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Reference Group

I am looking for (at least) three students to form a reference
group in this course, preferably students from different
programs. We will meet three times during the semester,
and your feedback is extremely valuable.

Send me an email and/or talk to me in the break :)
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Open PhD Position

Figure: https://www.jobbnorge.no/en/available-jobs/job/2464
80/phd-candidate-in-cryptography-engineering
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Uniped Observation

I am completing a course in University Pedagogy (Uniped)
this year, and next week, on Tuesday, September 5th, I have
so-called collegial coaching. This means that a few other
lecturers from different departments at NTNU will be
observing my lecture and will provide feedback to me
afterward. They are not observing you.
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Primality Testing

How do we check if a
number is prime?
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Deterministic Methods

▶ Brute Force

▶ Sieving methods

▶ Wilson’s Theorem?
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Brute Force Testing

It is always possible to check all possibilities. But how long
time does it take? Assume that p is of 2048 bits.

▶ divisible by any number between 1 and p? ∼ 22048

▶ by 2 or any odd number between 1 and p? ∼ 22047

▶ by 2 or any odd number between 1 and √
p ? ∼ 21023
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Brute Force Testing

It is always possible to check all possibilities. But how long
time does it take? Assume that p is of 2048 bits.

▶ divisible by any number between 1 and p? ∼ 22048

▶ by 2 or any odd number between 1 and p? ∼ 22047

▶ by 2 or any odd number between 1 and √
p ? ∼ 21023

This is infeasible to compute! 2128 is considered impossible.
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Sieving Methods

It is possible to pre-compute many small prime numbers to
speed up the process, e.g., the sieve of Eratosthenes:
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and remove all multiples of five. 6 has already been
removed. ...
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It is possible to pre-compute many small prime numbers to
speed up the process, e.g., the sieve of Eratosthenes:

First, keep 2 and remove all even numbers. Then, keep 3 and
remove all multiples of three. 4 is already removed. Keep 5
and remove all multiples of five. 6 has already been
removed. ...

It still requires exponential work to check all possibilities!
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Wilson’s Theorem

Wilson’s Theorem: A natural number p > 1 is a prime number
if and only if the product of all the positive integers less than p is
one less than a multiple of p.
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Wilson’s Theorem

Wilson’s Theorem: A natural number p > 1 is a prime number
if and only if the product of all the positive integers less than p is
one less than a multiple of p.

This means: (p− 1)! ≡ −1 mod p ⇐⇒ p is a prime number.

It still requires exponential work to compute (p− 1)!

But it is possible to use similar techniques to speed it up.
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Randomized Methods

▶ Monte Carlo algorithms

▶ The Miller-Rabin method
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Monte Carlo Algorithms

A Monte Carlo algorithm is a randomized algorithm whose
output may be incorrect with a given probability.
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Monte Carlo Algorithms

A Monte Carlo algorithm is a randomized algorithm whose
output may be incorrect with a given probability.

A false-biased Monte Carlo algorithm is always correct
when it returns false. Similar for a true-biased algorithm.

If the probability is 1/2, then it can be amplified by parallel
repetition: λ rounds gives probability 1

2

λ → 0 of being wrong.

Some commonly used algorithms: Soloway-Strassen,
Fermat (warning: Carmichael numbers) and Miller-Rabin.
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Miller-Rabin Primality Testing

Let p be an odd integer and write p− 1 as 2sd where d is odd.
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15



Miller-Rabin Primality Testing

Let p be an odd integer and write p− 1 as 2sd where d is odd.
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is true for roughly 1

4 composite numbers for a given a.
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Miller-Rabin Primality Testing

Let p be an odd integer and write p− 1 as 2sd where d is odd.

Let 1 < a < p be a randomly sampled integer. Then either
ad ≡ 1 mod p or a2rd ≡ −1 mod p for some 0 ≤ r < s.

If this is false, then p is composite. However, the above fact
is true for roughly 1

4 composite numbers for a given a.

If we sample λ random values a, the Miller-Rabin primality
testing algorithm has 1

4

λ chance of being wrong every time.
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Primality Testing APIs

The most common way of checking the primality of a
candidate p is a combination of the above as follows:

1. Pre-compute a list of the first thousand prime numbers.

2. Check p is divisible by any prime number in the list.

3. Run the Miller-Rabin algorithm, say, ∼ 40 times.

4. If all checks succeeds, then output: probably prime.
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Primality Testing Failures

It might be highly rewarding for an attacker to convince you
that a composite number is prime. For example:
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Primality Testing Failures

It might be highly rewarding for an attacker to convince you
that a composite number is prime. For example:

RSA is not secure if n is not a bi-prime, and it is easy to
compute discrete logarithms in composite order groups.

A classic mistake in Miller-Rabin: Integers a are sampled
randomly but pre-fixed before testing. This gives an attacker
the chance to find for composite numbers that pass the test.

Sometimes it is a mix between fixed a’s and freshly sampled
a’s, still giving the adversary a good chance to fool the test.
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Primality Testing in OpenSSL

Figure: https://eprint.iacr.org/2018/749.pdf
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The Need for Secure Primality Testing

Figure: https://eprint.iacr.org/2019/032.pdf
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Secure Primality Testing API

Figure: https://eprint.iacr.org/2020/065.pdf
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Factorization

How do we factor
large bi-primes?
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Deterministic Methods

Some trivial ways to attack an RSA moduli n:

▶ Brute force by checking if n is divisible by 2 or any odd
numbers less than √

n. This requires exponential work...

▶ Even only checking divisibility against primes between
21023 and 21024 for 2048 bit n requires exponential work...

▶ Fermat Factorization find prime factors close to √
n.

▶ Pollard’s Rho algorithm find largest prime factor in 4
√
n
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Deterministic Methods
Some trivial ways to attack an RSA moduli n:

▶ Brute force by checking if n is divisible by 2 or any odd
numbers less than √

n. This requires exponential work...

▶ Even only checking divisibility against primes between
21023 and 21024 for 2048 bit n requires exponential work...

▶ Fermat Factorization find prime factors close to √
n.

▶ Pollard’s Rho algorithm find largest prime factor in 4
√
n

Randomness comes to the rescue in this situation as well!
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Randomized Methods

The Number Field Sieve is the most efficient algorithm to
factor large bi-primes n.
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Randomized Methods

The Number Field Sieve is the most efficient algorithm to
factor large bi-primes n.

Collect many random pairs (ai, bi) such that axi ≡ byi mod n.

Then these equations can be combined in such a way that
we can find a and b satisfying a2 ≡ b2 mod n, which means
that a2 − b2 ≡ (a− b)(a+ b) ≡ 0 mod n.

Then wemight find a factor of n by computing the greatest
common divisor between n and a− b and a+ b.
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Number Field Sieve

The running time of the Number Field Sieve is

exp
(
(64/9)1/3(log n)1/3(log log n)2/3(1 + o(1))

)
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The running time of the Number Field Sieve is

exp
(
(64/9)1/3(log n)1/3(log log n)2/3(1 + o(1))

)
This algorithm is sub-exponential. The largest number we
have ever factored (in public) is of size 829 bits.
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Number Field Sieve

The running time of the Number Field Sieve is

exp
(
(64/9)1/3(log n)1/3(log log n)2/3(1 + o(1))

)
This algorithm is sub-exponential. The largest number we
have ever factored (in public) is of size 829 bits.

Factoring as a service: In 2015, it was possible to factor 512
bit RSA keys in less than four hours.
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Factoring as a Service

Figure: https://eprint.iacr.org/2015/1000.pdf
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State of the Art

Figure: https://hal.science/hal-03691141/document
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RSA Failures in Practice

How do we break the following RSA keys?

▶ Same seed when sampling primes

▶ Same seed + added entropy between sampling

▶ Low entropy RNG or PRNG from known algorithm

▶ Related primes from known algorithm
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PKE in the Wild

Figure: https://eprint.iacr.org/2022/048.pdf
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Fermat in the Wild

Figure: https://eprint.iacr.org/2023/026.pdf
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Shared Prime Factors

Figure: https://eprint.iacr.org/2012/064.pdf
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Shared Prime Factors

Figure: Check out the blog post, paper and slides: 1) https://free
dom-to-tinker.com/2012/02/15/new-research-theres-no-nee
d-panic-over-factorable-keys-just-mind-your-ps-and-qs, 2)
https://factorable.net/weakkeys12.extended.pdf, 3) https:
//crypto.stanford.edu/RealWorldCrypto/slides/nadia.pdf
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De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

▶ Use the secret key to generate nonces

▶ Schnorr example with r = H(sk,m)

▶ Counters + master seed + hashing

▶ HMAC with key for deterministic MAC

▶ Hedging techniques (next slide)
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Shared Prime Factors

Figure: https://www.cs.utexas.edu/~hovav/dist/hedge.pdf
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I am so random
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Random Number Generation

Check the quality of the built-in RNG that you rely on:

▶ How does it collect randomness?

▶ Is the RNG seeded / pre-seeded?

▶ How much entropy does it provide?

▶ Does it warn you about issues?

▶ Is it cryptographically secure?

▶ (Linux’s /dev/random vs /dev/urandom)

38



Faulty Voting Randomness

Figure: https://youtu.be/xq_6ey2JGAE?feature=shared
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Pseudo-Random Number Generation

Check the quality of the built-in PRNG that you rely on:

▶ Does it rely on a proper RNG as seed? Is it pre-seeded?

▶ Is the PRNG cryptographically secure? NIST-approved?

▶ Verify the output: Do values repeat? Correct bit-size?

▶ Which library/version is used? Known vulnerabilities?

Some good resources are available at https:
//github.com/veorq/cryptocoding#use-strong-randomness.
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NIST Standard

Figure: https://csrc.nist.gov/pubs/sp/800/22/r1/upd1/final
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Choice of Primitives

Check the cryptographic primitive that you rely on:

▶ Does it rely on a proper PRNG? Is it pre-seeded?

▶ Is it the newest/most secure primitive? NIST-approved?

▶ Verify the output: Do values repeat? Correct bit-size?

▶ Which library/version is used? Known vulnerabilities?

▶ Are there de-randomized algorithms available instead?
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Rolling Your Own Crypto

Figure: https://securitycryptographywhatever.buzzsprout.co
m/1822302/8953842-the-great-roll-your-own-crypto-debate-w
ith-filippo-valsorda
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Questions?
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