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Reference Group Meeting

We had a reference group meeting on Thursday last week
and the minutes are available online. A short summary:

» Lectures:

» Will include more concrete examples
» Will include book chapter references

» Exercises:
» Will add hints to some of the problems

» Will explain what a "break" means
» Incomplete solutions can give points

» We will not record any lectures
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SCA on PKC

» Timing or power traces can leak secret bits

» Fault injection might leak dummy operations

» Differential analysis allow statistical attacks

» The adversary can choose the input (adaptively)

» The secret key might be static and re-used
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Protecting PKC

» Constant time operations and algorithms
» The result must depend on all operations

» Randomize input and/or secrets each n

@ NTNU | ccnrecmons



Contents

SCA on Symmetric Ciphers

@ NTNU | sty



Recall: AES

» AES is a symmetric key encryption scheme

» AES is a substitution-permutation network

» AES-128: uses 10 rounds and 128-bit keys

» Works on 4 x 4 column order array of 16 bytes
» Long messages are divided into 16 byte blocks

» Some modes of operations: ECB, CTR, GCM, etc.

Check out chapter 4 in Serious Cryptography by JPA.
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Recall: AES

Shift Row

Mix Column

10
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Recall: AES
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Generation Block)
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128 bits
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SubBytes
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Weaknesses and Defenses

In the following slides we will look at the common ways to
implement AES and its components. For each algorithm, try
to point out potential information leakage and protection.
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Example Code

1 def encrypt(key, plaintext):

2

3 # AddRoundKey for initial round

1 ciphertext = AddRoundKey(plaintext, key[0])

5

6 for i in range(1, rounds):

7 ciphertext = SubBytes(ciphertext)

s ciphertext = ShiftRows(ciphertext)

9 ciphertext = MixColumns(ciphertext)

10 ciphertext = AddRoundKey(ciphertext, keyl[i])
11

12 # Final round (no MizColumns)

13 ciphertext = SubBytes(ciphertext)

14 ciphertext = ShiftRows(ciphertext)

15 ciphertext = AddRoundKey(ciphertext, key[rounds])
16

17 return ciphertext
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Differential Power Analysis

Differential Power Analysis

Paul Kocher, Joshua Jaffe, and Benjamin Jun

Cryptography Research, Inc.

607 Market-Street—bthFl
http://www.cryptography.com

Abstract. Cryptosystem designers frequently assume that secrets will
be manipulated in closed, reliable computing environments. Unfortu-
nately, actual computers and microchips leak information about the op-
erations they process. This paper examines specific methods for analyz-
ing power consumption measurements to find secret keys from tamper
resistant devices. We also discuss approaches for building cryptosystems
that can operate securely in existing hardware that leaks information.

Keywords: differential power analysis, DPA, SPA, cryptanalysis, DES

Figure:
https://paulkocher.com/doc/DifferentialPowerAnalysis.pdf2
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Simple Power Analysis (on DES)
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Figure 1: SPA trace showing an entire DES operation.
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Detailed SPA (on DES)
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Figure 2: SPA trace showing DES rounds 2 and 3.
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Correlation

Statistical Analysis via Pearson Correlation Coefficient p
e Linear relationship between 2 random variables
(how much do they change together)
e X: predictions corresponding to one key hypothesis
e Y: measured samples corresponding to one point in time

Cov = Covariance,

COV(X, Y) - E[(X = ,UX)(Y — NY)] Var = Variance,

P = E = Expected value,
Var(X) . Var( Y) Ox0y o = Standard deviation,
© = Mean
Estimate:

3

_ il =x) (i —y) _1 Z
Vi =Xy — ¥)? o
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Key Candidates
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Potential Weaknesses

Some information leak directly:

» We can easily see how many rounds are computed
» We can easily see which operation is computed

» We can compare known traces with the first round

Let us look at the underlying operations in more detail.
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AddRoundKey
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SubBytes (S-Box)
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ShiftRows
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MixColumns

MixColumns
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Potential Weaknesses

» Computation after AddRoundKey might leak HW
» SubBytes is a non-linear operation (inverses)
» MixColumns is a polynomial/matrix multiplication

» Algebraic operations are computed over GF(2%)
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Cache-timing attacks on AES

Daniel J. Bernstein *

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago
Chicago, IL 60607-7045
djb@cr.yp.to
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Potential Weaknesses

» NIST when standardizing the SubBytes in AES:
“Table lookup: not vulnerable to timing attacks”

» Several finalists in the competition were secure,
but Rijndael was fastest and this was important

» Flush+Reload attacks on cache leaks the secret
indices of the SubBytes lookup table
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Potential Defenses

We must ensure one of the following:

» Avoid memory access, or
» Always read all entries, or

» Disable cache-sharing

The latter is impractical and affects general performance.
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MixColumns

10

11

12

13

14

15

16

17

18

19

def MixColumns(state):
def single_col(col):
b = (col << 1) ~

col_mixed = [
b[0] ~ coll[3]
bl[1] = col[0]
b[2] ~ coll1]
b[3] ~ col[2]
]

return col_mixed

(0x11B & -(col >> 7))

~ col[2] ~ b[1] ~ col[1],
~ col[3] "~ b[2] " col[2],
~ col[0] ~ b[3] ~ coll3],
~ col[1] ~ b[0] ~ coll[O0],

state[:, 0] = single_col(state[:, 0])
state[:, 1] = single_col(state[:, 1])
state[:, 2] = single_col(state[:, 2])
state[:, 3] = single_col(state[:, 3])

return state
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Sub-Algorithm

1 def AddRoundKey(self, state, key):
2 return np.bitwise_xor(state, key)

4 def SubBytes(self, state):
5 return self.S_box[state]

7 def ShiftRows(self, state):

8 return state.take(
9 (0, 1, 2, 3, 5, 6, 7, 4, 10, 11, 8, 9, 15, 12, 13, 14)
10 ) .reshape (4, 4)
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SubBytes (S-Box)

self.S_box

= np.array(

[0x63, @x7c, 0x77, 0x7b, 0xf2, Ox6b, Ox6f, @xc5, 0x30, 0x01l, 0x67, Ox2b, Oxfe, 0xd7, Oxab, 0x76,

0Oxca,
oxb7,
0x04,
0x09,
0x53,
0xde,
0x51,
oxcd,
0x60,
0xe0,
oxe7,
Oxba,
ox70e,
oxel,
ox8c,

0x82,
oxfd,
oxc7,
0x83,
0xd1,
oxef,
0xa3,
oxoc,
0x81,
0x32,
oxc8,
0x78,
ox3e,
0xf8,
oxal,
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oxc9,
0x93,
0x23,
ox2c,
0x00,
0Oxaa,
ox40,
0x13,
ox4f,
0x3a,
0x37,
ox25,
0xb5,
0x98,
0x89,

ox7d,
0x26,
0xc3,
ox1la,
oxed,
oxfb,
ox8f,
Oxec,
oxdc,
0x0a,
ox6d,
ox2e,
0x66,
ox11,
oxed,

oxfa,
0x36,
0x18,
0x1b,
0x20,
0x43,
0x92,
ox5f,
0x22,
0x49,
0x8d,
oxlc,
0x48,
0x69,
oxbf,

0x59,
ox3f,
0x96,
0x6e,
oxfc,
0x4d,
0x9d,
0x97,
0x2a,
0x06,
0xd5,
0xab,
0x03,
0xd9,
0xeb6,
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0x47,
oxf7,
0x05,
0x5a,
oxbl,
0x33,
0x38,
0x44,
0x90,
ox24,
0x4e,
oxb4,
oxf6,
0x8e,
0x42,

oxfo,
oxcc,
0x9a,
0xao,
0x5b,
0x85,
oxf5,
ox17,
0x88,
0x5c,
0xa9,
0xc6,
0x0e,
0x94,
0x68,

0xad,
0x34,
0x07,
0x52,
0x6a,
0x45,
oxbc,
0xc4,
0x46,
0xc2,
ox6¢c,
oxes8,
0x61,
0x9b,
0x41,

0xd4,
oxa5,
ox12,
0x3b,
@xcb,
0xf9,
0xb6,
oxa7,
Oxee,
oxd3,
0x56,
oxdd,
0x35,
oxle,
0x99,

oxa2,
oxe5,
0x80,
0xd6,
Oxbe,
0x02,
oxda,
ox7e,
0xb8g,
oxac,
oxf4,
ox74,
0x57,
ox87,
ox2d,

oxaf,
oxf1,
oxe2,
0xb3,
0x39,
ox7f,
ox21,
0x3d,
0x14,
0x62,
Oxea,
ox1f,
0xb9,
oxe9,
oxof,

0x9c,
ox71,
Oxeb,
0x29,
0x4a,
0x50,
ox1e,
0x64,
oxde,
0x91,
0x65,
ox4b,
0x86,
oxce,
0xbo,

0xa4,
0xd8,
ox27,
0xe3,
Ox4c,
0x3c,
oxff,
ox5d,
ox5e,
0x95,
0x7a,
0xbd,
oxcl,
0x55,
0x54,

0x72,
0x31,
oxb2,
ox2f,
0x58,
ox9f,
oxf3,
ox19,
0x0b,
0xed,
Oxae,
0x8b,
ox1d,
0x28,
oxbb,

0xco,
0x15,
0x75,
0x84,
oxcf,
0xa8,
0xd2,
0x73,
0xdb,
0x79,
0x08,
0x8a,
0x%e,
oxdf,
0x16], np.uint8)
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Bitslicing

A Fast New DES Implementation in Software

Eli Biham

Computer Science Department
Technion - Israel Institute of Technology
Haifa 32000, Israel
Email: biham@cs.technion.ac.il
WWW: http://www.cs.technion.ac.il/ “biham/
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Bitslicing

Technique to avoid side-channel analysis:

» Work over bits not bytes in GF(2%)
» Only use OR, AND, XOR, NAND, etc.
» Execute operations on vectors

> |s slower, but constant time

» Need a circuit for table lookup

» Integrated in hardware AES

We can combine this with randomized masking.
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Masking

Provably Secure Higher-Order Masking of AES*

Matthieu Rivain! and Emmanuel Prouff?
1 CryptoExperts
matthieu.rivain@cryptoexperts.com

2 Oberthur Technologies
e.prouff@oberthur.com

Figure: https://eprint.iacr.org/2010/441.pdf
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AES Masking

» d-order masking: split secret in d parts

» linear operations are easy, non-linear not

» AddKey, ShiftRows and MixColumns are linear
» SubBytes is not linear: requires extra work

» statistical analysis is exponential in d

» added work scales with dlog, d operations
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Masking AND

Secure logical AND. Let a an b be two bits and let ¢ denote AND(a,b) = ab. Let us
assume that a and b have been respectively split into d+ 1 shares (a;)o¢;q and (b)gg;<q SUCh

that @; a; = a and @, b; = b. To securely compute a (d + 1)-tuple (¢;)og;q 8t- B;ci = ¢,
Ishai et al. perform the following steps:

1. For every 0 <4 < j < d, pick up a random bit r; ;.
2. For every 0 < i < j < d, compute 7j; = (r;; ® a;ib;) ® a;b;.
3. For every 0 < i < d, compute ¢; = a;b; ® @#i Tij-
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Masking AND

The completeness of the solution follows from:

@ci_@ (aibi ® P riy) :@ (aibi @ P ri; ® P(rj; ® aid; @ a;b))

J#i J>i J<i
—@ a;b; EB@ a;b; ® a;b;) @ai @bi
j<i % i
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Timings

Table 2. Comparison of secure AES implementations

Method | Reference | cycles |[RAM (bytes) [ROM (bytes)
Unprotected Implementation

No Masking | Na. | 3 x 10° | 32 | 1150
First Order Masking

Re-computation [23] 10 x 10° 256 + 35 1553

Tower Field in Fy [28,29] 77 x 10° 42 3195

Our scheme for d =1 | This paper [129 x 103 73 3153
Second Order Masking

Double Re-computations 38 594 x 10° 512 + 90 2336

Single Re-computation 34 672 x 10°] 256 + 86 2215

Our scheme for d =2 | This paper [271 x 10° 79 3845
Third Order Masking

Our scheme for d =3 | This paper [470 x 10°] 103 | 4648
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Summary

Protecting secret key computations are difficult. We need to:

» avoid lookup tables
» constant time operations
» vectorize operations

» use randomness/masking
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Bear SSL

BEARSSL

a smaller SSL/TLS library.
by Pornin

R hy Constant-Time Crypto?

'BROWSE SOURCE CODE

CHANGE LOG In 1996, Paul Kocher published a novel attack on RSA, specifically on RSA implementations, that extracted information on the private key by simply
PROJECT GOALS measuring the time taken by the private key operation on various inputs. It took a few years for people to accept the idea that such attacks were

'ON NAMING THINGS practical and could be enacted remotely on, for instance, an SSL server; see this article from Boneh and Brumley in 2003, who conclude that:
‘SUPPORTED CRYPTO

ROADMAP AND STATUS Our result that timing attacks against network servers are practical and therefore all security systems should defend

OOPINC against them.

API OVERVIEW

X509 CERTIFICATES ! . ) " ’ ) ) ’
e Since then, many timing attacks have been demonstrated in lab conditions, against both symmetric and asymmetric cryptographic systems.

Figure: https://www.bearssl.org/constanttime.html#aes
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