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Reminder: Technical Essay

The deadline for submitting group and scope is November 1st at 23:29.
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Reference Material

These slides are based on:

▶ The referred papers in the slides

▶ BS: parts of chapter 19 and 20

▶ DW: parts of chapter 7 and 15.3
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Informal Definitions

Commitments
A commitment is a way to bind yourself to information that later can be
opened. It is important that it is not possible to change the committed value
and that the commitment does not leak the committed value itself.

Example: a guarded safe where you know the code to open.
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Informal Definitions

Zero-Knowledge Proofs
A zero-knowledge proof is a communication protocol for a prover to convince a
verifier that some statement is true without revealing why or how it is true.

A cheating prover should not be able to convince the verifier about false
statements (soundness), and the verifier should not learn anything else
than the fact that the statement is true (zero-knowledge).
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Use-cases
Commitments and zero-knowledge proofs are widely used in among others
the following settings:

▶ To create digital signatures

▶ Anonymous contact-tracing
(implemented in Smittestopp 2.0)

▶ Electronic voting systems

▶ Privacy-preserving transactions

▶ Multi-party computation protocols
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Figure: https://blog.cryptographyengineering.com/2014/11/27/zero-knowledge-p
roofs-illustrated-primer
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Figure:
https://homepages.cwi.nl/~schaffne/courses/crypto/2014/papers/ComZK08.pdf
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Algorithms

A commitment scheme consists of the following algorithms:

KGen Outputs public parameters pp.

Com Takes as input pp and a message m. It outputs
a commitment cmt and an opening op.

Open Takes as input pp, cmt and op and outputs 1 or 0.

Here, op usually consists of m and some randomness w .
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Binding

A commitment is binding if it is hard to find two valid openings op = (m,w) and
op′ = (m′,w ′) such that Open(cmt, op) and Open(cmt, op′) outputs 1 and m ̸= m′.

This is similar to collision resistance for hash functions.
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Hiding

A commitment is hiding if it is hard to decide if cmt is a commitment to a given
m or if cmt is sampled uniformly at random from the commitment space.

This is similar to CPA security for encryption schemes.
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Hash-Based Commitments

Q: Are the following secure commitment schemes for hash function H,
low-entropy message m, and high-entropy randomness w?

▶ Let Com output cmt = H(m) and op = m.

▶ Let Com output cmt = H(m,w) and op = (m,w).
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Hash-Based Commitments

Are the following secure commitment schemes for hash function H,
low-entropy message m, and high-entropy randomness w?

▶ Let Com output cmt = H(m) and op = m.
Hiding only if m is pseudo-random.
Binding if H is collision-resistant.

▶ Let Com output cmt = H(m,w) and op = (m,w).
Hiding, if w is pseudo-random.
Binding if H is collision-resistant.
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ElGamal Commitment

Let G be a group of prime order p and let g and h be independent generators
for G. Let m be a message in G and w be uniform randomness in Zp.

An ElGamal commitment is computed as cmt = (gw ,m · hw ).

Q: Is this commitment scheme hiding or binding?
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Security

The ElGamal commitment scheme is:

▶ (computationally) hiding if w is pseudo-random
and the DLOG problem is hard in G.

▶ (unconditionally) binding since only one w exist for gw .
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Backdoor

We must be a bit careful about how we choose parameters.

▶ How can we break the scheme if we know t = logg h?

▶ We break hiding by computing m = (m · hw ) · (gw )−t .
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Mitigations

We must make sure that no one knows t = logg h, for example by computing
both generators as outputs from a random oracle (hash function) on publicly
agreed input, e.g., a given number of decimals of π or e or lottery numbers etc.
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Algorithms

Let x be a statement and let w be a witness such that a given
relation (e.g. discrete logarithm) R(w , x) is satisfied.

A zero-knowledge proof consists of the following algorithms:

KGen Outputs public parameters pp.
Prove Takes as input pp, x and w . It outputs a proof π.
Verify Takes as input x and π and outputs 1 or 0.

The Prove algorithm might be an interactive protocol.
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Soundness

A zero-knowledge proof is sound if it is hard for a cheating prover to produce
an accepting proof π for a statement x without there existing or the prover
knowing a witness w .

This is similar to binding for commitment schemes.
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Zero-Knowledge

A zero-knowledge proof is zero-knowledge if it is hard for a cheating verifier to
learn anything about w when given x and π, except for learning that the
relation R(w , x) is satisfied.

This is similar to hiding for commitment schemes.
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Proof of DL
Given a group G of prime order p with generator g where the relation
R(w , x) is satisfied if x = gw . The DL-ZK-proof works as following:

1. Prover samples r ←$ Zp and sends R = g r to the verifier.

2. Verifier samples c ←$ Zp and sends c to the prover.

3. Prover compute z = r − c · w and sends z to the verifier.

4. If R = g z · xc then the verifier outputs 1, otherwise 0.

This is the interactive version of the Schnorr signature scheme
without the message m and hash function H.
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Security

We argue soundness as following:

A prover that does not know w have to guess c in advance to be able to
answer the challenge correctly (unless it can compute DL, but then it could
find w in the first place).

Assuming that the prover can guess c , then it can sample a random z and
compute R as R = g z · xc and send it to the verifier in the first round. The
probability of cheating is 1/p.

(A proper proof would create an extractor using rewinding.)
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Security
We argue zero-knowledge as following:

A verifier receive R and z from the prover. r is sampled
uniformly at random, so R is a uniformly random element
in G. By a similar argument, z is a uniform element in Zp.

We create a simulator that does the following:
1. sample uniform c from Zp

2. sample uniform z from Zp

3. compute R = g z · xc in G
4. output the transcript (R, c , z)

This transcript is identically distributed as a real execution.
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Fiat-Shamir Transform

To make an interactive protocol non-interactive, we use the Fiat-Shamir
transform, where the challenge c is the output of a hash function H applied to
the context of the proof, e.g., the statement, public parameters and messages.

For example, c = H(pp,R) in the proof system above. Then we do not need
interaction. We output c = H(pp,R,m) for signing the message m in Schnorr.
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Fake Proofs

It is extremely important to hash everything when using Fiat-Shamir!
Otherwise the prover can produce fake proofs.

Q: How can we fake the DL proof if c = H(pp)?
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Fake Proofs

It is extremely important to hash everything when using Fiat-Shamir!
Otherwise the prover can produce fake proofs.

Q: How can we fake the DL proof above if c = H(pp)?

A: We know c before we need to choose R (simulator).

Then we sample z , compute R = g z · xc and outputs (R, z).
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Figure: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9152765
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Figure: https://eprint.iacr.org/2023/691
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Questions?

34


	Technical Essay
	Background
	Commitments
	Zero-Knowledge

