Towards a Quantum-Safe Central Bank Digital Currency

Vadim Lyubashevsky IBM Research Europe, Zurich

Cryptography

Allows for secure communication in the presence of malicious parties

Cryptography

Large increase in the adversary's computing power requires only a small increase in the key size

Cryptography

A quantum computer is outside the classical model of computation for efficiency purposes

Symmetric-Key Cryptography

Symmetric-Key Cryptography

Will still exist if quantum computers are built

Public-Key Cryptography

Public-Key Cryptography

Mostly problems from number theory

All broken once a quantum computer is built

Consequence of quantum computing

Current public key schemes will be broken

Quantum computers will recover all of today's secrets

Do not need quantum to defend against quantum

Quantum computers are not all-powerful.

They simply solve some problems faster.

Base cryptography on problems they don't solve.

How do we know that (quantum) computers don't solve a problem? We don't ... all we can say is that researchers tried to solve the problem for X decades and failed.

Categories of Quantum-Safe Crypto

No Changes Necessary

Almost Drop-in Replacements

Serious Alterations of Protocols Required

Can Only Be Done with Lattice Cryptography

Symmetric Cryptography:

- AES
- SHA-256 / SHA-3
- HMAC
- etc.

- NIST standardizations: Public Key Encryption
- Key Exchange
- **Digital Signatures**

A few other things:

Identity-Based Encryption

Advanced Primitives:

- Zero-Knowledge Proofs
- **Distributed Privacy**
- Many blockchain privacy applications

Lots of recent progress on design. Nearoptimality has just been achieved for certain primitives. Implementation

starting at ZRL.

Fully-Homomorphic Encryption (FHE) computation over encrypted data

Some Obfuscation (still unclear if it can be efficient or have any useful applications)

> Implementation / deployment of FHE at Haifa.

Done.

Almost standards. Ready for deployment.

Symmetric Cryptography:

- AES
- SHA-256 / SHA-3
- HMAC
- etc.

NIST standardizations:

- Public Key Encryption
- Key Exchange
- Digital Signatures

A few other things:

• Identity-Based Encryption

Almost standards. Ready for

deployment.

Advanced Primitives:

- Zero-Knowledge Proofs
- Distributed Privacy
- Many blockchain privacy applications

Lots of recent progress on design. Nearoptimality has just been achieved for certain primitives. Implementation

starting at ZRL.

- Fully-Homomorphic Encryption (FHE) computation over encrypted data
- Some Obfuscation (still unclear if it can be efficient or have any useful applications)

Implementation / deployment of FHE at Haifa.

Done.

NIST Quantum Safe Standardization

NIST Selection (July 2022)

KEM (Encryption Scheme)

• CRYSTALS-Kyber

Digital Signature

- CRYSTALS-Dilithium
- FALCON
- SPHINCS+

Primary

Primary Specialized Specialized

NSA Selection for CNSA 2.0 (September 2022)

KEM (Encryption Scheme)

 CRYSTALS-Kyber (Security Level 5: 256-bit security target)

Digital Signature

- (Security Level 5: 256-bit security target) CRYSTALS-Dilithium
- LMS
- XMSS

For firmware and software signing only For firmware and software signing only

LMS and XMSS are the **stateful** versions of SPHINCS+

Time for Transition

CNSA 2.0 Timeline

Exclusively use CNSA 2.0 by this year

Categories of Quantum-Safe Crypto No Changes Necessary Almost Drop-in Replacements Serious Alterations of Protocols Required Can Only Be Done with Lattice Cryptography

Symmetric Cryptography:

- AES
- SHA-256 / SHA-3

Done.

- HMAC
- etc.

NIST standardizations:

- Public Key Encryption
- Key Exchange
- Digital Signatures

A few other things:

Identity-Based Encrypt

Almost standards. Ready for deployment.

Advanced Primitives:

- Zero-Knowledge Proofs
- Distributed Privacy
- Many blockchain privacy applications

Lots of recent progress. Near-optimality has just been achieved for certain primitives. Implementation starting at

ZRL.

- Fully-Homomorphic Encryption (FHE) computation over encrypted data
- Some Obfuscation (still unclear if it can be efficient or have any useful applications)

Implementation / deployment of FHE at Haifa.

Central Bank Digital Currency

Wholesale CBDC

Retail CBDC – should have the privacy of cash

(Naïve) Digital Cash

check that x is not on the "spent list"

The Blind Signature Approach

Blind Signature [Cha '82]

The Zero-Knowledge Approach

Central Bank

s', s'' and a ZK proof of: "I know an s corresponding to an unused block **and** this block's 'tag' is now in the used pile **and** the new blocks contains the same amount as the old block"

ZK Proofs Past and Present

- The most efficient ZK proofs now are **not** quantum-safe
- CBDC will need to have a clear road map to quantum-safe
- The most efficient quantum-safe proofs seem to be based on lattices

Work of the Quantum-Safe group at ZRL

Lattices and Some Building Blocks

Hard Problem Intuition

Given (A,z), find y

Easy! Use Gaussian elimination.

Hard Problem Intuition

Given (A,z), find (y,e)

Seems hard.

Why is this "Lattice" Crypto?

All solutions $\begin{pmatrix} y \\ e \end{pmatrix}$ to Ay+e=z mod p form a "shifted" lattice.

We want to find the point closest to the origin (BDD Problem).

Lattice (Assumption) Basics

Discrete log

- Public element g
- Secret integer s
- One-way function f: $Z \rightarrow Z_q$

f(s) = g^s mod q (g,g^s mod q) is random

Lattices

- Public random matrix A in $Z_{\alpha}^{n \times m}$
- Secret integer vector s with ||s|| << q
- One-way function $f: Z^m \rightarrow Z_q^n$

f(s) = As mod q (A,As mod q) is pseudorandom Can create A with a trapdoor that allows inversion of f

Lattice Blind Signatures from ZK Proofs

On the security of giving out pre-images Random matrix A

An oracle that:

- 1. Generates a random **y**
- 2. Generates a small **s** from distribution D such that **As** = **y** mod p

is useless because the same distribution (**s**,**y**) can be generated by

- 1. Generate a small **s** from distribution D
- 2. Compute **As** = **y** mod p

The GPV signature scheme

Random matrix A

An oracle that:

- 1. When given any x
- 2. Generates a small **s** from distribution D such that **As** = **H(x)** mod p

is useless because the same distribution (**s**,**H**(**x**)) can be generated by

- 1. Generate a small **s** from distribution D
- 2. Compute **As** = **y** mod p
- 3. Program H(x)=y

Lattice-Based Blind Signature

Public key: A Secret Key: Trapdoor for A Public Randomness: B

S

Message m Choose vector r with small norm

t=Br + H(m,H(r)) ZKPoK π₁ of r,m satisfying above

- Check π_1
- Use the trapdoor to compute s with

small norm such that As = t

Signature is:

- m
- H(r)
- ZKPoK π₂ of r,s satisfying As=Br+H(m,H(r))