B NTNU | scncanarecnnoleey

RANDOMNESS 3: BREAKING ECDSA
TTM4205 - Lecture 4

Caroline Sandsbraten

30.08.2024

Contents

Elliptic Curves

Elliptic Curve Digital Signature Algorithm
Breaking ECDSA in theory

Breaking ECDSA in practice

Interesting Literature

@ NTNU | séonarremons

Contents

Elliptic Curves

@ NTNU | séonarremons

Elliptic Curves
> Let F, be a finite field of prime order p.

> Ep=1{(xy)€F, | y*=x>+ax+b}U{O}
> Given two points P = (x1, y1) and Q = (x, y») on E, , we can compute
P + Q as follows
> IfP=0,thenP+Q = Q.
> If 3 =x;and y; = —y,, then P+ Q = 0.

> Otherwise, let x3 = A2 — x; — xo and y3 = —y; — A mod (x3 — x1), where
{3ij3 ifP=Q

Azyz otherwise,

and output R = (x3, y3).

» Scalar multiplication of points is denoted as Q = [x]P where 2P = P + P.

@ NTNU | séonearremonsy

Why Elliptic Curves?

Hard problems

> (DLP) Let p be a prime, and let a, b be integers such that a mod p # 0 and
b mod p # 0. Assume there exists an integer x such that a* = b mod p
The DLP is then to find x such that a* = b mod p. More generally, we have
the following.

» Using Elliptic Curves, the same problems becomes the ECDLP:

> (ECDLP) Let P, Q € E(FF,), where E(FF,) is an ellitpic curve and p is prime. P
and Q is points on E(F,). The ECDLP is then to find an integer x satisfying

the equation [x]P = Q.

@ NTNU | séonaniremons

Contents

Elliptic Curve Digital Signature Algorithm

@ NTNU | séonarremons

ECDSA Signature Algorithm

(Input): Message m, private key sk, the elliptic curve E, , and the domain
parameters, G, and n.

(Output): Digital signature r, s.

(Algorithm):
h « H(m)
k «s${0,...,n}
Q= (x,y) « kG
r<x modn
s« k7t (h+r-sk) modn
returnr, s

» What would happen if k is not random?

@ NTNU | séonearremonsy

ECDSA Signature Verification

(Input): Message m, public key Q, the elliptic curve E, and domain
parameters of the elliptic curve G, and n.

(Output): Boolean value. True if the signature is verified as being correct,
False if not.

@ NTNU | séonearremonsy

ECDSA Signature Verification

if Q=0 or Qisnoton E then
return False

end if

h <« H(m)
up:=h-s7! modn
up:=r-st modn

(y)=u-G+uw-Q

if (x, y)= O then
return False

end if

if r = x mod nthen
return True

end if

return False

@ NTNU | séonearremonsy

Contents

Breaking ECDSA in theory

@ NTNU | séonarremons

Reused randomness
» If the same k is used to sign two different messages, the private key can
be recovered.

» This is because the signature is (r,s) where r = x; mod nand
s =k 1(z+ rsk) mod n.
> If kis reused, then s; = k=1(z + r; - sk) and s, = k= 1(z + r2 - sk).
S] — Sy = k’l(zl +r1-sk) — k7Y (z + 1y - sk)
T — k*1(21—22+r1 - sk — rp - sk)
S — Sy = k’l(zl — 2+ (rn —) - sk)
T — k_l(zl — 22)

Z1 — 22

k =

51— %

B NTNU | scaeinarecmoisy 11

Lattices

Definition

Let B = [by, ..., b] € R™* be alinearly independent set in R". A lattice, denoted
A(B), that is generated by matrix B is the set of all linear combinations of the
columns of B with integer coefficients. B is thus a basis for lattice A(B).

/\(B):{Bx:erk}z {ix,--b,-:x,-EZ}
i=1

@ NTNU | séonanirecimons

Lattices (intuition)

. . .
@ NTNU | séonearreimons * -

Lattice Problems

Definition (Shortest Vector Problem.)
Given a lattice A, find a vector v € A\ {0} such that ||v|| < ||ui|[Vu; € A\ {0}

@ NTNU | séonearrecimons

Lattice Problems

Definition (Shortest Vector Problem.)
Given a lattice A, find a vector v € A\ {0} such that ||v|| < ||ui|[Vu; € A\ {0}

Definition (Closest Vector Problem.)

Given a lattice A, and a vector v, find the lattice vector v such that
[lu—v|| < |lu—vl|,Yv; € A

@ NTNU | sénearrecimons

Solving Lattice Problems

Algorithm 1 LLL (Simplified)
Input: A basis B = {by, bz, ..., b,} for a lattice A
Output: Areduced basis B = {b{, b, ..., b} where vectors are shorter and
nearly orthogonal

Step 1: Gram-Schmidt Orthogonalization
Compute the Gram-Schmidt orthogonalization & = {by,bs, ..., ba} of the
basis B.
Step 2: Size Reduction
fork=2tondo
forj=k-1toldo
Set juj = E’;
[|bj
if ;] > 5 then
Update by = by — [14 1bj
end if
end for
end for
Step 3: Lovasz Condition Check
for k=2tondo ~
if ||by? < (ri — 12 1) |lbk—1][> then >4 € (1/4,1) is a constant
Swap by and by_;
Recompute Gram-Schmidt orthogonalization for the updated basis
Go back to Step 2
end if
end for
Step 4: Return the reduced basis
return B’ = {bj,b),... b}

@ NTNU | séonearremonsy

How is this helping us?

> With *luck* the shortest vector in the new basis is the shortest vector in
the lattice.

» It should at least be closer to the shortest vector than the original basis.

» So how will we use this? Let us look at ECDSA signatures that use short
randomness.

@ NTNU | séonearremonsy

Short Randomness

Prerequisites
We have m number of signatures on the form

si=k: Y(hi+ri-sk) mod p, foriec[m]

If the randomness is “too short” we can assume the rest of the MSB are 0.

In our first example, let us have m = 3 signatures signed using 128-bit

randomness, while in reality it should be 256 bit randomness for security.

What can we do?
First, we now know that each randomness k; is on the form

ki — 21283 + bia bi < 2128

@ NTNU | séonanireimonsy

Short randomness: What can we do?

si= ki_l(h,- +ri-sk) mod p
si=(2'%8a+ b)) Y(hj+r;-sk) mod p
b + 21284 = sfl(h,- + ri-sk) mod p
b + 2185 = si_lh,- + si_lr,- -sk mod p

Now we have some equation describing the randomness k;. But how can we
actually use this to recover sk?

» First, we know that a = 0 because of our short randomness.

b;zsflh,’+sflr;-sk mod p

@ NTNU | séonearremonsy

Answer: The Hidden Number problem

» Our problem: Recovering an unknown scalar sk, knowing only partial
information about multiples of the scalar.

» What we know: Some partial information about the randomness k;

» We also know: s;, rj, h;, p.

» So we can reformulate our problem a bit to make it easier to deal with by
letting t; = s7 'r; and u; = s; *h;. We also have that a = 0 because our

randomness is short. We then have

bj=ti-sk+u; modp

B NTNU | scaeinamecmoisy 1

Formalizing the Hidden Number Problem (HNP)

Adversary is given m pairs of integers {(t;, u;)}i_,
Such that tix — u; mod p = b; (1)
Where |bj| < B, for some B < p

@ NTNU | séonearremonsy 20

Solving the Hidden Number Problem

Let us set up our problem as a system of linear equations, assuming b; is 128
bit long (128 0-bits preceding it to form k;), and m = 3 is our amount of
signatures:

by =t;-sk+u; modp
by =t -sk+u, mod p

bm = tm-sk+ un, mod p

We know that b; should be relatively short, so this should be able to be formed
as an instance of the shortest vector problem, and (hopefully) solved using LLL.

B NTNU | scaeinarecmoisy 2

Solving the Hidden Number Problem

Our goal is now to construct a lattice where the shortest vector in the lattice is
our solution. Setting up our system of equations as a matrix equation yields

us:
p 0 O 0 0
0 p O 0 0
i jo j3 sk 1|0 0 p 0 O|=[bk by bs sk-B/p B
th th 3 B/p 0
vy w uz 0 B

Because all the b;'s are short, we can assume that the shortest vector in the
lattice is the solution to our problem, and calculating our secret key sk should
after this just be a problem of simple arithmatic.

@ NTNU | séonearremonsy

22

Partially equal randomness

But what if a # 0? We are not generating a too short randomness, but instead
our PRF is broken making each k; partially equal, but not entirely. Unfortunatly
we don't know what this shared randomness is. Can we still recover our secret

key sk?

@ NTNU | séonearremonsy

23

Partially equal randomness
Recall:

si = kl-_l(h,- + ri-sk) mod p
and
k=254 b by <212 540

21285 4+ b Esi_lh,-—i-si_lr,-‘sk) mod p

@ NTNU | séonearremonsy

24

Partially equal randomness

Recall the equations describing k; = 2128a + b;:

212854 by = sflhl +sf1r1 -sk mod p

212854 by

212854 by = s3_lh3 +s3_1r3 -sk mod p

52_1h2 + 52_1r2 -sk mod p

What is the problem with solving this? How can we fix it?

@ NTNU | séonearremonsy

25

Partially equal randomness

Subtracting equation 3 from 1 and 2 yields us:

by — by = (s;thy — s3ths) 4+ (s; ' — s3trs) sk mod p

by — b3 = (sy hy — 53 h3) + (s3 ' — s3tr3) -sk mod p

And b; — bs is still short. Every other factor is big, and finding the shortest
vector in a lattice constructed as before should solve our problem.

@ NTNU | séonearremonsy

26

p 0 0 O
0 p 0 O
i 2 sk 1] 0 0 0 0| =[bi—bs by—bs sk-B/p B]
t1—t3 th—t3 B/p 0
up—u uw—uz 0 B

should, when LLL-reduced give us a new basis containing the shortest vector
in the lattice, which contains our secret key sk.

@ NTNU | séonearremonsy

27

Contents

Breaking ECDSA in practice

@ NTNU | séonarremons

28

Setting up our parameters (secp256k1)

p = OXFFFEFFFFFC2F

E = EllipticCurve (GF(p), [0, 71)

G = E([0x79BE667EFODCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, 0
x483ADA7726A3C4655DA4FBFCOE1108A8FD17B448A68554199C47D08FFB10D4B81])

n = G.order ()

nl = int(n).bit_length ()

Create private key
d = randrange(1, n-1)
Create public key

Q = d*G
Function to reduce mod n
N = Zmod(n)

@ NTNU | séonearremonsy

Signing messages

Number of messages we capture

m= 3

messages = [f"message {i}".encode() for i in range(m)]
Length of randomness used

T = 2M28

K = [randrange(1, T) for _ in range(m)]

print(K)

H = [int.from_bytes(sha256(m).digest()[:nl//8], "big") for m in messages]
Points = [int(K[i])*G for i in range(m)]

[P[0] for P in Points]
[N(x) for x in X]

X
R
S [(H[i]l + d*R[i1)/N(K[i]) for i in range(m)]

@ NTNU | séonearremonsy

30

Recovering this

» | will not show how to here, because this is very similar to one of the
CryptoHack tasks.

» But you can use the LLL algorithm to solve this.

» | would recommend using Sagemath or the python library fpylll or C
library fplll, depending on your preference.

> You need to construct the lattice basis described earlier, and then reduce
it using LLL and lastly do simple arithmetic to compute the secret key.

@ NTNU | séonearremonsy

31

Recovering the key

For small lattices where the randomness used is very short or have big chunks
in common with each other, this is a very fast attack.

Curve: Elliptic Curve defined by y"2 = x”3 + 7 over Finite Field of size 115792089237316195423570985008687907853269984665640564039457584007908834671663
p: 115792089237316195423570985008687907853269984665640564039457584007908834671663 Oxfffefffffcaf
n: 115792089237316195423570985008687907852837564279074904382605163141518161494337 oxfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
d: 93014717667518195997201708971372419465881181548562368794432875239154275681886 Oxcdas76ecc4a3cf5012534f99e6b85F1852442c71fd1741ec308db39e591d865¢e
G: (@x79be667ef9dcbbac55a06295ce870b@7029bfcdb2dce28d959f2815b16F81798, @Ox483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8)
Q
L

1 (0x130e99394b6358f01bf55cfb7daf10faaalde4552b8b719db89f4c1aa56de88, Ox7ee@4c1622da77d9868574eee8b812c2d7be6a519eea0aba28f3719201277618)
338312366969595278585886726037755088320, 118131619054077270500463840160131183903, 137658558047925316977704416948783073297]
Attack -

Found d: 93014717667518195997201708971372419465881181548562368794432875239154275681886
sage lattice attack demo.sage ©.85s user ©.15s svstem 102z cou ©.980 total

@ NTNU | séonearremonsy

The curious case of the
half-half Bitcoin ECDSA nonces

Diyvlan Rowe!, Joachim Breitner?[0000-0003—3753-6821] 5,
Nadia Heninger?! [0000-0002—7904—7205]

! University of California, San Diego
drowefucsd. edu,nadiah@cs.ucsd. edu
* Unaffiliated
mail@joachim-breitner.de

Figure: https://eprint.iacr.org/2023/841

@ NTNU | séonearremonsy

33

https://eprint.iacr.org/2023/841

“Amaclin”

» Screenname of a user on multiple forums

» They have tricket a lot of people into using bad nonces, and have most
likely stolen a lot of money.

» One of the things they tricket people to do was using part of their secret
key as a nonce, combined with actual randomness, leading them to be
able to run an attack very similar to the ones described in this lecture.

StackExchange=

£ Summary - amaciin

amaclin

ecember 20, 2013, 10:10:32 PM
ber 29, 2018, 010401 AM

B NTNU | scaeinamecmoisy 24

Contents

Interesting Literature

@ NTNU | séonarremons

35

Fast Practical Lattice Reduction

through Iterated Compression

Keegan Ryan and Nadia Heninger

University of California, San Diego, USA

kryan@ucsd.edu,nadiah@cs.ucsd.edu

Figure: https://eprint.iacr.org/2023/237

@ NTNU | séonearremonsy

36

https://eprint.iacr.org/2023/237

On Bounded Distance Decoding with Predicate:
Breaking the “Lattice Barrier” for the Hidden
Number Problem

Martin R. Albrecht! and Nadia Heninger®*

! Information Security Group, Royval Holloway, University of London
? University of California, San Driego

Figure: https://eprint.iacr.org/2020/1540

@ NTNU | séonearremonsy ¥

https://eprint.iacr.org/2020/1540

Biased Nonce Sense: Lattice Attacks against
Weak ECDSA Signatures in Cryptocurrencies

1[0000— 0003 —3T53—6821] and N
& |

= . . . >
Joachim Breitner adia Heninger=

' DFINITY Foundation, Zug, joachin@dfinity.org
¥ University of California, San Diego, nadiah@cs . ucsd. edu

Figure: https://eprint.iacr.org/2019/023

@ NTNU | séonearremonsy

38

https://eprint.iacr.org/2019/023

@ NTNU |

Norwegian University of
Science and Technology

Questions?

39

	Elliptic Curves
	Elliptic Curve Digital Signature Algorithm
	Breaking ECDSA in theory
	Breaking ECDSA in practice
	Interesting Literature

