B NTNU | sencianaechnoiogy

SIDE-CHANNEL ATTACKS 2
TTM4205 - Lecture 8

Tjerand Silde

19.09.2023

Contents

Announcements
Previous Lecture
SCA on RSA

CT Arithmetic

SCAon ECC

@ NTNU | sy

Contents

Announcements

@ NTNU | sy

Reference Group Meeting

The reference group will meet Thursday morning. Get in
touch with the reference group members if you have any
feedback about the course. You can also provide feedback
(anonymously) on the Piazza forum.

@ NTNU | cacnremons

Contents

Previous Lecture

@ NTNU | sy

Black Box Crypto

We design the security of a cryptographic scheme to follow
Kerckhoff's principle: if everything about the scheme, except
for the key, is known, then the scheme should be secure.

We then analyze the scheme mathematically as black-box
algorithms that take some (public or secret) input and give
some (public or secret) output, and prove that it is secure
concerning the algorithm description and the public data.

However, security depends on your model. In practice, it
matters how these algorithms are implemented and what
kind of information the physical system leaks about the
inner workings of the algorithm computing on secret data.

@ NTNU | cacnremons

Leakage

» The time it takes to compute

» The power usage while computing
» The electromagnetic radiation...

» The temperature increase...

» The memory pattern accessed...

» The sounds your laptop makes...

@ NTNU | ccnrecmons

Attack Categories

» Remote vs physical attacks
» Software and hardware attacks
» Passive vs active attacks

» Invasive vs non-invasive attacks

@ NTNU | ccnrecmons

Contents

SCA on RSA

@ NTNU | sy

RSA Exponentiation

In the RSA cryptosystem (encryption, decryption, signing

and verification), we need to compute an exponentiation.

If the exponent is a secret (decryption or signing) key, we
must protect this value against side-channel attacks.

@ NTNU | cacnremons

Assumptions

In this example we assume a few things:

» the RSA primes are generated securely
» order phiis computed as lem(p — 1,q — 1)

» we have a way of representing larger integers

@ NTNU | cacnremons

Weaknesses and Defenses

In the following slides we will look at the common ways to
compute modular exponentiation. For each algorithm, try
to come up with attacks and defenses for the algorithm.

@ NTNU | cacnremons 12

Square and Multiply

compute m = c**d mod n
def squareAndMultiply(c, d, n):
m=c

for i in range(len(d)):
m=m*mb?%n

if (d[i] == 1):
m=m*c%n

return m

@ NTNU |

Norwegian University of
Science and Technology

Potential Weaknesses

The following might trivially leak the key:

» timing or power traces might leak the 1'sin d
» multiplication might not be constant time

» modular reduction might not be constant time

@ NTNU | ccnrecmons

Potential Defenses

We must at least ensure the following:

» algorithm must be independent of the 1'sin d
» bit int multiplication must be constant time

» modular reduction must be constant time

Assume that the two latter operations are constant time.

@ NTNU | ccnrecmons

Square and Always Multiply

compute m = c**d mod n

def squareAndAlwaysMultiply(c, d, n):

m, X =¢C, C

for i in range(len(d)):
m=m*mbY%n

if (d[i] ==1):
m=m*c%an

else:
X=m*cs%n

return m

@ NTNU | sy

Potential Weaknesses

» dummy operations might leak memory information
> "smart" compilers might skip dummy operations

» fault injections might expose dummy operations

@ NTNU | ccnrecmons

Potential Defenses

» make the result dependent on every operation

» perform the same operations independent of d

@ NTNU | sy

Montgomery Ladder

compute m = c**d mod n

def MontgomeryLadder(c, d, n):

ml, m2=c, c *xchn
for i in range(len(d)):
if (dfi] == 1):

ml =ml *m2 % n
m2 =m2 *m2 % n

else:
m2 =ml *m2 % n
ml =ml *ml %n
return ml

@ NTNU |

Norwegian University of
Science and Technology

Potential Weaknesses

There might still be issues:

» if cis chosen adaptively, many power traces might leak d

@ NTNU | sy

20

Potential Defenses

Randomization to the rescue:

» randomize the computation to make it independent of ¢

@ NTNU | sy

21

Randomized Montgomery Ladder

1 # compute m = c**d mod n

2 # we have exd = 1 mod phi

3 def randMontgomeryLadder(c, e, d, phi, n):
4

5 rl = secrets.randbelow(n)

6 r2 = squareAndMultiply(rl, e, n)
7 riInv = MontgomeryLadder(rl, phi-1, n)
8

9 ml=c*r2%n

10 m2 =ml *ml % n

11

12 for i in range(len(d)):

13

14 if (d[i] ==1):

15 mli =ml *m2 % n

16 m2 =m2 *m2 % n

17

18 else:

19 m2 =ml *m2 %n

20 ml =ml *ml %n

21

22 ml = mi*riInv % n

23 return mi

@ NTNU | sy

Potential Weaknesses

There might still be issues:

» if key is fixed, many power traces might leak d

@ NTNU | sy

23

Potential Defenses

Randomization to the rescue (again):

» randomize the exponent to mask the key d

@ NTNU | sy

24

Doubly randomized Montgomery Ladder

@NTNU |

1 # compute m = c**d mod n
2 # we have e*d = 1 mod phi
3 def randRandMontgomeryLadder(c, e, d, phi, n, t):

5 rl = secrets.randbelow(n)
6 r2 = squareAndMultiply(rl, e, n)
7 rilnv = MontgomeryLadder(rl, phi-1, n)
8

9 r = secrets.randbelow(t)
10 # get dNew = d + T * phi
n dNew = convert(d, r, phi)
12

13 ml =c * r2 %

14 m2 =ml *xml % n

15

16 for i in range(len(dNew)):
17

18 if (dNew[i] == 1):
19 ml=ml *m2 %n
20 m2 =m2 *m2 % n

21

22 else:

23 m2 =ml *m2 % n

24 ml=ml *ml %n
25

26 ml = mi*xriInv % n

27 return mi

Norwegian University of
Science and Technology

25

Summary

Protecting secret key computations are difficult. We need:

» all binary operations to be constant time

» the algorithmic operations to be constant time

» correctness of output to depend on all operations
> the base element to be randomized (masked)

» the exponent to be randomized (masked)

@ NTNU | cacnremons

26

Contents

CT Arithmetic

@ NTNU | sy

27

Representing Large Integers

This is usually done by representing them as a list of integers
of 32 or 64 bits. Binary operations is then done over the list
of integers and must remember the carry when it overflows.

For example, a RSA-4096 moduli can be represented using a
list of 128 integers of 32 bits or 64 integers of 64 bits.

@ NTNU | cacnremons

28

Intel IMUL

Takes in two 32 bit integers to be multiplied and outputs
two 32 bit integers representing the upper and lower 32
bits of the product. This operation is constant time.
Disclaimer 1: this depends on the machine your are using.

Disclaimer 2: this depends on the compiler your are using.

@ NTNU | cacnremons

29

Arm MUL

ARM7T (A32)
ARM7T (Thumb)
ARMOT (A32)
ARMOT (Thumb)
ARMOE
ARM10E
ARM11
Cortex-A (A32)
Cortex-A (A64)
Cortex-R (A32)
Cortex-M0/M0+/M1
Cortex-M3
Cortex-M4

Figure: https://www.bearssl.org/ctmul.html

@ NTNU | saoenirecmons

https://www.bearssl.org/ctmul.html

Modular Montgomery multlplicatlon

s _montymul(uint2 ¢t ed, conat wint32 ¢ ox, const wintd2.t *y,
30 2_t *m, uint3z

1y
32 size t len, lend, u, v;
33 uint6d_t dh;
35 len = (m(0] + 31) >> 5,
6 lend = len & ~(size_t)
3 br_i32_zero(d, m[0]
an = 07
for (u = 0; u < len; u ++) {
0 uint3z_t £,

1 uint64 t r, zh;

xu = x[u + 17
£ = MUL31_lo((d[1] + MUL31_lo(x[u + 11, y(11)), m0i);

©=0;
for (v = 0; v < lend; v 4= 4) {
uinesd_t z;

* 7 (unts Ly ¢ L] ¢ MG (v 4 D)

+ MUL3L(E, mv + 1]) +

r=2>> a1

d[v + 0] = (uintd2_t)z & OXTEEFEEEE;

2z = (uint64_t)d[v + 2] + MUL3L(xu, y[v + 2])
31(£, miv + 2])

£z 31

drv + 1] = (uint32_t)z & OXTFFFFFEE;

+o (uinsiede 3 3) MO, y1 + 3D
MOL3L(E, mlv + 3])

? £ua s
61 d(v + 2] = (uintd2_t)z & OXTEFFEFEE;

6 2= (uint6a_t)dlv + 4] + MUL3L(xu, y[v + 4])
63 + MUL3L(E, mlv + 4]) +

6t r=2>> a1

65 dlv + 3] = (uint32_t)z & OXTFFEEEEE;

)
6 for (; v < len; v +4) {
uinesd t

o * 7 (untea Ly ¢ A1 4 MG, YLV 4 D)
1 + MUL3L(E, mlv + 1]) +

>> 317
73 Nt T —
)

h = dah b x
d(len] = (uint32_t)zh & OXTFFFFFFF;
ah = zh >> 317

* the loop (not overwr it would require a test in the loop,
2 hioh vould yisld bigger end slover code).

8
82 * We must write back the bit length because it was overwritten in
8

86 ato1 = mo1s

o8 e

8 * d[] may still be greater than m[] at that point; notably, the
90 * “dh’ word may be nor

o1 o

92 br_i31_sub(d, m, NEQ(dh, 0) | NOT(br_i31_sub(d, m, 0)));

933

@ NTNU | sy

Bear SSL

BEARSSL

a smaller SSL/TLS library.
by Pornin

R hy Constant-Time Crypto?

'BROWSE SOURCE CODE

CHANGE LOG In 1996, Paul Kocher published a novel attack on RSA, specifically on RSA implementations, that extracted information on the private key by simply
PROJECT GOALS measuring the time taken by the private key operation on various inputs. It took a few years for people to accept the idea that such attacks were

'ON NAMING THINGS practical and could be enacted remotely on, for instance, an SSL server; see this article from Boneh and Brumley in 2003, who conclude that:
‘SUPPORTED CRYPTO

ROADMAP AND STATUS Our result that timing attacks against network servers are practical and therefore all security systems should defend

OOPINC against them.

API OVERVIEW

X509 CERTIFICATES ! .) " ’)) ’
e Since then, many timing attacks have been demonstrated in lab conditions, against both symmetric and asymmetric cryptographic systems.

Figure: https://www.bearssl.org/constanttime.html

@ NTNU | saoenirecmons

https://www.bearssl.org/constanttime.html

Montgomery Modular Multiplication

function REDC is
input: Integers R and N with gcd(R, N) = 1,
Integer N’ in [0, R — 1] such that NN' = -1 mod R,
Integer T in the range [0, RN - 1].
output: Integer S in the range [0, N — 1] such that S = TR! mod N

m e« ((T mod R)N') mod R
t e (T+mN) /R
if t = N then
return t - N
else
return t
end if
end function

Figure: https:
//en.wikipedia.org/wiki/Montgomery_modular_multiplication

@ NTNU | sy 33

https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
https://en.wikipedia.org/wiki/Montgomery_modular_multiplication

Constant Time IF

A possible way to compute an IF in constant time:

(t<N)-t+(1—(t<N))-(t—N)

Disclaimer: "smart" compilers might make it a regular IF.

@ NTNU | cacnremons

34

Contents

SCAon ECC

@ NTNU | sy

35

SCA on ECC

We can essentially re-use most mechanisms for RSA in ECC.

Q: Do you see any immediate differences between the two?

@ NTNU | cacnremons

36

SCA on ECC

We can essentially re-use most mechanisms for RSA in ECC.

A: We need to be a bit careful about the following:

» scalar multiplication must depend on curve params
» addition formulas involve inversion of secret elements

» addition formulas depends on the input points

@ NTNU | cacnremons

37

SCA on ECC

We can essentially re-use most mechanisms for RSA in ECC.
Sol: Some possible solutions to avoid the above:

» verify points and use curve-dependent formulas

» use curves and formulas that are universal

» compute inversion in constant time (Fermat trick)

» avoid (most) inversions using projective coordinates

@ NTNU | cacnremons 38

Comparative Study of ECC Libraries
for Embedded Devices

Tjerand Silde

Norwegian University of Science and Technology, Trondheim, Norway
tjerand.silde@ntnu.no, www.tjerandsilde.no

Figure: https://tjerandsilde.no/files/Comparative-Study-o
f-ECC-Libraries-for-Embedded-Devices.pdf

@ NTNU | sy

39

https://tjerandsilde.no/files/Comparative-Study-of-ECC-Libraries-for-Embedded-Devices.pdf
https://tjerandsilde.no/files/Comparative-Study-of-ECC-Libraries-for-Embedded-Devices.pdf

@ NTNU | sanctamirecnon

Questions?

ity of
logy

40

	Announcements
	Previous Lecture
	SCA on RSA
	CT Arithmetic
	SCA on ECC

