
SIDE-CHANNEL ATTACKS 2
TTM4205 – Lecture 8

Tjerand Silde

19.09.2023



Contents

Announcements

Previous Lecture

SCA on RSA

CT Arithmetic

SCA on ECC

2



Contents

Announcements

Previous Lecture

SCA on RSA

CT Arithmetic

SCA on ECC

3



Reference Group Meeting

The reference group will meet Thursday morning. Get in
touch with the reference group members if you have any
feedback about the course. You can also provide feedback
(anonymously) on the Piazza forum.

4



Contents

Announcements

Previous Lecture

SCA on RSA

CT Arithmetic

SCA on ECC

5



Black Box Crypto

We design the security of a cryptographic scheme to follow
Kerckhoff’s principle: if everything about the scheme, except
for the key, is known, then the scheme should be secure.

We then analyze the scheme mathematically as black-box
algorithms that take some (public or secret) input and give
some (public or secret) output, and prove that it is secure
concerning the algorithm description and the public data.

However, security depends on your model. In practice, it
matters how these algorithms are implemented and what
kind of information the physical system leaks about the
inner workings of the algorithm computing on secret data.

6



Leakage

▶ The time it takes to compute

▶ The power usage while computing

▶ The electromagnetic radiation...

▶ The temperature increase...

▶ The memory pattern accessed...

▶ The sounds your laptop makes...

7



Attack Categories

▶ Remote vs physical attacks

▶ Software and hardware attacks

▶ Passive vs active attacks

▶ Invasive vs non-invasive attacks

8



Contents

Announcements

Previous Lecture

SCA on RSA

CT Arithmetic

SCA on ECC

9



RSA Exponentiation

In the RSA cryptosystem (encryption, decryption, signing
and verification), we need to compute an exponentiation.

If the exponent is a secret (decryption or signing) key, we
must protect this value against side-channel attacks.

10



Assumptions

In this example we assume a few things:

▶ the RSA primes are generated securely

▶ order phi is computed as lcm(p− 1, q − 1)

▶ we have a way of representing larger integers

11



Weaknesses and Defenses

In the following slides we will look at the common ways to
compute modular exponentiation. For each algorithm, try
to come up with attacks and defenses for the algorithm.

12



Square and Multiply

13



Potential Weaknesses

The following might trivially leak the key:

▶ timing or power traces might leak the 1’s in d

▶ multiplication might not be constant time

▶ modular reduction might not be constant time

14



Potential Defenses

We must at least ensure the following:

▶ algorithm must be independent of the 1’s in d

▶ bit int multiplication must be constant time

▶ modular reduction must be constant time

Assume that the two latter operations are constant time.

15



Square and Always Multiply

16



Potential Weaknesses

▶ dummy operations might leak memory information

▶ "smart" compilers might skip dummy operations

▶ fault injections might expose dummy operations

17



Potential Defenses

▶ make the result dependent on every operation

▶ perform the same operations independent of d

18



Montgomery Ladder

19



Potential Weaknesses

There might still be issues:

▶ if c is chosen adaptively, many power traces might leak d

20



Potential Defenses

Randomization to the rescue:

▶ randomize the computation to make it independent of c

21



Randomized Montgomery Ladder

22



Potential Weaknesses

There might still be issues:

▶ if key is fixed, many power traces might leak d

23



Potential Defenses

Randomization to the rescue (again):

▶ randomize the exponent to mask the key d

24



Doubly randomized Montgomery Ladder

25



Summary

Protecting secret key computations are difficult. We need:

▶ all binary operations to be constant time

▶ the algorithmic operations to be constant time

▶ correctness of output to depend on all operations

▶ the base element to be randomized (masked)

▶ the exponent to be randomized (masked)

26



Contents

Announcements

Previous Lecture

SCA on RSA

CT Arithmetic

SCA on ECC

27



Representing Large Integers

This is usually done by representing them as a list of integers
of 32 or 64 bits. Binary operations is then done over the list
of integers and must remember the carry when it overflows.

For example, a RSA-4096 moduli can be represented using a
list of 128 integers of 32 bits or 64 integers of 64 bits.

28



Intel IMUL

Takes in two 32 bit integers to be multiplied and outputs
two 32 bit integers representing the upper and lower 32
bits of the product. This operation is constant time.

Disclaimer 1: this depends on the machine your are using.

Disclaimer 2: this depends on the compiler your are using.

29



Arm MUL

Figure: https://www.bearssl.org/ctmul.html

30

https://www.bearssl.org/ctmul.html


Modular Montgomery multiplication

31



Bear SSL

Figure: https://www.bearssl.org/constanttime.html

32

https://www.bearssl.org/constanttime.html


Montgomery Modular Multiplication

Figure: https:
//en.wikipedia.org/wiki/Montgomery_modular_multiplication

33

https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
https://en.wikipedia.org/wiki/Montgomery_modular_multiplication


Constant Time IF

A possible way to compute an IF in constant time:

(t < N) · t+ (1− (t < N)) · (t−N)

Disclaimer: "smart" compilers might make it a regular IF.

34



Contents

Announcements

Previous Lecture

SCA on RSA

CT Arithmetic

SCA on ECC

35



SCA on ECC

We can essentially re-use most mechanisms for RSA in ECC.

Q: Do you see any immediate differences between the two?

36



SCA on ECC

We can essentially re-use most mechanisms for RSA in ECC.

A:We need to be a bit careful about the following:

▶ scalar multiplication must depend on curve params

▶ addition formulas involve inversion of secret elements

▶ addition formulas depends on the input points

37



SCA on ECC

We can essentially re-use most mechanisms for RSA in ECC.

Sol: Some possible solutions to avoid the above:

▶ verify points and use curve-dependent formulas

▶ use curves and formulas that are universal

▶ compute inversion in constant time (Fermat trick)

▶ avoid (most) inversions using projective coordinates

38



Figure: https://tjerandsilde.no/files/Comparative-Study-o
f-ECC-Libraries-for-Embedded-Devices.pdf

39

https://tjerandsilde.no/files/Comparative-Study-of-ECC-Libraries-for-Embedded-Devices.pdf
https://tjerandsilde.no/files/Comparative-Study-of-ECC-Libraries-for-Embedded-Devices.pdf


Questions?

40


	Announcements
	Previous Lecture
	SCA on RSA
	CT Arithmetic
	SCA on ECC

