B NTNU | sencianaechnoiogy

SIDE-CHANNEL ATTACKS 3
TTM4205 - Lecture 9

Tjerand Silde

26.09.2023

Contents

Announcements

Previous Lecture on PKC

SCA on Symmetric Ciphers

@ NTNU | sty

Contents

Announcements

@ NTNU | sty

Reference Group Meeting

We had a reference group meeting on Thursday last week
and the minutes are available online. A short summary:

» Lectures:

» Will include more concrete examples
» Will include book chapter references

» Exercises:
» Will add hints to some of the problems

» Will explain what a "break" means
» Incomplete solutions can give points

» We will not record any lectures

@ NTNU | cacnremons

Contents

Previous Lecture on PKC

@ NTNU | sty

SCA on PKC

» Timing or power traces can leak secret bits

» Fault injection might leak dummy operations

» Differential analysis allow statistical attacks

» The adversary can choose the input (adaptively)

» The secret key might be static and re-used

@ NTNU | ccnrecmons

Protecting PKC

» Constant time operations and algorithms
» The result must depend on all operations

» Randomize input and/or secrets each n

@ NTNU | ccnrecmons

Contents

SCA on Symmetric Ciphers

@ NTNU | sty

Recall: AES

» AES is a symmetric key encryption scheme

» AES is a substitution-permutation network

» AES-128: uses 10 rounds and 128-bit keys

» Works on 4 x 4 column order array of 16 bytes
» Long messages are divided into 16 byte blocks

» Some modes of operations: ECB, CTR, GCM, etc.

Check out chapter 4 in Serious Cryptography by JPA.

@ NTNU | ccnrecmons

Recall: AES

Shift Row

Mix Column

10

@ NTNU | sy

Recall: AES

| Plaintext Initial Key (From Key
Generation Block)

128 bits ¥ State Matrix

128 bits

KeyExpansion

128 bits ¢

AddRoundKey

128 bits

SubBytes
ShiftRows

MixColumns

AddRoundKey

A

T
128 bits :

SubBytes
ShiftRows

AddRoundKey

128 bits ¢

@ NTNU | cacnremons

Weaknesses and Defenses

In the following slides we will look at the common ways to
implement AES and its components. For each algorithm, try
to point out potential information leakage and protection.

@ NTNU | cacnremons 12

Example Code

1 def encrypt(key, plaintext):

2

3 # AddRoundKey for initial round

1 ciphertext = AddRoundKey(plaintext, key[0])

5

6 for i in range(1, rounds):

7 ciphertext = SubBytes(ciphertext)

s ciphertext = ShiftRows(ciphertext)

9 ciphertext = MixColumns(ciphertext)

10 ciphertext = AddRoundKey(ciphertext, keyl[i])
11

12 # Final round (no MizColumns)

13 ciphertext = SubBytes(ciphertext)

14 ciphertext = ShiftRows(ciphertext)

15 ciphertext = AddRoundKey(ciphertext, key[rounds])
16

17 return ciphertext

@ NTNU | cacnremons

Differential Power Analysis

Differential Power Analysis

Paul Kocher, Joshua Jaffe, and Benjamin Jun

Cryptography Research, Inc.

607 Market-Street—bthFl
http://www.cryptography.com

Abstract. Cryptosystem designers frequently assume that secrets will
be manipulated in closed, reliable computing environments. Unfortu-
nately, actual computers and microchips leak information about the op-
erations they process. This paper examines specific methods for analyz-
ing power consumption measurements to find secret keys from tamper
resistant devices. We also discuss approaches for building cryptosystems
that can operate securely in existing hardware that leaks information.

Keywords: differential power analysis, DPA, SPA, cryptanalysis, DES

Figure:
https://paulkocher.com/doc/DifferentialPowerAnalysis.pdf2

@ NTNU | sy

https://paulkocher.com/doc/DifferentialPowerAnalysis.pdf2

Simple Power Analysis (on DES)

Current (mA)
© 2w ©oa &
S & 9 a °© O

N
S
[l

0 0.8 1.6 24 32 X 4.0 4.8
Time (mS)

Figure 1: SPA trace showing an entire DES operation.

56

B NTNU ‘ Norwegian University of

Science and Technology

64

72

8.0

Detailed SPA (on DES)

Current (mA)

N
o
—_—

"

Nooh
o

0 100 200 300 400 500 600 700
Time (uS)
Figure 2: SPA trace showing DES rounds 2 and 3.

@ NTNU | sy

800

Correlation

Statistical Analysis via Pearson Correlation Coefficient p
e Linear relationship between 2 random variables
(how much do they change together)
e X: predictions corresponding to one key hypothesis
e Y: measured samples corresponding to one point in time

Cov = Covariance,

COV(X, Y) - E[(X = ,UX)(Y — NY)] Var = Variance,

P = E = Expected value,
Var(X) . Var(Y) Ox0y o = Standard deviation,
© = Mean
Estimate:

3

_ il =x) (i —y) _1 Z
Vi =Xy — ¥)? o

@ NTNU | sy

Key Candidates

0.8

0.6

0.4

Max. Corr. Coeff.

: | | |

i
0 20 40 60 80 100 120 140 160 180 200 220 240
Key Candidates

@ NTNU | sy

Potential Weaknesses

Some information leak directly:

» We can easily see how many rounds are computed
» We can easily see which operation is computed

» We can compare known traces with the first round

Let us look at the underlying operations in more detail.

@ NTNU | ccnrecmons

AddRoundKey

%,0| %1

%,

pO'

=

@ NTNU | sanctamirecnon

ity of
logy

>

20

SubBytes (S-Box)

%.0

%1

%,

%3

@ NTNU | sanctamirecnon

ity of
logy

21

ShiftRows

No
change| %0,0| 0,1| F0,2| %3 %,0| %,1
-hiftRow

Shift 1/ @ o[8,1 12| .3 - 1|

- VA S Vg VA p ——

Shift 2| @0 3,1 92,2 /a2,3 %o %3
;-..._.5-.’.._...--"

Shift 3| &0(931|332 ‘;:‘33 933 33
N~—

@ NTNU | sy

MixColumns

MixColumns

@ NTNU | ccnrecmons

>

& c(x)

23

Potential Weaknesses

» Computation after AddRoundKey might leak HW
» SubBytes is a non-linear operation (inverses)
» MixColumns is a polynomial/matrix multiplication

» Algebraic operations are computed over GF(2%)

@ NTNU | ccnrecmons

24

Cache-timing attacks on AES

Daniel J. Bernstein *

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago
Chicago, IL 60607-7045
djb@cr.yp.to

@ NTNU | sy

25

Potential Weaknesses

» NIST when standardizing the SubBytes in AES:
“Table lookup: not vulnerable to timing attacks”

» Several finalists in the competition were secure,
but Rijndael was fastest and this was important

» Flush+Reload attacks on cache leaks the secret
indices of the SubBytes lookup table

@ NTNU | ccnrecmons

26

Potential Defenses

We must ensure one of the following:

» Avoid memory access, or
» Always read all entries, or

» Disable cache-sharing

The latter is impractical and affects general performance.

@ NTNU | ccnrecmons

27

MixColumns

10

11

12

13

14

15

16

17

18

19

def MixColumns(state):
def single_col(col):
b = (col << 1) ~

col_mixed = [
b[0] ~ coll[3]
bl[1] = col[0]
b[2] ~ coll1]
b[3] ~ col[2]
]

return col_mixed

(0x11B & -(col >> 7))

~ col[2] ~ b[1] ~ col[1],
~ col[3] "~ b[2] " col[2],
~ col[0] ~ b[3] ~ coll3],
~ col[1] ~ b[0] ~ coll[O0],

state[:, 0] = single_col(state[:, 0])
state[:, 1] = single_col(state[:, 1])
state[:, 2] = single_col(state[:, 2])
state[:, 3] = single_col(state[:, 3])

return state

@ NTNU | ccnrecmons

28

Sub-Algorithm

1 def AddRoundKey(self, state, key):
2 return np.bitwise_xor(state, key)

4 def SubBytes(self, state):
5 return self.S_box[state]

7 def ShiftRows(self, state):

8 return state.take(
9 (0, 1, 2, 3, 5, 6, 7, 4, 10, 11, 8, 9, 15, 12, 13, 14)
10) .reshape (4, 4)

@ NTNU | ccnrenons

29

SubBytes (S-Box)

self.S_box

= np.array(

[0x63, @x7c, 0x77, 0x7b, 0xf2, Ox6b, Ox6f, @xc5, 0x30, 0x01l, 0x67, Ox2b, Oxfe, 0xd7, Oxab, 0x76,

0Oxca,
oxb7,
0x04,
0x09,
0x53,
0xde,
0x51,
oxcd,
0x60,
0xe0,
oxe7,
Oxba,
ox70e,
oxel,
ox8c,

0x82,
oxfd,
oxc7,
0x83,
0xd1,
oxef,
0xa3,
oxoc,
0x81,
0x32,
oxc8,
0x78,
ox3e,
0xf8,
oxal,

@NTNU |

oxc9,
0x93,
0x23,
ox2c,
0x00,
0Oxaa,
ox40,
0x13,
ox4f,
0x3a,
0x37,
ox25,
0xb5,
0x98,
0x89,

ox7d,
0x26,
0xc3,
ox1la,
oxed,
oxfb,
ox8f,
Oxec,
oxdc,
0x0a,
ox6d,
ox2e,
0x66,
ox11,
oxed,

oxfa,
0x36,
0x18,
0x1b,
0x20,
0x43,
0x92,
ox5f,
0x22,
0x49,
0x8d,
oxlc,
0x48,
0x69,
oxbf,

0x59,
ox3f,
0x96,
0x6e,
oxfc,
0x4d,
0x9d,
0x97,
0x2a,
0x06,
0xd5,
0xab,
0x03,
0xd9,
0xeb6,

Norwegian University of
Science and Technology

0x47,
oxf7,
0x05,
0x5a,
oxbl,
0x33,
0x38,
0x44,
0x90,
ox24,
0x4e,
oxb4,
oxf6,
0x8e,
0x42,

oxfo,
oxcc,
0x9a,
0xao,
0x5b,
0x85,
oxf5,
ox17,
0x88,
0x5c,
0xa9,
0xc6,
0x0e,
0x94,
0x68,

0xad,
0x34,
0x07,
0x52,
0x6a,
0x45,
oxbc,
0xc4,
0x46,
0xc2,
ox6¢c,
oxes8,
0x61,
0x9b,
0x41,

0xd4,
oxa5,
ox12,
0x3b,
@xcb,
0xf9,
0xb6,
oxa7,
Oxee,
oxd3,
0x56,
oxdd,
0x35,
oxle,
0x99,

oxa2,
oxe5,
0x80,
0xd6,
Oxbe,
0x02,
oxda,
ox7e,
0xb8g,
oxac,
oxf4,
ox74,
0x57,
ox87,
ox2d,

oxaf,
oxf1,
oxe2,
0xb3,
0x39,
ox7f,
ox21,
0x3d,
0x14,
0x62,
Oxea,
ox1f,
0xb9,
oxe9,
oxof,

0x9c,
ox71,
Oxeb,
0x29,
0x4a,
0x50,
ox1e,
0x64,
oxde,
0x91,
0x65,
ox4b,
0x86,
oxce,
0xbo,

0xa4,
0xd8,
ox27,
0xe3,
Ox4c,
0x3c,
oxff,
ox5d,
ox5e,
0x95,
0x7a,
0xbd,
oxcl,
0x55,
0x54,

0x72,
0x31,
oxb2,
ox2f,
0x58,
ox9f,
oxf3,
ox19,
0x0b,
0xed,
Oxae,
0x8b,
ox1d,
0x28,
oxbb,

0xco,
0x15,
0x75,
0x84,
oxcf,
0xa8,
0xd2,
0x73,
0xdb,
0x79,
0x08,
0x8a,
0x%e,
oxdf,
0x16], np.uint8)

30

Bitslicing

A Fast New DES Implementation in Software

Eli Biham

Computer Science Department
Technion - Israel Institute of Technology
Haifa 32000, Israel
Email: biham@cs.technion.ac.il
WWW: http://www.cs.technion.ac.il/ “biham/

@ NTNU | cacnremons

31

Bitslicing

Technique to avoid side-channel analysis:

» Work over bits not bytes in GF(2%)
» Only use OR, AND, XOR, NAND, etc.
» Execute operations on vectors

> |s slower, but constant time

» Need a circuit for table lookup

» Integrated in hardware AES

We can combine this with randomized masking.

@ NTNU | ccnrecmons

Masking

Provably Secure Higher-Order Masking of AES*

Matthieu Rivain! and Emmanuel Prouff?
1 CryptoExperts
matthieu.rivain@cryptoexperts.com

2 Oberthur Technologies
e.prouff@oberthur.com

Figure: https://eprint.iacr.org/2010/441.pdf

@ NTNU | sy

33

https://eprint.iacr.org/2010/441.pdf

AES Masking

» d-order masking: split secret in d parts

» linear operations are easy, non-linear not

» AddKey, ShiftRows and MixColumns are linear
» SubBytes is not linear: requires extra work

» statistical analysis is exponential in d

» added work scales with dlog, d operations

@ NTNU | ccnrecmons

34

Masking AND

Secure logical AND. Let a an b be two bits and let ¢ denote AND(a,b) = ab. Let us
assume that a and b have been respectively split into d+ 1 shares (a;)o¢;q and (b)gg;<q SUCh

that @; a; = a and @, b; = b. To securely compute a (d + 1)-tuple (¢;)og;q 8t- B;ci = ¢,
Ishai et al. perform the following steps:

1. For every 0 <4 < j < d, pick up a random bit r; ;.
2. For every 0 < i < j < d, compute 7j; = (r;; ® a;ib;) ® a;b;.
3. For every 0 < i < d, compute ¢; = a;b; ® @#i Tij-

@ NTNU | sy

35

Masking AND

The completeness of the solution follows from:

@ci_@ (aibi ® P riy) :@ (aibi @ P ri; ® P(rj; ® aid; @ a;b))

J#i J>i J<i
—@ a;b; EB@ a;b; ® a;b;) @ai @bi
j<i % i

@ NTNU | sty

36

Timings

Table 2. Comparison of secure AES implementations

Method | Reference | cycles |[RAM (bytes) [ROM (bytes)
Unprotected Implementation

No Masking | Na. | 3 x 10° | 32 | 1150
First Order Masking

Re-computation [23] 10 x 10° 256 + 35 1553

Tower Field in Fy [28,29] 77 x 10° 42 3195

Our scheme for d =1 | This paper [129 x 103 73 3153
Second Order Masking

Double Re-computations 38 594 x 10° 512 + 90 2336

Single Re-computation 34 672 x 10°] 256 + 86 2215

Our scheme for d =2 | This paper [271 x 10° 79 3845
Third Order Masking

Our scheme for d =3 | This paper [470 x 10°] 103 | 4648

@ NTNU | sy

Summary

Protecting secret key computations are difficult. We need to:

» avoid lookup tables
» constant time operations
» vectorize operations

» use randomness/masking

@ NTNU | cacnremons

38

Bear SSL

BEARSSL

a smaller SSL/TLS library.
by Pornin

R hy Constant-Time Crypto?

'BROWSE SOURCE CODE

CHANGE LOG In 1996, Paul Kocher published a novel attack on RSA, specifically on RSA implementations, that extracted information on the private key by simply
PROJECT GOALS measuring the time taken by the private key operation on various inputs. It took a few years for people to accept the idea that such attacks were

'ON NAMING THINGS practical and could be enacted remotely on, for instance, an SSL server; see this article from Boneh and Brumley in 2003, who conclude that:
‘SUPPORTED CRYPTO

ROADMAP AND STATUS Our result that timing attacks against network servers are practical and therefore all security systems should defend

OOPINC against them.

API OVERVIEW

X509 CERTIFICATES ! .) " ’)) ’
e Since then, many timing attacks have been demonstrated in lab conditions, against both symmetric and asymmetric cryptographic systems.

Figure: https://www.bearssl.org/constanttime.html#aes

@ NTNU | saoenirecmons

https://www.bearssl.org/constanttime.html#aes

@ NTNU | sanctamirecnon

Questions?

ity of
logy

40

	Announcements
	Previous Lecture on PKC
	SCA on Symmetric Ciphers

