
RANDOMNESS 2: RANDOMIZATION
TTM4205 – Lecture 3

Tjerand Silde

27.08.2024



Contents

Announcements

Primality Testing

Factorization

De-Randomization

Takeaways

2



Contents

Announcements

Primality Testing

Factorization

De-Randomization

Takeaways

3



Reference Group

I am looking for an MTKOM student to join the reference group. We will meet
three times during the semester, and your feedback is extremely valuable.

Send me an email and/or talk to me in the break :)

4



Reference Material

These slides are based on:

▶ The referred papers in the slides

▶ JPA: parts of chapter 9

5



Contents

Announcements

Primality Testing

Factorization

De-Randomization

Takeaways

6



Primality Testing

How do we check if
a number is prime?

7



Deterministic Methods

▶ Brute Force

▶ Sieving methods

▶ Wilson’s Theorem?

8



Brute Force Testing

It is always possible to check all possibilities. But how long time does it take?
Assume that p is of 2048 bits.

▶ divisible by any number between 1 and p? ∼ 22048

▶ by 2 or any odd number between 1 and p? ∼ 22047

▶ by 2 or any odd number between 1 and √
p ? ∼ 21023

9



Brute Force Testing

It is always possible to check all possibilities. But how long time does it take?
Assume that p is of 2048 bits.

▶ divisible by any number between 1 and p? ∼ 22048

▶ by 2 or any odd number between 1 and p? ∼ 22047

▶ by 2 or any odd number between 1 and √
p ? ∼ 21023

9



Brute Force Testing

It is always possible to check all possibilities. But how long time does it take?
Assume that p is of 2048 bits.

▶ divisible by any number between 1 and p? ∼ 22048

▶ by 2 or any odd number between 1 and p? ∼ 22047

▶ by 2 or any odd number between 1 and √
p ? ∼ 21023

9



Brute Force Testing

It is always possible to check all possibilities. But how long time does it take?
Assume that p is of 2048 bits.

▶ divisible by any number between 1 and p? ∼ 22048

▶ by 2 or any odd number between 1 and p? ∼ 22047

▶ by 2 or any odd number between 1 and √
p ? ∼ 21023

9



Brute Force Testing

It is always possible to check all possibilities. But how long time does it take?
Assume that p is of 2048 bits.

▶ divisible by any number between 1 and p? ∼ 22048

▶ by 2 or any odd number between 1 and p? ∼ 22047

▶ by 2 or any odd number between 1 and √
p ? ∼ 21023

This is infeasible to compute! Even 2128 is considered impossible.

9



Sieving Methods

It is possible to pre-compute many small prime numbers to speed up the
process, e.g., the sieve of Eratosthenes:

10



Sieving Methods

It is possible to pre-compute many small prime numbers to speed up the
process, e.g., the sieve of Eratosthenes:

First, keep 2 and remove all even numbers. Then, keep 3 and remove all
multiples of three. 4 is already removed. Keep 5 and remove all multiples
of five. 6 has already been removed. ...

10



Sieving Methods

It is possible to pre-compute many small prime numbers to speed up the
process, e.g., the sieve of Eratosthenes:

First, keep 2 and remove all even numbers. Then, keep 3 and remove all
multiples of three. 4 is already removed. Keep 5 and remove all multiples
of five. 6 has already been removed. ...

It still requires exponential work to check all possibilities!

10



Wilson’s Theorem

Wilson’s Theorem: A natural number p > 1 is a prime number if and only if the
product of all the positive integers less than p is one less than a multiple of p.

11



Wilson’s Theorem

Wilson’s Theorem: A natural number p > 1 is a prime number if and only if the
product of all the positive integers less than p is one less than a multiple of p.

This means: (p − 1)! ≡ −1 mod p ⇐⇒ p is a prime number.

11



Wilson’s Theorem

Wilson’s Theorem: A natural number p > 1 is a prime number if and only if the
product of all the positive integers less than p is one less than a multiple of p.

This means: (p − 1)! ≡ −1 mod p ⇐⇒ p is a prime number.

It still requires exponential work to compute (p − 1)!

11



Wilson’s Theorem

Wilson’s Theorem: A natural number p > 1 is a prime number if and only if the
product of all the positive integers less than p is one less than a multiple of p.

This means: (p − 1)! ≡ −1 mod p ⇐⇒ p is a prime number.

It still requires exponential work to compute (p − 1)!

But it is possible to use similar techniques to speed it up.

11



Randomized Methods

▶ Monte Carlo algorithms

▶ The Miller-Rabin method

12



Monte Carlo Algorithms

A Monte Carlo algorithm is a randomized algorithm whose output may be
incorrect with a given probability.

13



Monte Carlo Algorithms

A Monte Carlo algorithm is a randomized algorithm whose output may be
incorrect with a given probability.

A false-biased Monte Carlo algorithm is always correct when it returns false,
but it might be wrong it it outputs True. Similar for a true-biased algorithm.

13



Monte Carlo Algorithms

A Monte Carlo algorithm is a randomized algorithm whose output may be
incorrect with a given probability.

A false-biased Monte Carlo algorithm is always correct when it returns false,
but it might be wrong it it outputs True. Similar for a true-biased algorithm.

If the probability of being wrong is 1/2, then it can be amplified by parallel
repetition: λ rounds gives the probability (1

2)
λ → 0 of being wrong.

13



Monte Carlo Algorithms

A Monte Carlo algorithm is a randomized algorithm whose output may be
incorrect with a given probability.

A false-biased Monte Carlo algorithm is always correct when it returns false,
but it might be wrong it it outputs True. Similar for a true-biased algorithm.

If the probability of being wrong is 1/2, then it can be amplified by parallel
repetition: λ rounds gives the probability (1

2)
λ → 0 of being wrong.

Some commonly used algorithms: Soloway-Strassen, Fermat testing (warning:
Carmichael numbers) and Miller-Rabin.

13



Miller-Rabin Primality Testing

Fermat’s little theorem: if p is prime, then we have that ap−1 ≡ 1 mod p.

14



Miller-Rabin Primality Testing

Fermat’s little theorem: if p is prime, then we have that ap−1 ≡ 1 mod p.

Let p be an odd integer and write p − 1 as 2s · d where d is an odd number.

14



Miller-Rabin Primality Testing

Fermat’s little theorem: if p is prime, then we have that ap−1 ≡ 1 mod p.

Let p be an odd integer and write p − 1 as 2s · d where d is an odd number.

Let 1 < a < p be a randomly sampled integer. Then ad ≡ 1 mod p
or a2rd ≡ −1 mod p for some 0 ≤ r < s. Only log2 p options to check.

14



Miller-Rabin Primality Testing

Fermat’s little theorem: if p is prime, then we have that ap−1 ≡ 1 mod p.

Let p be an odd integer and write p − 1 as 2s · d where d is an odd number.

Let 1 < a < p be a randomly sampled integer. Then ad ≡ 1 mod p
or a2rd ≡ −1 mod p for some 0 ≤ r < s. Only log2 p options to check.

If this is false, then p is composite. However, the above fact is true for
roughly 1

4 of all composite numbers for a randomly sampled value a.

14



Miller-Rabin Primality Testing

Fermat’s little theorem: if p is prime, then we have that ap−1 ≡ 1 mod p.

Let p be an odd integer and write p − 1 as 2s · d where d is an odd number.

Let 1 < a < p be a randomly sampled integer. Then ad ≡ 1 mod p
or a2rd ≡ −1 mod p for some 0 ≤ r < s. Only log2 p options to check.

If this is false, then p is composite. However, the above fact is true for
roughly 1

4 of all composite numbers for a randomly sampled value a.

If we sample λ random values a, the Miller-Rabin primality testing algorithm
has (1

4)
λ chance of being wrong every time, which becomes negligible.

14



Primality Testing APIs

The most common way of checking the primality of a candidate p is a
combination of the above as follows:

1. Pre-compute a list of the first thousand prime numbers.

2. Check p is divisible by any prime number in the list.

3. Run the Miller-Rabin algorithm, say, ∼ 40 times.

4. If all checks succeeds, then output: probably prime.

15



Primality Testing APIs

The most common way of checking the primality of a candidate p is a
combination of the above as follows:

1. Pre-compute a list of the first thousand prime numbers.

2. Check p is divisible by any prime number in the list.

3. Run the Miller-Rabin algorithm, say, ∼ 40 times.

4. If all checks succeeds, then output: probably prime.

15



Primality Testing APIs

The most common way of checking the primality of a candidate p is a
combination of the above as follows:

1. Pre-compute a list of the first thousand prime numbers.

2. Check p is divisible by any prime number in the list.

3. Run the Miller-Rabin algorithm, say, ∼ 40 times.

4. If all checks succeeds, then output: probably prime.

15



Primality Testing APIs

The most common way of checking the primality of a candidate p is a
combination of the above as follows:

1. Pre-compute a list of the first thousand prime numbers.

2. Check p is divisible by any prime number in the list.

3. Run the Miller-Rabin algorithm, say, ∼ 40 times.

4. If all checks succeeds, then output: probably prime.

15



Primality Testing APIs

The most common way of checking the primality of a candidate p is a
combination of the above as follows:

1. Pre-compute a list of the first thousand prime numbers.

2. Check p is divisible by any prime number in the list.

3. Run the Miller-Rabin algorithm, say, ∼ 40 times.

4. If all checks succeeds, then output: probably prime.

15



Primality Testing Failures

It might be highly rewarding for an attacker to convince you that a composite
number is prime. For example:

16



Primality Testing Failures

It might be highly rewarding for an attacker to convince you that a composite
number is prime. For example:

RSA is not secure if n is not a bi-prime, and it is easy to compute discrete
logarithms in composite order groups (not containing large prime subgroups).

16



Primality Testing Failures

It might be highly rewarding for an attacker to convince you that a composite
number is prime. For example:

RSA is not secure if n is not a bi-prime, and it is easy to compute discrete
logarithms in composite order groups (not containing large prime subgroups).

A classic mistake in Miller-Rabin: Integers a are sampled randomly but
pre-fixed before testing. This gives an attacker the chance to find composite
numbers (pseudo-primes) that pass the test after all.

16



Primality Testing Failures
It might be highly rewarding for an attacker to convince you that a composite
number is prime. For example:

RSA is not secure if n is not a bi-prime, and it is easy to compute discrete
logarithms in composite order groups (not containing large prime subgroups).

A classic mistake in Miller-Rabin: Integers a are sampled randomly but
pre-fixed before testing. This gives an attacker the chance to find composite
numbers (pseudo-primes) that pass the test after all.

Sometimes it is a mix between fixed a’s and freshly sampled a’s, still giving the
adversary a good chance to fool the test.

16



Primality Testing in OpenSSL

Figure: https://eprint.iacr.org/2018/749.pdf

17

https://eprint.iacr.org/2018/749.pdf


The Need for Secure Primality Testing

Figure: https://eprint.iacr.org/2019/032.pdf

18

https://eprint.iacr.org/2019/032.pdf


Secure Primality Testing API

Figure: https://eprint.iacr.org/2020/065.pdf

19

https://eprint.iacr.org/2020/065.pdf


Contents

Announcements

Primality Testing

Factorization

De-Randomization

Takeaways

20



Factorization

How do we factor
large bi-primes?

21



Deterministic Methods
Some trivial ways to attack an RSA moduli n:

▶ Brute force by checking if n is divisible by 2 or any odd numbers less than√
n. This requires exponential work...

▶ Even only checking divisibility against primes between 21023 and 21024 for
2048 bit n requires exponential work...

▶ Fermat Factorization find prime factors close to
√
n.

▶ Pollard’s Rho algorithm find largest prime factor in 4
√
n

22



Deterministic Methods
Some trivial ways to attack an RSA moduli n:

▶ Brute force by checking if n is divisible by 2 or any odd numbers less than√
n. This requires exponential work...

▶ Even only checking divisibility against primes between 21023 and 21024 for
2048 bit n requires exponential work...

▶ Fermat Factorization find prime factors close to
√
n.

▶ Pollard’s Rho algorithm find largest prime factor in 4
√
n

22



Deterministic Methods
Some trivial ways to attack an RSA moduli n:

▶ Brute force by checking if n is divisible by 2 or any odd numbers less than√
n. This requires exponential work...

▶ Even only checking divisibility against primes between 21023 and 21024 for
2048 bit n requires exponential work...

▶ Fermat Factorization find prime factors close to
√
n.

▶ Pollard’s Rho algorithm find largest prime factor in 4
√
n

22



Deterministic Methods
Some trivial ways to attack an RSA moduli n:

▶ Brute force by checking if n is divisible by 2 or any odd numbers less than√
n. This requires exponential work...

▶ Even only checking divisibility against primes between 21023 and 21024 for
2048 bit n requires exponential work...

▶ Fermat Factorization find prime factors close to
√
n.

▶ Pollard’s Rho algorithm find largest prime factor in 4
√
n

22



Deterministic Methods
Some trivial ways to attack an RSA moduli n:

▶ Brute force by checking if n is divisible by 2 or any odd numbers less than√
n. This requires exponential work...

▶ Even only checking divisibility against primes between 21023 and 21024 for
2048 bit n requires exponential work...

▶ Fermat Factorization find prime factors close to
√
n.

▶ Pollard’s Rho algorithm find largest prime factor in 4
√
n

22



Deterministic Methods
Some trivial ways to attack an RSA moduli n:

▶ Brute force by checking if n is divisible by 2 or any odd numbers less than√
n. This requires exponential work...

▶ Even only checking divisibility against primes between 21023 and 21024 for
2048 bit n requires exponential work...

▶ Fermat Factorization find prime factors close to
√
n.

▶ Pollard’s Rho algorithm find largest prime factor in 4
√
n

Randomness comes to the rescue in this situation as well!

22



Randomized Methods

The Number Field Sieve is the most efficient algorithm for factorization.

23



Randomized Methods

The Number Field Sieve is the most efficient algorithm for factorization.

Collect many random pairs (ai , bi ) where axi ≡ byi mod n, for integers x , y .

23



Randomized Methods

The Number Field Sieve is the most efficient algorithm for factorization.

Collect many random pairs (ai , bi ) where axi ≡ byi mod n, for integers x , y .

Then these equations can be combined in such a way that we can find a and b
satisfying a2 ≡ b2 mod n, which means that a2 − b2 ≡ (a− b)(a+ b) ≡ 0 mod n.

23



Randomized Methods

The Number Field Sieve is the most efficient algorithm for factorization.

Collect many random pairs (ai , bi ) where axi ≡ byi mod n, for integers x , y .

Then these equations can be combined in such a way that we can find a and b
satisfying a2 ≡ b2 mod n, which means that a2 − b2 ≡ (a− b)(a+ b) ≡ 0 mod n.

Then wemight find a factor of n by computing the greatest common divisor
between n and a− b and a+ b.

23



Number Field Sieve

The running time of the Number Field Sieve is

exp
(
(64/9)1/3(log n)1/3(log log n)2/3(1 + o(1))

)

24



Number Field Sieve

The running time of the Number Field Sieve is

exp
(
(64/9)1/3(log n)1/3(log log n)2/3(1 + o(1))

)
This algorithm is sub-exponential. The largest number we have
ever factored (in public) is of size 829 bits.

24



Number Field Sieve

The running time of the Number Field Sieve is

exp
(
(64/9)1/3(log n)1/3(log log n)2/3(1 + o(1))

)
This algorithm is sub-exponential. The largest number we have
ever factored (in public) is of size 829 bits.

Factoring as a service: In 2015, it was possible to factor 512 bit
RSA keys in less than four hours.

24



Factoring as a Service

Figure: https://eprint.iacr.org/2015/1000.pdf

25

https://eprint.iacr.org/2015/1000.pdf


State of the Art

Figure: https://hal.science/hal-03691141/document

26

https://hal.science/hal-03691141/document


RSA Failures in Practice

How do we break the following RSA keys?

▶ Same seed when sampling primes

▶ Same seed + added entropy between sampling

▶ Low entropy RNG or PRNG from known algorithm

▶ Related primes from known algorithm

27



RSA Failures in Practice

How do we break the following RSA keys?

▶ Same seed when sampling primes

▶ Same seed + added entropy between sampling

▶ Low entropy RNG or PRNG from known algorithm

▶ Related primes from known algorithm

27



RSA Failures in Practice

How do we break the following RSA keys?

▶ Same seed when sampling primes

▶ Same seed + added entropy between sampling

▶ Low entropy RNG or PRNG from known algorithm

▶ Related primes from known algorithm

27



RSA Failures in Practice

How do we break the following RSA keys?

▶ Same seed when sampling primes

▶ Same seed + added entropy between sampling

▶ Low entropy RNG or PRNG from known algorithm

▶ Related primes from known algorithm

27



RSA Failures in Practice

How do we break the following RSA keys?

▶ Same seed when sampling primes

▶ Same seed + added entropy between sampling

▶ Low entropy RNG or PRNG from known algorithm

▶ Related primes from known algorithm

27



PKE in the Wild

Figure: https://eprint.iacr.org/2022/048.pdf

28

https://eprint.iacr.org/2022/048.pdf


Fermat in the Wild

Figure: https://eprint.iacr.org/2023/026.pdf

29

https://eprint.iacr.org/2023/026.pdf


Shared Prime Factors

Figure: https://eprint.iacr.org/2012/064.pdf

30

https://eprint.iacr.org/2012/064.pdf


Shared Prime Factors

Figure: Check out the blog post, paper and slides: 1)
https://freedom-to-tinker.com/2012/02/15/new-research-theres-no-need-panic
-over-factorable-keys-just-mind-your-ps-and-qs, 2)
https://factorable.net/weakkeys12.extended.pdf, 3)
https://crypto.stanford.edu/RealWorldCrypto/slides/nadia.pdf

31

https://freedom-to-tinker.com/2012/02/15/new-research-theres-no-need-panic-over-factorable-keys-just-mind-your-ps-and-qs
https://freedom-to-tinker.com/2012/02/15/new-research-theres-no-need-panic-over-factorable-keys-just-mind-your-ps-and-qs
https://factorable.net/weakkeys12.extended.pdf
https://crypto.stanford.edu/RealWorldCrypto/slides/nadia.pdf


Contents

Announcements

Primality Testing

Factorization

De-Randomization

Takeaways

32



De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

▶ Use the secret key to generate nonces

▶ Schnorr example with r = H(sk,m)

▶ Counters + master seed + hashing

▶ HMAC with key for deterministic MAC

▶ Hedging techniques (paper on next slide)

33



De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

▶ Use the secret key to generate nonces

▶ Schnorr example with r = H(sk,m)

▶ Counters + master seed + hashing

▶ HMAC with key for deterministic MAC

▶ Hedging techniques (paper on next slide)

33



De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

▶ Use the secret key to generate nonces

▶ Schnorr example with r = H(sk,m)

▶ Counters + master seed + hashing

▶ HMAC with key for deterministic MAC

▶ Hedging techniques (paper on next slide)

33



De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

▶ Use the secret key to generate nonces

▶ Schnorr example with r = H(sk,m)

▶ Counters + master seed + hashing

▶ HMAC with key for deterministic MAC

▶ Hedging techniques (paper on next slide)

33



De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

▶ Use the secret key to generate nonces

▶ Schnorr example with r = H(sk,m)

▶ Counters + master seed + hashing

▶ HMAC with key for deterministic MAC

▶ Hedging techniques (paper on next slide)

33



De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

▶ Use the secret key to generate nonces

▶ Schnorr example with r = H(sk,m)

▶ Counters + master seed + hashing

▶ HMAC with key for deterministic MAC

▶ Hedging techniques (paper on next slide)

33



Shared Prime Factors

Figure: https://www.cs.utexas.edu/~hovav/dist/hedge.pdf

34

https://www.cs.utexas.edu/~hovav/dist/hedge.pdf


Contents

Announcements

Primality Testing

Factorization

De-Randomization

Takeaways

35



I am so random

36



Random Number Generation

Check the quality of the built-in RNG that you rely on:

▶ How does it collect randomness?

▶ Is the RNG seeded / pre-seeded?

▶ How much entropy does it provide?

▶ Does it warn you about issues?

▶ Is it cryptographically secure?

▶ (Linux’s /dev/random vs /dev/urandom)

37



Faulty Voting Randomness

Figure: https://youtu.be/xq_6ey2JGAE?feature=shared

38

https://youtu.be/xq_6ey2JGAE?feature=shared


Pseudo-Random Number Generation

Check the quality of the built-in PRNG that you rely on:

▶ Does it rely on a proper RNG as seed? Is it pre-seeded?

▶ Is the PRNG cryptographically secure? NIST-approved?

▶ Verify the output: Do values repeat? Correct bit-size?

▶ Which library/version is used? Known vulnerabilities?

Some good resources are available at
https://github.com/veorq/cryptocoding#use-strong-randomness.

39

https://github.com/veorq/cryptocoding#use-strong-randomness


NIST Standard

Figure: https://csrc.nist.gov/pubs/sp/800/22/r1/upd1/final

40

https://csrc.nist.gov/pubs/sp/800/22/r1/upd1/final


Choice of Primitives

Check the cryptographic primitive that you rely on:

▶ Does it rely on a proper PRNG? Is it pre-seeded?

▶ Is it the newest/most secure primitive? NIST-approved?

▶ Verify the output: Do values repeat? Correct bit-size?

▶ Which library/version is used? Known vulnerabilities?

▶ Are there de-randomized algorithms available instead?

41



Rolling Your Own Crypto

Figure: https://securitycryptographywhatever.buzzsprout.com/1822302/895384
2-the-great-roll-your-own-crypto-debate-with-filippo-valsorda

42

https://securitycryptographywhatever.buzzsprout.com/1822302/8953842-the-great-roll-your-own-crypto-debate-with-filippo-valsorda
https://securitycryptographywhatever.buzzsprout.com/1822302/8953842-the-great-roll-your-own-crypto-debate-with-filippo-valsorda


Questions?

43


	Announcements
	Primality Testing
	Factorization
	De-Randomization
	Takeaways

