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Testing
def concat(a, b):

c = []
for e in a:

c.append(e)
for e in b:

c.append(e)
return c

def test1 ():
assert concat ([1,2,3], [4]) == [1,2,3,4]

Limitations of this approach? Discuss
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Limitations

▶ We only check very specific cases

▶ Test cases can be biased
▶ We need to predict possible regressions
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Property testing

def test ():
for _ in range (1000):

a = rand_list ()
b = rand_list ()
c = concat(a,b)
assert len(a) + len(b) = len(c)
for i in range(len(a)):

assert a[i] == c[i]
for i in range(len(b)):

assert b[i] == c[len(a) + i]
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Problems

▶ We can miss edge cases

▶ Random tests are a bad developer experience
▶ Side effects might be absent in tests

6



Problems

▶ We can miss edge cases
▶ Random tests are a bad developer experience

▶ Side effects might be absent in tests

6



Problems

▶ We can miss edge cases
▶ Random tests are a bad developer experience
▶ Side effects might be absent in tests

6



Testing

Formal Methods

Type Theory

Formal Verification in Cryptography

7



Specify the semantics of programming languages

Prove programs correct in the semantics
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Tools

We could do these proofs by hand but there are also tools to help

▶ Interactive Proof Assistants
▶ Automated Theorem Proving

▶ SAT solvers
▶ SMT solvers
▶ Model Checking
▶ AI
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Why automate?

▶ Speed
▶ Efficient usage of Human Time
▶ Predictability
▶ Accuracy
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Type Systems

from typing import List

def concat(a: List[int], b: List[int]) -> List[int]:
c: List[int] = []
for e in a:

c.append(e)
for e in b:

c.append(e)
return c
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Type Theory

To begin we restrict ourselves to pure functional programming: programming
without side effects where all functions act as mathematical functions.

Instead of organizing elements into sets x ∈ S we organize them into types
x : T and restrict which expressions are proper based on the types

▶ If x : bool and f : nat → nat then f (x) is not a well typed expression
▶ 1 = T is not a well typed formula
▶ In set theory ∅(∅) is an entirely valid expression
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A Simple Type Theory

We start with a set of variables x and base types b with constants c

τ ::= b | τ → τ (types)
e ::= x | (λx : τ.e) | e e | c (expressions)
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Typing Rules

A typing context Γ is a set of x : τ -pairs

x : σ ∈ Γ

Γ ⊢ x : σ

c is a constant of type T

Γ ⊢ c : T

Γ, x : σ ⊢ e : τ

Γ ⊢ (λx : σ.e) : (σ → τ)

Γ ⊢ e1 : σ → τ Γ ⊢ e2 : σ

Γ ⊢ e1 e2 : τ
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Computation

Γ, x : σ ⊢ e : τ Γ ⊢ u : σ

(λx : σ.e)u =τ e[u/x ]
(β-reduction)

Γ ⊢ e : σ → τ x /∈ free(e)
(λx : σ.e x) =σ→τ e

(η-reduction)
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Algebraic Data Types

Some type theories define structured types

bool ::= true | false
nat ::= O | S (nat)

τ list ::= nil | cons (τ, τ list)

We use the structure to add:

▶ constructors
▶ an induction principle
▶ pattern matching
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EasyCrypt Demo
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Formal Verification of Cryptography
What do we need from cryptographic code?

Which properties of programs do cryptographers care about that others might
not?

Discuss.

Notable Requirements

▶ low level imperative code
▶ semantics captures probabilities
▶ semantics captures side channels
▶ good performance
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Modeling Cryptographic Systems

Symbolic Model[3]

▶ Abstracts away most Details
▶ Easy to reason about automatically
▶ Suited to Protocols rather than Primitives

Computational Model

▶ Abstracts away less Details
▶ Hard to reason about automatically
▶ Suited to both Protocols and Primitives
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Cryptography

1. Design System

Symbolic

2. Security Proof

Symbolic & Computational

3. Cryptoanalysis

Symbolic

4. Implementation

Computational
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Implementation
Without formal methods

1. Read Papers/Specification
2. Write Code
3. Optimize Code

With formal methods

1. Read Specification
2. Write Code
3. Prove that Code matches Spec
4. Optimize Code
5. Prove that Optimized Code matches Original Code
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Implementation
Need:

▶ Formal Semantics
▶ Specification
▶ Tool
▶ Proofs

Get:

▶ Assurance that the Code matches the Spec

With some tools

▶ Verified Optimizations
▶ Verified Compilation
▶ Verified Side Channel Resistance
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Checking Security Proofs

Without formal methods

1. Understand the Proof outline
2. Critically read the Proof while filling in Details

With formal methods

1. Manually check Definitions
2. Manually check Theorem Statements
3. Run the Proof Checker
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Checking Security Proofs

Need:

▶ Formal Spec
▶ Mathematical Theories

▶ Definitions
▶ Lemmas

▶ Proofs
▶ Tools

Get:

▶ Assurance that system described in the Spec has the desired properties
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Tools for Security Proofs

▶ EasyCrypt[4]
▶ FCF[11]
▶ SSProve[13]
▶ CryptHOL[10]
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Some Tools and Projects in Implementation
Verified compilers

▶ CompCert[2] (C)
▶ Jasmin[7]
▶ Bedrock2[1]

Cross-compilers

▶ KaRaMeL[8] (F*→ C)
▶ HacSpec[6] (Rust→ F*)

Major Projects

▶ Fiat-Crypto[5] (Bedrock2)
▶ Libjade[9] (Jasmin)
▶ Project Everest[12] (KaRaMeL)
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