THALES

FPGAs and Cryptography

NTNU - 12. November 2024

Håkon Jacobsen Thales Norway

Thales Group

68 Countries Global presence

Sales in 2022 €17,6bn

Thales Norway AS

High-tech company implementing high assurance cryptography and communication solutions

> Independent unit within the Thales Group, subject to the Norwegian Security Act

200+ employees (Oslo & Trondheim) NOK 1B yearly revenue

About me

Cryptographer at Thales Norway

- Supervise cryptography use and implementations in our projects (and security more broadly)
- Implement both software and hardware (VHDL)

Mostly cryptography

- Teach TEK4500 Introduction to Cryptography at UiO
 - <u>https://www.uio.no/studier/emner/matnat/its/TEK4500/h24/</u>

Why FPGAs?

- High performance
- Low latency
- Flexibility
- Precise control over:
 - running time
 - resource usage
- ASIC prototyping
- Regulatory requirements

FPGA applications:

- Aerospace and avionics
- Digital signal processors
- Defense and military
- Medical devices
- General hardware accelerators
 (e.g. cryptography)

THALES

FPGA – Field Programmable Gate Array

OPEN

FPGA – Field Programmable Gate Array

Implementations

- SRAM (volatile, re-programmable)
- Flash (non-volatile, re-programmable)
- Antifuse (non-volatile, one-time programmable)

THALES

OPEN

FPGA – Field Programmable Gate Array

Implementations

- SRAM (volatile, re-programmable)
- Flash (non-volatile, re-programmable)
- Antifuse (non-volatile, one-time programmable)

THALES

OPEN

FPGA components

THALES

Modern FPGAs

THALES

OPEN

Spartan-7 FPGA Feature Summary

Table 2: Spartan-7 FPGA Feature Summary by Device

		С	LB		Block	RAM Blo	ocks ⁽³⁾						
Device	Logic Cells	Slices ⁽¹⁾	Max Distributed RAM (Kb)		Max (Kb)	CMTs ⁽⁴⁾	PCle	GT	XADC Blocks	Total I/O Banks ⁽⁵⁾	Max User I/O		
XC7S6	6,000	938	70	10	10	5	180	2	0	0	0	2	100
XC7S15	12,800	2,000	150	20	20	10	360	2	0	0	0	2	100
XC7S25	23,360	3,650	313	80	90	45	1,620	3	0	0	1	3	150
XC7S50	52,160	8,150	600	120	150	75	2,700	5	0	0	1	5	250
XC7S75	76,800	12,000	832	140	180	90	3,240	8	0	0	1	8	400
XC7S100	102,400	16,000	1,100	160	240	120	4,320	8	0	0	1	8	400

Notes:

1. Each 7 series FPGA slice contains four LUTs and eight flip-flops; only some slices can use their LUTs as distributed RAM or SRLs.

2. Each DSP slice contains a pre-adder, a 25 x 18 multiplier, an adder, and an accumulator.

3. Block RAMs are fundamentally 36 Kb in size; each block can also be used as two independent 18 Kb blocks.

4. Each CMT contains one MMCM and one PLL.

5. Does not include configuration Bank 0.

THALES

OPEN

FPGA design flow

FPGA design flow

THALES

OPEN

Synthesis

THALES

OPEN

Technology mapping (synthesis)

OPEN

OPEN

THALES

OPEN

Place & Route

FPGA design flow

THALES

OPEN

FGPA circuits – high level view

THALES

OPEN

VHDL

<pre>library IEEE; use IEEE.std_logic_1164.all;</pre>	
<pre>entity my_circ is port (x : in std_logic; y : in std_logic; z : in std_logic; v : in std_logic; w : in std_logic; s : out std_logic); end my_circ;</pre>	
<pre>architecture impl of my_circ is</pre>	
<pre>signal s_1 : std_logic; signal s_2 : std_logic; signal s_3 : std_logic;</pre>	
<pre>begin s_1 <= x and y; s_2 <= z or v; s_3 <= v and (not w); s <= s_1 or s_2 or s_3; end impl;</pre>	A B C + D E

THALES

OPEN

VHDL

<pre>entity my_larger_circ is port (</pre>
x_1,x_2,x_3,x_4,x_5 : in std_logic; y_1,y_2 : in std_logic;
z : out std_logic
<pre>end my_larger_circ;</pre>
<pre>architecture impl of my_larger_circ is signal s_1, s_2 : std_logic; begin</pre>
<pre>i_my_circ_1 : my_circ port map (</pre>
$y \Rightarrow x_2$
$z \Rightarrow x_3, \\ w \Rightarrow x_4.$
$v \Rightarrow x_{5}$
s => s_1);
<pre>i_my_circ_2 : my_circ port map (</pre>
$x \Rightarrow x_5,$ $y \Rightarrow x_4$
$z \Rightarrow x_3$,
$w \Rightarrow y_2,$
v => y_1; s => s_2);
z <= s_1 and s_2;
end impl;

THALES

OPEN

VHDL

```
entity my_program is
 port (
                     : in std_logic;
   clk
   x_1,x_2,x_3,x_4,x_5 : in std_logic;
                     : in std_logic;
   y_1,y_2
                       : out std_logic
   S
 );
end my_program;
architecture rtl of my_program is
  signal z : std_logic;
  signal r : std_logic;
begin
 i_combinatorial : my_larger_circ
   port map (x_1, x_2, x_3, x_4, x_5, y_1, y_2, z);
 p_store_output : process(clk)
 begin
   if rising_edge(clk) then
     r <= z;
   end if;
 end process;
 s <= r;
end rtl;
```


THALES

OPEN

THALES

	Key Material Field: + Search Short Ode		'ram; 2020/09/(n •	To: 2020/12/01 •	Key Allocate to OU	
	Field: + Search Short Ode	Eukin				Date	
		Cutiles.			~	and the second se	
		elugious.			p	2020/12/01	
		CONION	Rog.no	Seg.	Transaction type	Classification	
	NMSD 9000 PPTKEK	AAC			Key Allocate to OU	SECRET	The same of
	NMSD 9000 PPTKEK	AAR			Key Allocate to OU		
P	NMSD 9000 PPTKEK	AAA			Key Allocate to OU	Short Title	Edition
	NMSD 9000 TREK	444			Key Allocate to OU	THE POOL FFIRER	AAA
	NINGO 9000 PPTKEK	AAA	10	0	Kay Allozate to OU	Register No	Segment O
	NMSD 9000 TKEK	AAA	10	0	ay Allocate to QU	10 (Oxa)	
	NMSD 9000 PPTKEK	AAC.	10	Ó	Key Allocate to OU	From	
	NMED 9000 PPTKEK	AAL	10	0	Key Allocate to OU	Production	Navy
		NIASD ROAD PPINESK NIASD ROAD TKEK NIASD ROAD PPTKEK NIASD ROAD PPTKEK	NASD FOOD PPTKER AAA NASD FOOD TKER AAAD MASD FOOD PPTKER AAAD NASD FOOD PPTKER AAAD	MAED FORD PPEKER KAA 10 NMED FORD TKEK KAA 10 NMED FORD PPTKEK KAR 10 NMED FORD PPTKEK KAR 10	Music mode princisk AAAA 10 0 NUMSIC mode frame AAAA 10 0 NUMSIC mode frame AAAC 10 0 NUMSIC mode principk AAAC 10 0 NUMSIC mode principk AAAC 10 0	NASD 9000 PPEXEX AAA 10 D Kay Allocate to OU NMSD 9000 TKEK AAA 10 0 Kay Allocate to OU NMSD 9000 PFKEK AAC 10 0 Kay Allocate to OU NMSD 9000 PFKEK AAC 10 0 Kay Allocate to OU NMSD 9000 PFKEK AAC 10 0 Kay Allocate to OU	Midd brood PPTActic AAA 10 0 Key Allocate to OU Register No NMSD brood TKSK AAA 10 0 Key Allocate to OU 10 (Oxa) NMSD brood PPTActic AAA 10 0 Key Allocate to OU From NMSD brood PPTActic AAA 10 0 Key Allocate to OU From NMSD brood PPTActic AAA 10 0 Key Allocate to OU Production

.

Cryptography in VHDL

AES in FPGA

THALES

OPEN

Compact design

OPEN

Pipelined design

OPEN

Fully pipelined design

OPEN

High throughput implementations

References	Devices	Frequency,	Slices	Slices	Occupied	BRAM	Throughput,	FPGA-E	ff, Mbps/slice
		MHz	register	LUT	Slices		Gbps	LUT	Occupied
this work	Virtex-5 XC5VLX85	622.4	19,123	14,966	5974	0	79.7	5.3	13.3
[5] ^a	Virtex-5 XC5VLX85	348.8		30,806		0	178.62		5.8
[23]	Virtex-5 XC5VLX85	576.0	_	22,994	_	0	73.7	3.2	_
[24]	Virtex-5 xc5vfx70t	460.0	—	_	9756	0	60.0	—	6.1 ^b
[25]	Virtex-5 XC5VLX85	528.4	_	3557	_	0	67.6	19.0	_
[13]	XC2V6000-6	194.7	_	_	3720		24.9	_	6.7
[26]	Virtex-5 XC5VFX70T	91.6	—	2030	—	28	0.9	0.5	—
[27]	Virtex-5 XC5VLX50	425.0	922	564	303	10	1.3	2.3 ^b	4.4
[28]	Virtex-5 XC5VLX50	242.2	—	5256	1745	0	3.1	0.6 ^b	1.8 ^b
[29]	Virtex-5 XC5VLX50	339.1	—	1338	399	0	4.3	3.2 ^b	10.8 ^b
[30]	Virtex-5 xc5vlx110t	250.0	_	_	_	0	31.2	_	_

Table 2 Implementation results and comparison

^aIt has four cores; to make a fair comparison and according to [5], the throughput should be divided by four. The throughput for a single core is 178.62/4 = 44.7 Gbps.

^bManually calculated.

THALES

OPEN

Low area implementations

Destant	Deed	Key	Destas		-	R	esources ^b	-		f	Throughput ^c
Design	Dec	sch.	Device	slices	LUT	FF	d.RAM	BRAM	DSPs	(MHz)	(Gbit/s)
Basic	0	0	Virtex-5	93	245	274	7838	2×36K	4	550	1.76
Round	0	0	Virtex-5	277	204	601	1432	8×36K	16	485	6.21
Unrolled	•	0	Virtex-5	428	672	992	1696	80×36K	160	430	55

Saar Drimer, Tim Guneysü, and Christof Paar. DSPs, BRAMs and a Pinch of Logic: New Recipes for AES on FPGAs. https://saardrimer.com/sd410/papers/aes_dsp.pdf

OPEN

Timing analysis – critical path vs. clock frequency

OPEN

THALES

OPEN

Bitstream

Stored in non-volatile memory outside FPGA

Bitstream design a business secret (or even a national/military secret)

OPEN

Stored in battery-backed RAM (BBRAM)

OPEN

Xilinx FPGA – Starbleed attack

Security Tools and Resources Privacy Policy FAQ's

The Unpatchable Silicon: A Full Break of the Bitstream Encryption of Xilinx 7-Series FPGAs

Maik Ender*, Amir Moradi* and Christof Paar*†

*Horst Goertz Institute for IT Security, Ruhr University Bochum, Germany †Max Planck Institute for Cyber Security and Privacy, Germany

Abstract

The security of FPGAs is a crucial topic, as any vulnerability within the hardware can have severe consequences, if they are used in a secure design. Since FPGA designs are encoded in a bitstream, securing the bitstream is of the utmost importance. Adversaries have many motivations to recover and manipulate the bitstream, including design cloning, IP theft, manipulation of the design, or design subversions e.g., through hardware Trojans. Given that FPGAs are often part of cyber-physical systems e.g., in aviation, medical, or industrial devices, this can even lead to physical harm. Consequently, vendors have introduced bitstream encryption, offering authenticity and confidentiality. Even though attacks against bitstream encryption have been proposed in the past, e.g., side-channel analysis and probing, these attacks require sophisticated equipment and considerable technical expertise. In this paper, we introduce novel low-cost attacks against the Xilinx 7-Series (and Virtex-6) bitstream encryption, resulting in the total loss of authenticity and confidentiality. We exploit a design flaw which piecewise leaks the decrypted bitstream. In the attack, the FPGA is used as a decryption oracle, while only access to a configuration interface is needed. The attack does not require any sophisticated tools and, depending on the target system, can potentially be launched remotely. In addition to the attacks, we discuss several countermeasures.

1 Introduction

Nowadays, Field Programmable Gate Arrays (FPGAs) are common in consumer electronic devices, aerospace, financial computing, and military applications. Additionally, given the trend towards a connected world, data-driven practices, and artificial intelligence, FPGAs play a significant role as hardware platforms deployed in the cloud and in end devices. Hence, trust in the underlying platform for all these applications is vital. Altera, who are (together with Xilinx) the FPGA market leader, was acquired by Intel in 2015.

FPGAs are reprogrammable ICs, containing a repetitive logic area with a few hundred up to millions of repro-

grammable gates. The bitstream configures this logic area; in analogy to software, the bitstream can be considered the 'binary code' of the FPGA. On SRAM-based FPGAs, which are the dominant type of FPGA in use today, the bitstream is stored on an external non-volatile memory and loaded into the FPGA during power-up.

WS

In order to protect the bitstream against malicious actors, its confidentiality and authenticity must be assured. If an attacker has access to the bitstream and breaks its confidentiality, he can reverse-engineer the design, clone intellectual property, or gather information for subsequent attacks e.g., by finding cryptographic keys or other design aspects of a system. If the adversary succeeds in violating the bitstream authenticity, he can then change the functionality, implant hardware Trojans, or even physically destroy the system in which the FPGA is embedded by using configuration outside the specifications. These problems are particularly relevant since access to bitstream is often effortlessly possible due to the fact that, for the vast majority of devices, it resides in the in external non-volatile memory, e.g., flash chips. This memory can often either be read out directly, or the adversary wiretaps the FPGA's configuration bus during power-up. Alternatively, a microcontroller can be used to configure the FPGA, and consequently, the microcontroller's firmware includes the bitstream. When the adversary gains access to the microcontroller, he also gains access to the configuration interface and the bitstream. Thus, if the microcontroller is connected to a network, remotely attacking the FPGA becomes possible.

In order to protect the design, the major FPGA vendors introduced bitstream encryption around the turn of the millennium, a technique which nowadays is available in most mainstream devices [1,56]. In this paper, we investigate the security of the Xilinx 7-Series and Virtex-6 bitstream encryption. On these devices, the bitstream encryption provides authenticity by using an SHA-256 based HMAC and also provides confidentiality by using CBC-AES-256 for encryption. By our attack, we can circumvent the bitstream encryption and devices completely and on the Virtex-6 devices partially. Addevices completely and on the Virtex-6 devices partially.

HACKING TOOLS CTF SHOP COURSES ~ AFFILIATES ~

vs News Vulnerabilities nerability Discovered In FPGA

bitstream, bitstream encryption, bug, Chips, decryption, decryption key, ate Arrays, flaw, FPGA chips, Hardware, hardware encryption, hardware

USENIX Association

vulnerability, Starbleed, Starbleed vulnerability, vulnerability

29th USENIX Security Symposium 1803

THALES

Bitstream

WBSTAR = Warm-Boot Start-address

THALES

OPEN

OPEN

THALES

OPEN

THALES

OPEN

THALES

OPEN

OPEN

OPEN

OPEN

Time to fully decrypt bitstream: 26 hours

THALES

OPEN

Single Event Upsets (SEU)

OPEN

SEU mitigation

Silicon

- Built-in Error Detection and Correction
- Optimized Integrated SRAM Designs

Packaging & Process

- · Ultra-Low Alpha (ULA) Materials
- Material Quality Actively Monitored

Soft Error Mitigation Solutions

- · Detection, Correction, and Classification
- Verification and Debug Management

Integrated Design Flow

- Essential Bits Classification
- ECC-Protected Memory Solutions

Analysis & Verification

- SEU FIT and Vulnerability Analysis
- Fault Injection for System Validation

THALES

Hardware isolation

free and a sea	former and the second		100000000000000000000000000000000000000	1.1.0000000000	10010000000	100000 - 0000	the second s	a data managan sa	10000000000000	Constant and the second	No. or Conserved
	GRM	GRM	SLICE-LM	SLICE-LM	GRM	GRM		SLICE-LM	GRM	GRM	SLICE-LL
	GRM	GRM	SLICE-LM	SLICE-LM	GRM	GRM		SLICE-LM	GRM	GRM	SLICE-LL
DSP48E1 (x2)	GRM	GRM	SLICE-LM	D SLICE-LM		GRM	RAMB36	SLICE-LM	GRM	GRM	SLICE-LL
	GRM	GRM	SLICE-LM	SLICE-LM	GRM	GRM		SLICE-LM	GRM	GRM	SLICE-LL
	GRM	GRM	SLICE-LM	SLICE-LM	GRM	GRM		SLICE-LM	GRM	GRM	SLICE-LL
	GRM	GRM	SLICE-LM	SLICE-LM	GRM	GRM		SLICE-LM	GRM	GRM	SLICE-LL
	GRM	GRM	SLICE-LM	SLICE-LM	GRM	GRM		SLICE-LM	GRM	GRM	SLICE-LL
NCE2)	GRFE	GRM	SLICE-LM	SLICE-LM	GRM	NCE	ram ißE	SLICE-LM	GRM	ENCE	SLICE-LL
	GRM	GRM	SLICE-LM	SLICE-LM	GRM	GRM		SLICE-LM	GRM	GRM	SLICE-LL
	GRM	GRM	SLICE-LM	SLICE-LM	GRM	GRM		SLICE-LM	GRM	GRM	SLICE-LL
	GRM	GRM	SLICE-LM	SLICE-LM	GRM	GRM		SLICE-LM	GRM	GRM	SLICE-LL
	GRM	GRM	SLICE-LM	SLICE-LM	GRM	GRM		SLICE-LM	GRM	GRM	SLICE-LL
DSP48E1 (x2)	GRM	GRM	SLICE-LM	SLICE-LM		GRM	RAMB36	SLICE-LM	GRM	GRM	SLICE-LL
	GRM	GRM	SLICE-LM	SLICE-LM	GRM	GRM		SLICE-LM	GRM	GRM	SLICE-LL
	GRM	GRM	SLICE-LM	SLICE-LM	GRM	GRM		SLICE-LM	GRM	GRM	SLICE-LL
086_05_1128	×										

THALES

OPEN

Figure 11: Data dependency of the TLS response. A single bit (bit 120) has been set in the BBRAM key data which manifests as an irregularity in the measurement result.

Reference	Measurement	Difference

Figure 12: Difference calculation between an "all bits zero" TLS reference and measurement data quickly reveals which bits are set in the AES key. As an example the right-hand half of the BBRAM with a single bit set (bit 126) is shown here.

THALES

Anti-tamper

• Zeroization (erase key + configured design)

THALES

OPEN

Summary

- FPGAs are powerful and flexible
- Well suited for implementing cryptography
- Comes with unique possibilities and challenges

OPEN

THALES

www.thalesgroup.com