
PROTOCOL COMPOSITION 2: DLOG
TTM4205 – Lecture 16

Tjerand Silde

05.11.2024

Contents

OpenPGP and ElGamal

Algorithms for Discrete Logarithms

Cross-Implementation Attack on ElGamal

Triple ElGamal

Threema

More Attacks

Conclusions

2

Contents

OpenPGP and ElGamal

Algorithms for Discrete Logarithms

Cross-Implementation Attack on ElGamal

Triple ElGamal

Threema

More Attacks

Conclusions

3

OpenPGP

▶ Protocol for securing email.

▶ Standardized in RFC4880.

▶ Encryption: ElGamal Hybrid Encryption (...or RSA).

▶ Signatures: DSA or RSA.

We will look at a cross-implementation attack on OpenPGP.

4

https://datatracker.ietf.org/doc/html/rfc4880

Figure: https://eprint.iacr.org/2021/923

5

https://eprint.iacr.org/2021/923

ElGamal Hybrid Encryption

Let G be a group. The ElGamal hybrid encryption scheme works as follows:

KGen : Sample secret key sk and publish the public key pk = g sk.

Enc : Sample uniform x , compute X = g x , and use k = H(pkx) as a
secret key for AES to encrypt message m as ctx. Send (X , ctx).

Dec : On receiving the ciphertext (X , ctx), compute the AES key as
k = H(X sk) and decrypt ctx to get the message m.

6

ElGamal Hybrid Encryption

Key Generation Questions
▶ What kind of group should G be?

▶ How should the element g be selected?

▶ Which interval should sk and x be sampled from?

We will have a look at four different configurations that are all used in
practice. In all cases, G is the multiplicative group Z×

p for some prime p.

7

Two Simple Configurations

Configuration A
▶ G = Z×

p where p − 1 has at least one large prime factor q.
▶ The element g is a generator of the group G.
▶ sk and x are sampled from the interval [0, p − 1].

Configuration B
▶ G = Z×

p where p − 1 has at least one large prime factor q.
▶ The element g is a generator of the subgroup G′ ⊆ G of order q
▶ sk and x are sampled from [0, q − 1] for efficiency.

Note that in Configuration B, we have that q ≪ p.

8

Two Simple Configurations

Configuration A
▶ G = Z×

p where p − 1 has at least one large prime factor q.
▶ The element g is a generator of the group G.
▶ sk and x are sampled from the interval [0, p − 1].

Configuration B
▶ G = Z×

p where p − 1 has at least one large prime factor q.
▶ The element g is a generator of the subgroup G′ ⊆ G of order q
▶ sk and x are sampled from [0, q − 1] for efficiency.

Note that in Configuration B, we have that q ≪ p.

8

Two more Configurations

Configuration C (Safe Primes)
▶ G = Z×

p where p − 1 = 2q, where q is prime.
▶ g = 4 (always a generator of the group G′ ⊆ G of order q)
▶ sk and x are sampled from the interval [0, p − 1].

Configuration D (Lim-Lee Primes)
▶ G = Z×

p where p − 1 = 2 · q1 · q2 · · · qn, with qi same sized primes.
▶ The element g is a generator of the subgroup G′ ⊆ G of some order qi
▶ sk and x are sampled from [0, qi − 1] for efficiency.

9

Two more Configurations

Configuration C (Safe Primes)
▶ G = Z×

p where p − 1 = 2q, where q is prime.
▶ g = 4 (always a generator of the group G′ ⊆ G of order q)
▶ sk and x are sampled from the interval [0, p − 1].

Configuration D (Lim-Lee Primes)
▶ G = Z×

p where p − 1 = 2 · q1 · q2 · · · qn, with qi same sized primes.
▶ The element g is a generator of the subgroup G′ ⊆ G of some order qi
▶ sk and x are sampled from [0, qi − 1] for efficiency.

9

Contents

OpenPGP and ElGamal

Algorithms for Discrete Logarithms

Cross-Implementation Attack on ElGamal

Triple ElGamal

Threema

More Attacks

Conclusions

10

Algorithms for Discrete Logarithms

Pohlig-Hellman
Let G be generated by a generator g where |G| = pe11 · pe22 · · · penn and pi are
prime numbers. Given X ∈ G, we want to find x ∈ Zp such that g x = X .

The Pohlig-Hellman algorithm reduces this to the task of computing discrete
logarithms in subgroups of order pi , and then combining the results using the
Chinese remainder theorem to find the value x ∈ Zp of X in G.

11

Algorithms for Discrete Logarithms

Pollard’s Kangaroo
Let G be generated by a generator g where |G| = q and q is a prime number.
Given X ∈ G, we want to find x ∈ [a, b] such that g x = X .

The Pollard’s Kangaroo algorithm can compute the discrete logarithm x ∈ [a, b]
of X in time and space roughly

√
b − a given known integers a and b.

12

Contents

OpenPGP and ElGamal

Algorithms for Discrete Logarithms

Cross-Implementation Attack on ElGamal

Triple ElGamal

Threema

More Attacks

Conclusions

13

Cross-Implementation Attack on ElGamal

▶ By themselves, configuration A/B/C/D are all secure.

▶ However, by combining them, they can become insecure.

▶ Attack: A user using configuration B (small secret mod q) sends a
ciphertext to someone using configuration A (large secret mod p):

▶ The sender uses "small" a exponent x ∈ [0, . . . ,≈ 2256].

▶ The receiver uses generator g of group G of order p − 1 = f e11 · f e22 · · · f enn · q,
where fi are small enough primes to solve discrete logarithms but q is large.

14

Cross-Implementation Attack on ElGamal

▶ By themselves, configuration A/B/C/D are all secure.

▶ However, by combining them, they can become insecure.

▶ Attack: A user using configuration B (small secret mod q) sends a
ciphertext to someone using configuration A (large secret mod p):

▶ The sender uses "small" a exponent x ∈ [0, . . . ,≈ 2256].

▶ The receiver uses generator g of group G of order p − 1 = f e11 · f e22 · · · f enn · q,
where fi are small enough primes to solve discrete logarithms but q is large.

14

Cross-Implementation Attack on ElGamal

▶ By themselves, configuration A/B/C/D are all secure.

▶ However, by combining them, they can become insecure.

▶ Attack: A user using configuration B (small secret mod q) sends a
ciphertext to someone using configuration A (large secret mod p):

▶ The sender uses "small" a exponent x ∈ [0, . . . ,≈ 2256].

▶ The receiver uses generator g of group G of order p − 1 = f e11 · f e22 · · · f enn · q,
where fi are small enough primes to solve discrete logarithms but q is large.

14

Cross-Implementation Attack on ElGamal

▶ By themselves, configuration A/B/C/D are all secure.

▶ However, by combining them, they can become insecure.

▶ Attack: A user using configuration B (small secret mod q) sends a
ciphertext to someone using configuration A (large secret mod p):

▶ The sender uses "small" a exponent x ∈ [0, . . . ,≈ 2256].

▶ The receiver uses generator g of group G of order p − 1 = f e11 · f e22 · · · f enn · q,
where fi are small enough primes to solve discrete logarithms but q is large.

14

Cross-Implementation Attack on ElGamal
The attack works as following:

1. Use the Pollard’s Kangaroo algorithm to solve the discrete logarithm
modulo each of the small primes fi .

2. Use the Pohlig-Hellman algorithm to combine the solutions modulo
M = f e11 · f e22 · · · f enn as w ≡ x (mod M) where p − 1 = M · q for a large q.

3. Note now that X = g z·M+w for some unknown z ∈ [0, . . . , q/M].

4. Finally we find z by computing the discrete logarithm of X/gw to the
base gM using Pollard’s Kangaroo algorithm again.

This attach also works for case D with p − 1 = f e11 · · · f enn · q1 · · · qℓ where the
secret is modulo qi and we can retrieve it using smallerM = f e11 · f e22 · · · f enn .

15

Contents

OpenPGP and ElGamal

Algorithms for Discrete Logarithms

Cross-Implementation Attack on ElGamal

Triple ElGamal

Threema

More Attacks

Conclusions

16

17

18

19

Figure: They used 256-bit finite field ElGamal...
https://rwc.iacr.org/2020/slides/Gaudry.pdf

20

https://rwc.iacr.org/2020/slides/Gaudry.pdf

Contents

OpenPGP and ElGamal

Algorithms for Discrete Logarithms

Cross-Implementation Attack on ElGamal

Triple ElGamal

Threema

More Attacks

Conclusions

21

Figure: https://breakingthe3ma.app/files/Threema-PST22.pdf

22

https://breakingthe3ma.app/files/Threema-PST22.pdf

Figure: https://iacr.org/submit/files/slides/2023/rwc/rwc2023/75/slides.pdf

23

https://iacr.org/submit/files/slides/2023/rwc/rwc2023/75/slides.pdf

24

25

26

27

28

29

Contents

OpenPGP and ElGamal

Algorithms for Discrete Logarithms

Cross-Implementation Attack on ElGamal

Triple ElGamal

Threema

More Attacks

Conclusions

30

Bridgefy

Figure: https://eprint.iacr.org/2021/214.pdf

31

https://eprint.iacr.org/2021/214.pdf

Bridgefy (Again)

Figure: https://www.usenix.org/system/files/sec22fall_albrecht.pdf

32

https://www.usenix.org/system/files/sec22fall_albrecht.pdf

Jitsi

Figure: https://eprint.iacr.org/2023/1118.pdf

33

https://eprint.iacr.org/2023/1118.pdf

Matrix

Figure: https://nebuchadnezzar-megolm.github.io/static/paper.pdf

34

https://nebuchadnezzar-megolm.github.io/static/paper.pdf

Contents

OpenPGP and ElGamal

Algorithms for Discrete Logarithms

Cross-Implementation Attack on ElGamal

Triple ElGamal

Threema

More Attacks

Conclusions

35

Conclusions

▶ End-to-end security is hard

▶ Composing protocols is hard

▶ Have very clear descriptions

▶ Always (try to) prove security

▶ Use up-to-date modern primitives

▶ Be careful about reusing primitives

▶ Authenticate all messages and metadata

▶ Always use ephemeral keys for sessions

36

Conclusions
▶ End-to-end security is hard

▶ Composing protocols is hard

▶ Have very clear descriptions

▶ Always (try to) prove security

▶ Use up-to-date modern primitives

▶ Be careful about reusing primitives

▶ Authenticate all messages and metadata

▶ Always use ephemeral keys for sessions

36

Conclusions
▶ End-to-end security is hard

▶ Composing protocols is hard

▶ Have very clear descriptions

▶ Always (try to) prove security

▶ Use up-to-date modern primitives

▶ Be careful about reusing primitives

▶ Authenticate all messages and metadata

▶ Always use ephemeral keys for sessions

36

Conclusions
▶ End-to-end security is hard

▶ Composing protocols is hard

▶ Have very clear descriptions

▶ Always (try to) prove security

▶ Use up-to-date modern primitives

▶ Be careful about reusing primitives

▶ Authenticate all messages and metadata

▶ Always use ephemeral keys for sessions

36

Conclusions
▶ End-to-end security is hard

▶ Composing protocols is hard

▶ Have very clear descriptions

▶ Always (try to) prove security

▶ Use up-to-date modern primitives

▶ Be careful about reusing primitives

▶ Authenticate all messages and metadata

▶ Always use ephemeral keys for sessions

36

Conclusions
▶ End-to-end security is hard

▶ Composing protocols is hard

▶ Have very clear descriptions

▶ Always (try to) prove security

▶ Use up-to-date modern primitives

▶ Be careful about reusing primitives

▶ Authenticate all messages and metadata

▶ Always use ephemeral keys for sessions

36

Conclusions
▶ End-to-end security is hard

▶ Composing protocols is hard

▶ Have very clear descriptions

▶ Always (try to) prove security

▶ Use up-to-date modern primitives

▶ Be careful about reusing primitives

▶ Authenticate all messages and metadata

▶ Always use ephemeral keys for sessions

36

Conclusions
▶ End-to-end security is hard

▶ Composing protocols is hard

▶ Have very clear descriptions

▶ Always (try to) prove security

▶ Use up-to-date modern primitives

▶ Be careful about reusing primitives

▶ Authenticate all messages and metadata

▶ Always use ephemeral keys for sessions

36

Conclusions
▶ End-to-end security is hard

▶ Composing protocols is hard

▶ Have very clear descriptions

▶ Always (try to) prove security

▶ Use up-to-date modern primitives

▶ Be careful about reusing primitives

▶ Authenticate all messages and metadata

▶ Always use ephemeral keys for sessions

36

Conclusions

The Signal Protocol and TLS 1.3 are two out of few protocols that we got right.
It took many years of research, analysis, attacks and experience to get it right.

37

Questions?

38

	OpenPGP and ElGamal
	Algorithms for Discrete Logarithms
	Cross-Implementation Attack on ElGamal
	Triple ElGamal
	Threema
	More Attacks
	Conclusions

