are short, we can assume that the shortest vector in the lattice is the solution to our problem, and calculating our secret key sk should after this just be a problem of simple arithmatic.

But what if $a \neq 0$? We are not generating a too short randomness, but instead our PRF is broken making each k_i partially equal, but not entirely. Unfortunatly we don't know what this shared randomness is. Can we still recover our secret key sk?

Recall:

$$
s_i \equiv k_i^{-1}(h_i + r_i \cdot sk) \mod p
$$

and

$$
k_i = 2^{128}a + b_i, \quad b_i < 2^{128}, a \neq 0
$$

$$
2^{128}a + b_i \equiv s_i^{-1}h_i + s_i^{-1}r_i \cdot sk \text{ mod } p
$$

Recall the equations describing $k_i = 2^{128}a + b_i$:

$$
2^{128}a + b_1 \equiv s_1^{-1}h_1 + s_1^{-1}r_1 \cdot sk \mod p
$$

$$
2^{128}a + b_2 \equiv s_2^{-1}h_2 + s_2^{-1}r_2 \cdot sk \mod p
$$

$$
2^{128}a + b_3 \equiv s_3^{-1}h_3 + s_3^{-1}r_3 \cdot sk \mod p
$$

What is the problem with solving this? How can we fix it?

Subtracting equation 3 from 1 and 2 yields us:

$$
b_1 - b_3 \equiv (s_1^{-1}h_1 - s_3^{-1}h_3) + (s_1^{-1}r_1 - s_3^{-1}r_3) \cdot \text{sk} \mod p
$$

\n
$$
b_2 - b_3 \equiv (s_2^{-1}h_2 - s_3^{-1}h_3) + (s_2^{-1}r_2 - s_3^{-1}r_3) \cdot \text{sk} \mod p
$$

And $b_i - b_3$ is still short. Every other factor is big, and finding the shortest vector in a lattice constructed as before should solve our problem.

$$
\begin{bmatrix} j_1 & j_2 & \text{sk} & 1 \end{bmatrix} \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & 0 & 0 \\ t_1 - t_3 & t_2 - t_3 & B/p & 0 \\ u_1 - u_3 & u_2 - u_3 & 0 & B \end{bmatrix} = \begin{bmatrix} b_1 - b_3 & b_2 - b_3 & \text{sk} \cdot B/p & B \end{bmatrix}
$$

 \sim

should, when LLL-reduced give us a new basis containing the shortest vector in the lattice, which contains our secret key sk.

Contents

[Elliptic Curves](#page-2-0)

[Elliptic Curve Digital Signature Algorithm](#page-5-0)

[Breaking ECDSA in theory](#page-9-0)

[Breaking ECDSA in practice](#page-28-0)

[Interesting Literature](#page-35-0)

Setting up our parameters (secp256k1)

- p = 0xFFFEFFFFFC2F
- $E =$ Elliptic Curve (GF(p), $[0, 7]$)
- G = E ([0 x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798 , 0 x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8])
- $n = G$. order ()
- $nl = int(n)$. bit length()
- *## C rea te p r i v a t e key*
- $d =$ randrange(1, n-1)
- *## C rea te p u b l i c key*
- $Q = d * G$
- *## Func tion to reduce mod n*
- $N = Zmod(n)$

Signing messages

```
# Number of messages we capture
m = 3messages = [ f "message { i } " . encode ( ) for i in range (m) ]
## Leng th o f randomness used
T = 2^{12}8K = [randrange(1, T)] for \textbf{in range}(m)print(K)H = [int. from bytes(sha256(m). digest()[:n!/8], "big") for m in messages]Points = \lceil \text{int}(K[i]) \times G \rceil for i in range(m)]
X = [P[0] for P in Points]
R = [N(x) for x in X]
S = [(H[i] + d*R[i])/N(K[i]) for i in range(m)]
```
Recovering this

- ▶ I will not show how to here, because this is very similar to one of the CryptoHack tasks.
- \triangleright But you can use the LLL algorithm to solve this.
- ▶ I would recommend using Sagemath or the python library fpylll or C library fplll, depending on your preference.
- ▶ You need to construct the lattice basis described earlier, and then reduce it using LLL and lastly do simple arithmetic to compute the secret key.

Recovering the key

For small lattices where the randomness used is very short or have big chunks in common with each other, this is a very fast attack.

Curve: Ellintic Curve defined by y^2 = x^3 + 7 over Finite Field of size 1157920892373161954235709850086879078532699846656405640394575840079088 n: 115792089237316195423570985008687907853269984665640564039457584007908834671663 $\overline{1}$, 11579208923731619562335709850086879007852837566227900769063826051631611518161696337 0vfffffffffffffff d: 930147176675181959972017089713724194658811815485623687944432875239154275681886 0xcda476fecc4a3cf5012534f99e6b85f1852442c71fd1741ec308db39e591d865e G: (0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798, 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8) 0: C0x130e9939466358f01bf55cfb7daf10faaa1de4552b8b719db89f4c1aa56de88, 0x7ee04c1622da77d9868574eee8b812c2d7be6a519eea0a6a28f3719201277618 T338312366969595278585886726837755888320, 118131619854877278588463848168131183983, 1376585588479253169777844169487838732971 $\frac{1}{2}$ $\frac{1}{2}$ _____________________

Equad d: 93014717667518195997201708971372419465881181548562368794432875239154275681886 sage lattice attack demo sage 8.85s user 8.15s sustem 182% cou 8.988 total

The curious case of the half-half Bitcoin ECDSA nonces

Dylan Rowe¹, Joachim Breitner^{2[0000-0003-3753-6821]}, and Nadia Heninger¹[0000-0002-7904-7295]

> University of California, San Diego drowe@ucsd.edu.nadiah@cs.ucsd.edu 2 Unaffiliated mail@joachim-breitner.de

Figure: <https://eprint.iacr.org/2023/841>

"Amaclin"

▶ Screenname of a user on multiple forums

- \triangleright They have tricket a lot of people into using bad nonces, and have most likely stolen a lot of money.
- \triangleright One of the things they tricket people to do was using part of their secret key as a nonce, combined with actual randomness, leading them to be able to run an attack very similar to the ones described in this lecture.

Contents

[Elliptic Curves](#page-2-0)

[Elliptic Curve Digital Signature Algorithm](#page-5-0)

[Breaking ECDSA in theory](#page-9-0)

[Breaking ECDSA in practice](#page-28-0)

[Interesting Literature](#page-35-0)

Fast Practical Lattice Reduction through Iterated Compression

Keegan Ryan and Nadia Heninger

University of California, San Diego, USA kryan@ucsd.edu, nadiah@cs.ucsd.edu

Figure: <https://eprint.iacr.org/2023/237>

On Bounded Distance Decoding with Predicate: Breaking the "Lattice Barrier" for the Hidden Number Problem

Martin R. Albrecht¹ and Nadia Heninger^{2*}

Information Security Group, Royal Holloway, University of London ² University of California, San Diego

Figure: <https://eprint.iacr.org/2020/1540>

Biased Nonce Sense: Lattice Attacks against Weak ECDSA Signatures in Cryptocurrencies

Joachim Breitner^{1[0000-0003-3753-6821]} and Nadia Heninger²

¹ DFINITY Foundation, Zug, joachim@dfinity.org

² University of California, San Diego, nadiah@cs.ucsd.edu

Figure: <https://eprint.iacr.org/2019/023>

Questions?

