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Reference Group

| am looking for (at least) three students to form a reference
group in this course, preferably students from different
programs. We will meet three times during the semester,
and your feedback is extremely valuable.

Send me an email and/or talk to me in the break :)
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Open PhD Position

@ NTNU

Norwegian University of
Science and Technology

The Department of Information Security and Communication Technology (IIK) has a
vacancy for a

PhD Candidate in Cryptography Engineering

Figure: https://www.jobbnorge.no/en/available-jobs/job/2464
80/phd-candidate-in-cryptography-engineering
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Uniped Observation

| am completing a course in University Pedagogy (Uniped)
this year, and next week, on Tuesday, September 5th, | have
so-called collegial coaching. This means that a few other
lecturers from different departments at NTNU will be
observing my lecture and will provide feedback to me
afterward. They are not observing you.

@ NTNU | cacnremons



Contents

Primality Testing

@ NTNU | sty



Primality Testing

How do we check if a
number is prime?
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Deterministic Methods

» Brute Force
» Sieving methods

» Wilson's Theorem?

@ NTNU | sy



Brute Force Testing

It is always possible to check all possibilities. But how long
time does it take? Assume that p is of 2048 bits.
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Brute Force Testing

It is always possible to check all possibilities. But how long
time does it take? Assume that p is of 2048 bits.
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Brute Force Testing

It is always possible to check all possibilities. But how long
time does it take? Assume that p is of 2048 bits.

» divisible by any number between 1 and p? ~ 22048
» by 2 or any odd number between 1 and p? ~ 22047

> by 2 or any odd number between 1 and /p ? ~ 210%

This is infeasible to compute! 228 is considered impossible.
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Sieving Methods

It is possible to pre-compute many small prime numbers to
speed up the process, e.g., the sieve of Eratosthenes:
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Sieving Methods

It is possible to pre-compute many small prime numbers to
speed up the process, e.g., the sieve of Eratosthenes:

First, keep 2 and remove all even numbers. Then, keep 3 and
remove all multiples of three. 4 is already removed. Keep 5
and remove all multiples of five. 6 has already been
removed. ...
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Sieving Methods

It is possible to pre-compute many small prime numbers to
speed up the process, e.g., the sieve of Eratosthenes:

First, keep 2 and remove all even numbers. Then, keep 3 and
remove all multiples of three. 4 is already removed. Keep 5
and remove all multiples of five. 6 has already been
removed. ...

It still requires exponential work to check all possibilities!
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Wilson’s Theorem

Wilson’s Theorem: A natural number p > 1 is a prime number
if and only if the product of all the positive integers less than p is
one less than a multiple of p.
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Wilson’s Theorem: A natural number p > 1 is a prime number
if and only if the product of all the positive integers less than p is
one less than a multiple of p.

This means: (p — 1)! = —1 mod p <= p S a prime number.
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Wilson’s Theorem

Wilson’s Theorem: A natural number p > 1 is a prime number
if and only if the product of all the positive integers less than p is
one less than a multiple of p.

This means: (p — 1)! = —1 mod p <= pis a prime number.

It still requires exponential work to compute (p — 1)!

But it is possible to use similar techniques to speed it up.
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Randomized Methods

» Monte Carlo algorithms

» The Miller-Rabin method
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Monte Carlo Algorithms

A Monte Carlo algorithm is a randomized algorithm whose
output may be incorrect with a given probability.
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Monte Carlo Algorithms

A Monte Carlo algorithm is a randomized algorithm whose
output may be incorrect with a given probability.

A false-biased Monte Carlo algorithm is always correct
when it returns false. Similar for a true-biased algorithm.
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Monte Carlo Algorithms

A Monte Carlo algorithm is a randomized algorithm whose
output may be incorrect with a given probability.

A false-biased Monte Carlo algorithm is always correct
when it returns false. Similar for a true-biased algorithm.

If the probability is 1/2, then it can be amplified by parallel
repetition: A rounds gives probability %A — 0 of being wrong.
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Monte Carlo Algorithms

A Monte Carlo algorithm is a randomized algorithm whose
output may be incorrect with a given probability.

A false-biased Monte Carlo algorithm is always correct
when it returns false. Similar for a true-biased algorithm.

If the probability is 1/2, then it can be amplified by parallel
repetition: A rounds gives probability %A — 0 of being wrong.

Some commonly used algorithms: Soloway-Strassen,
Fermat (warning: Carmichael numbers) and Miller-Rabin.
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Miller-Rabin Primality Testing

Let p be an odd integer and write p — 1 as 2°d where d is odd.
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Miller-Rabin Primality Testing

Let p be an odd integer and write p — 1 as 2°d where d is odd.

Let 1 < a < p be arandomly sampled integer. Then either
a®=1 mod pora®*¢=—-1 mod pforsome0 <r <s.
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Miller-Rabin Primality Testing

Let p be an odd integer and write p — 1 as 2°d where d is odd.

Let 1 < a < p be arandomly sampled integer. Then either
a®=1 mod pora®*¢=—-1 mod pforsome0<r<s.

If this is false, then p is composite. However, the above fact
is true for roughly 1 composite numbers for a given a.
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Miller-Rabin Primality Testing

Let p be an odd integer and write p — 1 as 2°d where d is odd.

Let 1 < a < p be arandomly sampled integer. Then either
a®=1 mod pora??=—-1 mod pforsome0 <r < s.

If this is false, then p is composite. However, the above fact
is true for roughly ; composite numbers for a given a.

If we sample A random values a, the Miller-Rabin primality
. . 1A . .
testing algorithm has 3~ chance of being wrong every time.
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Primality Testing APIs

The most common way of checking the primality of a
candidate p is a combination of the above as follows:
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Primality Testing APIs

The most common way of checking the primality of a
candidate p is a combination of the above as follows:

=Y

. Pre-compute a list of the first thousand prime numbers.

N

. Check p is divisible by any prime number in the list.

3. Run the Miller-Rabin algorithm, say, ~ 40 times.

S

. If all checks succeeds, then output: probably prime.
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Primality Testing Failures

It might be highly rewarding for an attacker to convince you
that a composite number is prime. For example:
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RSA is not secure if n is not a bi-prime, and it is easy to
compute discrete logarithms in composite order groups.
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Primality Testing Failures

It might be highly rewarding for an attacker to convince you
that a composite number is prime. For example:

RSA is not secure if n is not a bi-prime, and it is easy to
compute discrete logarithms in composite order groups.

A classic mistake in Miller-Rabin: Integers a are sampled

randomly but pre-fixed before testing. This gives an attacker
the chance to find for composite numbers that pass the test.
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Primality Testing Failures

It might be highly rewarding for an attacker to convince you
that a composite number is prime. For example:

RSA is not secure if n is not a bi-prime, and it is easy to
compute discrete logarithms in composite order groups.

A classic mistake in Miller-Rabin: Integers a are sampled
randomly but pre-fixed before testing. This gives an attacker
the chance to find for composite numbers that pass the test.

Sometimes it is a mix between fixed «'s and freshly sampled
a's, still giving the adversary a good chance to fool the test.
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Primality Testing in OpenSSL

Prime and Prejudice: Primality Testing Under Adversarial
Conditions

Martin R. Albrecht!, Jake Massimo!, Kenneth G. Paterson', and Juraj Somorovsky?
! Royal Holloway, University of London
2 Ruhr University Bochum, Germany

martin.albrecht@rhul.ac.uk, jake.massimo.2015@rhul.ac.uk, kenny.paterson@rhul.ac.uk,
juraj.somorovsky@rub.de

Figure: https://eprint.iacr.org/2018/749.pdf
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The Need for Secure Primality Testing

Safety in Numbers: On the Need for Robust
Diffie-Hellman Parameter Validation

Steven Galbraith!, Jake Massimo?, and Kenneth G. Paterson?
! University of Auckland
2 Royal Holloway, University of London

s.galbraithQauckland.ac.nz, jake.massimo.2015@rhul.ac.uk,
kenny .paterson@rhul.ac.uk

Figure: https://eprint.iacr.org/2019/032.pdf
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Secure Primality Testing API

A Performant, Misuse-Resistant API for
Primality Testing

Jake Massimo! and Kenneth G. Paterson?

! Information Security Group,
Royal Holloway, University of London
Jjake.massimo.2015@rhul.ac.uk
2 Department of Computer Science,
ETH Zurich
kenny.paterson@inf.ethz.ch

Figure: https://eprint.iacr.org/2020/065.pdf

@ NTNU | sy

20


https://eprint.iacr.org/2020/065.pdf

Contents

Factorization

@NTNU |

Norwegian University of
Science and Technology

21



Factorization

How do we factor
large bi-primes?
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Deterministic Methods

Some trivial ways to attack an RSA moduli n:
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Deterministic Methods
Some trivial ways to attack an RSA moduli n:

» Brute force by checking if n is divisible by 2 or any odd
numbers less than /n. This requires exponential work...
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Deterministic Methods
Some trivial ways to attack an RSA moduli n:

» Brute force by checking if n is divisible by 2 or any odd

numbers less than /n. This requires exponential work...

» Even only checking divisibility against primes between

21023 and 21024 for 2048 bit n requires exponential work...
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Deterministic Methods

Some trivial ways to attack an RSA moduli n:

» Brute force by checking if n is divisible by 2 or any odd

numbers less than y/n. This requires exponential work...

» Even only checking divisibility against primes between

21023 and 21024 for 2048 bit n requires exponential work...

» Fermat Factorization find prime factors close to /n.

» Pollard's Rho algorithm find largest prime factor in /n

Randomness comes to the rescue in this situation as well!

@ NTNU | sacnrecmons
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Randomized Methods

The Number Field Sieve is the most efficient algorithm to
factor large bi-primes n.
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Randomized Methods

The Number Field Sieve is the most efficient algorithm to
factor large bi-primes n.

Collect many random pairs (a;, b;) such that af = b/ mod n.
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Randomized Methods

The Number Field Sieve is the most efficient algorithm to
factor large bi-primes n.

Collect many random pairs (a;, b;) such that af = b/ mod n.

Then these equations can be combined in such a way that
we can find a and b satisfying a?> = b> mod n, which means
thata® — > = (a — b)(a +b) =0 mod n.
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Randomized Methods

The Number Field Sieve is the most efficient algorithm to
factor large bi-primes n.

Collect many random pairs (a;, b;) such that af = b/ mod n.

Then these equations can be combined in such a way that
we can find a and b satisfying a®> = b*> mod n, which means
that a®> — > = (a — b)(a +b) =0 mod n.

Then we might find a factor of n by computing the greatest
common divisor between n and a« — b and a + b.
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Number Field Sieve

The running time of the Number Field Sieve is

exp ((64/9)"/3 (1og n) '/ (log log n)/*(1 + o(1)))
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Number Field Sieve

The running time of the Number Field Sieve is
exp ((64/9)1/3(10g n)'/3(loglogn)??(1 + 0(1)))

This algorithm is sub-exponential. The largest number we
have ever factored (in public) is of size 829 bits.
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Number Field Sieve

The running time of the Number Field Sieve is
exp ((64/9)'/* (1og n)!/* (log log m)/*(1 + (1))

This algorithm is sub-exponential. The largest number we
have ever factored (in public) is of size 829 bits.

Factoring as a service: In 2015, it was possible to factor 512
bit RSA keys in less than four hours.
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Factoring as a Service

Factoring as a Service

Luke Valenta, Shaanan Cohney, Alex Liao,
Joshua Fried, Satya Bodduluri, Nadia Heninger

University of Pennsylvania

Figure: https://eprint.iacr.org/2015/1000.pdf
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State of the Art

The state of the art in integer factoring and breaking public key
cryptography

Fabrice Boudot!, Pierrick Gaudry?, Aurore Guillevic?, Nadia Heninger?, Emmanuel Thomé?,
and Paul Zimmermann?

1Université de Limoges, XLIM, UMR 7252, F-87000 Limoges, France
2Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
3University of California, San Diego, USA

Figure: https://hal.science/hal-03691141/document
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RSA Failures in Practice

How do we break the following RSA keys?
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» Low entropy RNG or PRNG from known algorithm
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RSA Failures in Practice

How do we break the following RSA keys?

» Same seed when sampling primes
» Same seed + added entropy between sampling
» Low entropy RNG or PRNG from known algorithm

» Related primes from known algorithm

@ NTNU | cacnremone
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PKE in the Wild

RSA, DH and DSA in the Wild*

Nadia Heninger

University of California, San Diego, USA

Figure: https://eprint.iacr.org/2022/048.pdf
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Fermat in the Wild

Fermat Factorization in the Wild
Hanno Bock

January 8, 2023

Figure: https://eprint.iacr.org/2023/026.pdf
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Shared Prime Factors

Ron was wrong, Whit is right

Arjen K. Lenstral, James P. Hughes?,
Maxime Augier', Joppe W. Bos!, Thorsten Kleinjung®, and Christophe Wachter!

1 EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland
2 Self, Palo Alto, CA, USA

Figure: https://eprint.iacr.org/2012/064.pdf
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Shared Prime Factors

Mining Your Ps and Qs: Detection of
Widespread Weak Keys in Network Devices

Nadia Heninger'* Zakir Durumeric¥* Eric Wustrow* J. Alex Halderman*

T University of California, San Diego ¥ The University of Michigan
nadiah@cs.ucsd.edu {zakir, ewust, jhalderm } @umich.edu

Figure: Check out the blog post, paper and slides: 1) https://free
dom-to-tinker.com/2012/02/15/new-research-theres-no-nee
d-panic-over-factorable-keys-just-mind-your-ps-and-qs, 2)
https://factorable.net/weakkeysl12.extended.pdf, 3) https:
//crypto.stanford.edu/RealWorldCrypto/slides/nadia.pdf
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De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:
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De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

» Use the secret key to generate nonces
» Schnorr example with r = H(sk,m)

» Counters + master seed + hashing

» HMAC with key for deterministic MAC

» Hedging techniques (next slide)
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Shared Prime Factors

Hedged Public-Key Encryption:
How to Protect Against Bad Randomness

Mihir Bellare* Zvika Brakerskif Moni Naorf Thomas Ristenpart’
Gil Segev! Hovav Shacham! ~ Scott Yilek**

April 21, 2012

Figure: https://www.cs.utexas.edu/ hovav/dist/hedge.pdf
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| am so random

WE}/ TACOS! YERH,
I 50 ME T00.
RANDQH. (

@ NTNU | sty

37



Random Number Generation

Check the quality of the built-in RNG that you rely on:

» How does it collect randomness?

» |s the RNG seeded / pre-seeded?

» How much entropy does it provide?
» Does it warn you about issues?

» |s it cryptographically secure?

v

(Linux’s /dev/random vs /dev/urandom)
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Faulty Voting Randomness
A faulty PRNG in a voting system
— a real-world cryptographic disaster

Kristian Gjgsteen

Department of Mathematical Sciences
Norwegian University of Science and Technology

Real World Crypto, January 2018

Figure: https://youtu.be/xq_6ey2JGAE?feature=shared
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Pseudo-Random Number Generation

Check the quality of the built-in PRNG that you rely on:

» Does it rely on a proper RNG as seed? Is it pre-seeded?
> |s the PRNG cryptographically secure? NIST-approved?
» Verify the output: Do values repeat? Correct bit-size?

» Which library/version is used? Known vulnerabilities?

Some good resources are available at https:

//github.com/veorq/cryptocoding#use-strong-randomness.

@ NTNU | sacnirecmons
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NIST Standard

N g Special Publication 800-22
Revision 1a

National Institute of

Standards and Technology

Technology Administration
U.S. Department of Commerce

A Statistical Test Suite for
Random and Pseudorandom
Number Generators for
Cryptographic Applications

Figure: https://csrc.nist.gov/pubs/sp/800/22/r1/updl/final
@ NTNU | ccnrecmons
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Choice of Primitives

Check the cryptographic primitive that you rely on:

» Does it rely on a proper PRNG? Is it pre-seeded?

» Is it the newest/most secure primitive? NIST-approved?
» Verify the output: Do values repeat? Correct bit-size?

» Which library/version is used? Known vulnerabilities?

» Are there de-randomized algorithms available instead?

@ NTNU | cacnremons
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Rolling Your Own Crypto

Security Cryptography Whatever

The Great "Roll Your Own Crypto" Debate with Filippo Valsorda

- ° The Great "Roll Your Own Crypto" Debate witl

Figure: https://securitycryptographywhatever.buzzsprout.co
m/1822302/8953842-the-great-roll-your-own-crypto-debate-w
ith-filippo-valsorda
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