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Elliptic Curves
▶ Let Fp be a finite field of prime order p.
▶ Ea,b =

{
(x , y) ∈ Fp | y2 = x3 + ax + b

}
∪ {O}

▶ Given two points P = (x1, y1) and Q = (x2, y2) on Ea,b we can compute
P + Q as follows
▶ If P = O, then P + Q = Q.
▶ If x1 = x2 and y1 = −y2, then P + Q = O.
▶ Otherwise, let x3 = λ2 − x1 − x2 and y3 = −y1 − λ mod (x3 − x1), where

λ =

{
3x2

1+a
2y1

if P = Q
y1−y2
x1−x2

otherwise,
and output R = (x3, y3).

▶ Scalar multiplication of points is denoted as Q = [x ]P where 2P = P + P .
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Why Elliptic Curves?

Hard problems
▶ (DLP) Let p be a prime, and let a, b be integers such that a mod p ̸= 0 and

b mod p ̸= 0. Assume there exists an integer x such that ax ≡ b mod pThe DLP is then to find x such that ax ≡ b mod p. More generally, we havethe following.
▶ Using Elliptic Curves, the same problems becomes the ECDLP:
▶ (ECDLP) Let P,Q ∈ E (Fp), where E (Fp) is an ellitpic curve and p is prime. Pand Q is points on E (Fp). The ECDLP is then to find an integer x satisfyingthe equation [x ]P = Q.
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ECDSA Signature Algorithm
(Input): Message m, private key sk, the elliptic curve Ea,b, and the domainparameters, G , and n.
(Output): Digital signature r , s.
(Algorithm):
h← H(m)
k ←$ {0, . . . , n}
Q = (x , y)← kG
r ← x mod n
s ← k−1 · (h + r · sk) mod n
return r, s

▶ What would happen if k is not random?
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ECDSA Signature Verification

(Input): Message m, public key Q , the elliptic curve E , and domainparameters of the elliptic curve G , and n.
(Output): Boolean value. True if the signature is verified as being correct,False if not.
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ECDSA Signature Verification
if Q = O or Q is not on E then

return False
end if
h← H(m)
u1 := h · s−1 mod n
u2 := r · s−1 mod n
(x , y) := u1 · G + u2 · Q
if (x, y) = O then

return False
end if
if r ≡ x mod n then

return True
end if
return False
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Reused randomness
▶ If the same k is used to sign two different messages, the private key canbe recovered.
▶ This is because the signature is (r , s) where r = x1 mod n and

s = k−1(z + rsk) mod n.
▶ If k is reused, then s1 = k−1(z1 + r1 · sk) and s2 = k−1(z2 + r2 · sk).

s1 − s2 = k−1(z1 + r1 · sk)− k−1(z2 + r2 · sk)
s1 − s2 = k−1(z1 − z2 + r1 · sk− r2 · sk)
s1 − s2 = k−1(z1 − z2 + (r1 − r2) · sk)
s1 − s2 = k−1(z1 − z2)

k =
z1 − z2
s1 − s2
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Lattices

DefinitionLet B = [b1, . . . , bk ] ∈ Rn·k be a linearly independent set in Rn. A lattice, denoted
Λ(B), that is generated by matrix B is the set of all linear combinations of thecolumns of B with integer coefficients. B is thus a basis for lattice Λ(B).

Λ(B) =
{
Bx : x ∈ Zk

}
=

{
k∑

i=1

xi · bi : xi ∈ Z

}
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Lattices (intuition)
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Lattice Problems

Definition (Shortest Vector Problem.)
Given a lattice Λ, find a vector v ∈ Λ \ {0} such that ||v || ≤ ||ui ||∀ui ∈ Λ \ {0}

Definition (Closest Vector Problem.)
Given a lattice Λ, and a vector u, find the lattice vector v such that
||u − v || ≤ ||u − vi ||,∀vi ∈ Λ.
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Solving Lattice Problems
Algorithm 1 LLL (Simplified)

Input: A basis B = {b1, b2, . . . , bn} for a lattice Λ
Output: A reduced basis B′ = {b′1, b′2, . . . , b′n}where vectors are shorter andnearly orthogonal
Step 1: Gram-Schmidt OrthogonalizationCompute the Gram-Schmidt orthogonalization ~B = {~b1,~b2, . . . ,~bn} of thebasis B.
Step 2: Size Reduction
for k = 2 to n do

for j = k − 1 to 1 do
Set µk,j =

bk ·~bj
∥~bj∥2

if |µk,j | > 1
2 thenUpdate bk = bk − ⌊µk,j⌉bj

end if
end for

end for
Step 3: Lovász Condition Check
for k = 2 to n do

if ∥~bk∥2 <
(
δ − µ2

k,k−1

)
∥~bk−1∥2 then ▷ δ ∈ (1/4, 1) is a constant

Swap bk and bk−1Recompute Gram-Schmidt orthogonalization for the updated basisGo back to Step 2
end if

end for
Step 4: Return the reduced basis
return B′ = {b′1, b′2, . . . , b′n}
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How is this helping us?

▶ With *luck* the shortest vector in the new basis is the shortest vector inthe lattice.
▶ It should at least be closer to the shortest vector than the original basis.
▶ So how will we use this? Let us look at ECDSA signatures that use shortrandomness.
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Short Randomness
Prerequisites
We have m number of signatures on the form

si ≡ k−1
i (hi + ri · sk) mod p, for i ∈ [m]

If the randomness is “too short” we can assume the rest of the MSB are 0.In our first example, let us have m = 3 signatures signed using 128-bitrandomness, while in reality it should be 256 bit randomness for security.
What can we do?First, we now know that each randomness ki is on the form

ki = 2128a+ bi , bi < 2128
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Short randomness: What can we do?

si ≡ k−1
i (hi + ri · sk) mod p

si ≡ (2128a+ bi )
−1(hi + ri · sk) mod p

bi + 2128a ≡ s−1
i (hi + ri · sk) mod p

bi + 2128a ≡ s−1
i hi + s−1

i ri · sk mod p

Now we have some equation describing the randomness ki . But how can weactually use this to recover sk?
▶ First, we know that a = 0 because of our short randomness.

bi ≡ s−1
i hi + s−1

i ri · sk mod p
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Answer: The Hidden Number problem

▶ Our problem: Recovering an unknown scalar sk, knowing only partialinformation about multiples of the scalar.
▶ What we know: Some partial information about the randomness ki
▶ We also know: si , ri , hi , p.
▶ So we can reformulate our problem a bit to make it easier to deal with byletting ti = s−1

i ri and ui = s−1
i hi . We also have that a = 0 because ourrandomness is short. We then have

bi ≡ ti · sk + ui mod p
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Formalizing the Hidden Number Problem (HNP)

Adversary is given m pairs of integers {(ti , ui )}mi=1Such that tix − ui mod p = bi

Where |bi | < B , for some B < p

(1)
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Solving the Hidden Number Problem
Let us set up our problem as a system of linear equations, assuming bi is 128bit long (128 0-bits preceding it to form ki ), and m = 3 is our amount ofsignatures:

b1 ≡ t1 · sk + u1 mod p

b2 ≡ t2 · sk + u2 mod p

...
bm ≡ tm · sk + um mod p

We know that bi should be relatively short, so this should be able to be formedas an instance of the shortest vector problem, and (hopefully) solved using LLL.
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Solving the Hidden Number Problem
Our goal is now to construct a lattice where the shortest vector in the lattice isour solution. Setting up our system of equations as a matrix equation yieldsus:

[
j1 j2 j3 sk 1

]

p 0 0 0 0
0 p 0 0 0
0 0 p 0 0
t1 t2 t3 B/p 0
u1 u2 u3 0 B

 =
[
b1 b2 b3 sk · B/p B

]

Because all the bi ’s are short, we can assume that the shortest vector in thelattice is the solution to our problem, and calculating our secret key sk shouldafter this just be a problem of simple arithmatic.
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Partially equal randomness

But what if a ̸= 0? We are not generating a too short randomness, but insteadour PRF is broken making each ki partially equal, but not entirely. Unfortunatlywe don’t know what this shared randomness is. Can we still recover our secretkey sk?
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Partially equal randomness
Recall:

si ≡ k−1
i (hi + ri · sk) mod p

and
ki = 2128a+ bi , bi < 2128, a ̸= 0

2128a+ bi ≡ s−1
i hi + s−1

i ri · sk) mod p
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Partially equal randomness

Recall the equations describing ki = 2128a+ bi :

2128a+ b1 ≡ s−1
1 h1 + s−1

1 r1 · sk mod p

2128a+ b2 ≡ s−1
2 h2 + s−1

2 r2 · sk mod p

2128a+ b3 ≡ s−1
3 h3 + s−1

3 r3 · sk mod p

What is the problem with solving this? How can we fix it?

25



Partially equal randomness

Subtracting equation 3 from 1 and 2 yields us:

b1 − b3 ≡ (s−1
1 h1 − s−1

3 h3) + (s−1
1 r1 − s−1

3 r3) · sk mod p

b2 − b3 ≡ (s−1
2 h2 − s−1

3 h3) + (s−1
2 r2 − s−1

3 r3) · sk mod p

And bi − b3 is still short. Every other factor is big, and finding the shortestvector in a lattice constructed as before should solve our problem.
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[
j1 j2 sk 1

]


p 0 0 0
0 p 0 0
0 0 0 0

t1 − t3 t2 − t3 B/p 0
u1 − u3 u2 − u3 0 B

 =
[
b1 − b3 b2 − b3 sk · B/p B

]

should, when LLL-reduced give us a new basis containing the shortest vectorin the lattice, which contains our secret key sk.
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Setting up our parameters (secp256k1)

p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FE = E l l i p t i cCu rve (GF (p ) , [0 , 7 ] )G = E ( [ 0 x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798 , 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8 ] )n = G. order ( )n l = int ( n ) . b i t _ length ( )
## Create p r i va t e keyd = randrange (1 , n−1)
## Create pub l i c keyQ = d*G
## Funct ion to reduce mod nN = Zmod(n )
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Signing messages

# Number of messages we capturem = 3messages = [ f "message { i } " . encode ( ) for i in range (m) ]
## Length of randomness usedT = 2^128K = [ randrange (1 , T ) for _ in range (m) ]
print ( K )H = [ int . from_bytes ( sha256 (m) . d igest ( ) [ : n l / / 8 ] , " big " ) for m in messages ]
Points = [ int ( K [ i ] ) *G for i in range (m) ]
X = [P [0 ] for P in Points ]R = [N( x ) for x in X ]S = [ (H[ i ] + d*R[ i ] ) /N(K [ i ] ) for i in range (m) ]
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Recovering this

▶ I will not show how to here, because this is very similar to one of theCryptoHack tasks.
▶ But you can use the LLL algorithm to solve this.
▶ I would recommend using Sagemath or the python library fpylll or Clibrary fplll, depending on your preference.
▶ You need to construct the lattice basis described earlier, and then reduceit using LLL and lastly do simple arithmetic to compute the secret key.
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Recovering the key

For small lattices where the randomness used is very short or have big chunksin common with each other, this is a very fast attack.

32



Figure: https://eprint.iacr.org/2023/841
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“Amaclin”

▶ Screenname of a user on multiple forums
▶ They have tricket a lot of people into using bad nonces, and have mostlikely stolen a lot of money.
▶ One of the things they tricket people to do was using part of their secretkey as a nonce, combined with actual randomness, leading them to beable to run an attack very similar to the ones described in this lecture.
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Figure: https://eprint.iacr.org/2023/237
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Figure: https://eprint.iacr.org/2020/1540
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Figure: https://eprint.iacr.org/2019/023
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Questions?
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