NTNU | Norwegian University of Science and Technology

RANDOMNESS 3

TTM4205 – Lecture 4

Tjerand Silde

31.08.2023

Contents

Announcements

- **Primality Testing**
- **Factorization**
- **De-Randomization**
- Takeaways

Contents

Announcements

- **Primality Testing**
- Factorization
- **De-Randomization**
- Takeaways

I am looking for (at least) three students to form a reference group in this course, preferably students from different programs. We will meet three times during the semester, and your feedback is extremely valuable.

Send me an email and/or talk to me in the break :)

Open PhD Position

NTINU
 Norwegian University of
 Science and Technology

The Department of Information Security and Communication Technology (IIK) has a
 vacancy for a

PhD Candidate in Cryptography Engineering

Figure: https://www.jobbnorge.no/en/available-jobs/job/2464 80/phd-candidate-in-cryptography-engineering

Uniped Observation

I am completing a course in University Pedagogy (Uniped) this year, and next week, on Tuesday, September 5th, I have so-called *collegial coaching*. This means that a few other lecturers from different departments at NTNU will be observing my lecture and will provide feedback to me afterward. They are **not** observing you.

Contents

Announcements

Primality Testing

Factorization

De-Randomization

Takeaways

Primality Testing

How do we check if a number is prime?

Deterministic Methods

Brute Force

- Sieving methods
- Wilson's Theorem?

It is always possible to check all possibilities. But how long time does it take? Assume that p is of 2048 bits.

It is always possible to check all possibilities. But how long time does it take? Assume that p is of 2048 bits.

• divisible by any number between 1 and $p? \sim 2^{2048}$

It is always possible to check all possibilities. But how long time does it take? Assume that p is of 2048 bits.

• divisible by any number between 1 and $p? \sim 2^{2048}$

• by 2 or any odd number between 1 and $p? \sim 2^{2047}$

It is always possible to check all possibilities. But how long time does it take? Assume that p is of 2048 bits.

• divisible by any number between 1 and $p? \sim 2^{2048}$

- by 2 or any odd number between 1 and $p? \sim 2^{2047}$
- by 2 or any odd number between 1 and \sqrt{p} ? $\sim 2^{1023}$

It is always possible to check all possibilities. But how long time does it take? Assume that p is of 2048 bits.

• divisible by any number between 1 and $p? \sim 2^{2048}$

- by 2 or any odd number between 1 and $p? \sim 2^{2047}$
- by 2 or any odd number between 1 and \sqrt{p} ? $\sim 2^{1023}$

This is infeasible to compute! 2^{128} is considered impossible.

Sieving Methods

It is possible to pre-compute many small prime numbers to speed up the process, e.g., the sieve of Eratosthenes:

It is possible to pre-compute many small prime numbers to speed up the process, e.g., the sieve of Eratosthenes:

First, keep 2 and remove all even numbers. Then, keep 3 and remove all multiples of three. 4 is already removed. Keep 5 and remove all multiples of five. 6 has already been removed. ...

Sieving Methods

It is possible to pre-compute many small prime numbers to speed up the process, e.g., the sieve of Eratosthenes:

First, keep 2 and remove all even numbers. Then, keep 3 and remove all multiples of three. 4 is already removed. Keep 5 and remove all multiples of five. 6 has already been removed. ...

It still requires exponential work to check all possibilities!

Wilson's Theorem

Wilson's Theorem: A natural number p > 1 is a prime number if and only if the product of all the positive integers less than p is one less than a multiple of p.

Wilson's Theorem: A natural number p > 1 is a prime number if and only if the product of all the positive integers less than p is one less than a multiple of p.

This means: $(p-1)! \equiv -1 \mod p \iff p$ is a prime number.

Wilson's Theorem: A natural number p > 1 is a prime number if and only if the product of all the positive integers less than p is one less than a multiple of p.

This means: $(p-1)! \equiv -1 \mod p \iff p$ is a prime number.

It still requires exponential work to compute (p-1)!

Wilson's Theorem

Wilson's Theorem: A natural number p > 1 is a prime number if and only if the product of all the positive integers less than p is one less than a multiple of p.

This means: $(p-1)! \equiv -1 \mod p \iff p$ is a prime number.

It still requires exponential work to compute (p-1)!

But it is possible to use similar techniques to speed it up.

Randomized Methods

- Monte Carlo algorithms
- The Miller-Rabin method

A Monte Carlo algorithm is a randomized algorithm whose output may be incorrect with a given probability.

A Monte Carlo algorithm is a randomized algorithm whose output may be incorrect with a given probability.

A **false**-biased Monte Carlo algorithm is always correct when it returns **false**. Similar for a **true**-biased algorithm.

A Monte Carlo algorithm is a randomized algorithm whose output may be incorrect with a given probability.

A **false**-biased Monte Carlo algorithm is always correct when it returns **false**. Similar for a **true**-biased algorithm.

If the probability is 1/2, then it can be amplified by parallel repetition: λ rounds gives probability $\frac{1}{2}^{\lambda} \rightarrow 0$ of being wrong.

A Monte Carlo algorithm is a randomized algorithm whose output may be incorrect with a given probability.

A **false**-biased Monte Carlo algorithm is always correct when it returns **false**. Similar for a **true**-biased algorithm.

If the probability is 1/2, then it can be amplified by parallel repetition: λ rounds gives probability $\frac{1}{2}^{\lambda} \rightarrow 0$ of being wrong.

Some commonly used algorithms: Soloway-Strassen, Fermat (warning: Carmichael numbers) and Miller-Rabin.

Let p be an odd integer and write p - 1 as $2^{s}d$ where d is odd.

Let p be an odd integer and write p - 1 as $2^{s}d$ where d is odd.

Let 1 < a < p be a randomly sampled integer. Then either $a^d \equiv 1 \mod p$ or $a^{2^r d} \equiv -1 \mod p$ for some $0 \le r < s$.

Let p be an odd integer and write p - 1 as $2^{s}d$ where d is odd.

Let 1 < a < p be a randomly sampled integer. Then either $a^d \equiv 1 \mod p$ or $a^{2^r d} \equiv -1 \mod p$ for some $0 \le r < s$.

If this is false, then p is composite. However, the above fact is true for roughly $\frac{1}{4}$ composite numbers for a given a.

Let p be an odd integer and write p-1 as $2^{s}d$ where d is odd.

Let 1 < a < p be a randomly sampled integer. Then either $a^d \equiv 1 \mod p$ or $a^{2^r d} \equiv -1 \mod p$ for some $0 \le r < s$.

If this is false, then p is composite. However, the above fact is true for roughly $\frac{1}{4}$ composite numbers for a given a.

If we sample λ random values a, the Miller-Rabin primality testing algorithm has $\frac{1}{4}^{\lambda}$ chance of being wrong every time.

The most common way of checking the primality of a candidate p is a combination of the above as follows:

1. Pre-compute a list of the first thousand prime numbers.

- **1.** Pre-compute a list of the first thousand prime numbers.
- **2.** Check *p* is divisible by any prime number in the list.

- 1. Pre-compute a list of the first thousand prime numbers.
- **2.** Check *p* is divisible by any prime number in the list.
- **3.** Run the Miller-Rabin algorithm, say, ~ 40 times.

- **1.** Pre-compute a list of the first thousand prime numbers.
- **2.** Check *p* is divisible by any prime number in the list.
- **3.** Run the Miller-Rabin algorithm, say, ~ 40 times.
- **4.** If all checks succeeds, then output: *probably prime*.

Primality Testing Failures

It might be highly rewarding for an attacker to convince you that a composite number is prime. For example:

Primality Testing Failures

It might be highly rewarding for an attacker to convince you that a composite number is prime. For example:

RSA is not secure if n is not a bi-prime, and it is easy to compute discrete logarithms in composite order groups.

Primality Testing Failures

It might be highly rewarding for an attacker to convince you that a composite number is prime. For example:

RSA is not secure if n is not a bi-prime, and it is easy to compute discrete logarithms in composite order groups.

A classic mistake in Miller-Rabin: Integers a are sampled randomly but pre-fixed before testing. This gives an attacker the chance to find for composite numbers that pass the test.

Primality Testing Failures

It might be highly rewarding for an attacker to convince you that a composite number is prime. For example:

RSA is not secure if n is not a bi-prime, and it is easy to compute discrete logarithms in composite order groups.

A classic mistake in Miller-Rabin: Integers a are sampled randomly but pre-fixed before testing. This gives an attacker the chance to find for composite numbers that pass the test.

Sometimes it is a mix between fixed *a*'s and freshly sampled *a*'s, still giving the adversary a good chance to fool the test.

Primality Testing in OpenSSL

Prime and Prejudice: Primality Testing Under Adversarial Conditions

Martin R. Albrecht¹, Jake Massimo¹, Kenneth G. Paterson¹, and Juraj Somorovsky²

¹ Royal Holloway, University of London ² Ruhr University Bochum, Germany

² Ruhr University Bochum, Germany

martin.albrecht@rhul.ac.uk, jake.massimo.2015@rhul.ac.uk, kenny.paterson@rhul.ac.uk, juraj.somorovsky@rub.de

Figure: https://eprint.iacr.org/2018/749.pdf

The Need for Secure Primality Testing

Safety in Numbers: On the Need for Robust Diffie-Hellman Parameter Validation

Steven Galbraith¹, Jake Massimo², and Kenneth G. Paterson²

¹ University of Auckland ² Royal Holloway, University of London s.galbraith@auckland.ac.nz, jake.massimo.2015@rhul.ac.uk, kenny.paterson@rhul.ac.uk

Figure: https://eprint.iacr.org/2019/032.pdf

Secure Primality Testing API

A Performant, Misuse-Resistant API for Primality Testing

Jake Massimo¹ and Kenneth G. Paterson²

 ¹ Information Security Group, Royal Holloway, University of London jake.massimo.20150rhul.ac.uk
² Department of Computer Science, ETH Zurich kenny.paterson@inf.ethz.ch

Figure: https://eprint.iacr.org/2020/065.pdf

Contents

Announcements

Primality Testing

Factorization

De-Randomization

Takeaways

Factorization

How do we factor large bi-primes?

Some trivial ways to attack an RSA moduli *n*:

Brute force by checking if *n* is divisible by 2 or any odd numbers less than \sqrt{n} . This requires exponential work...

- Brute force by checking if *n* is divisible by 2 or any odd numbers less than \sqrt{n} . This requires exponential work...
- Even only checking divisibility against primes between 2^{1023} and 2^{1024} for 2048 bit *n* requires exponential work...

- Brute force by checking if *n* is divisible by 2 or any odd numbers less than \sqrt{n} . This requires exponential work...
- Even only checking divisibility against primes between 2^{1023} and 2^{1024} for 2048 bit *n* requires exponential work...
- Fermat Factorization find prime factors close to \sqrt{n} .

- ▶ Brute force by checking if *n* is divisible by 2 or any odd numbers less than \sqrt{n} . This requires exponential work...
- Even only checking divisibility against primes between 2^{1023} and 2^{1024} for 2048 bit *n* requires exponential work...
- Fermat Factorization find prime factors close to \sqrt{n} .
- Pollard's Rho algorithm find largest prime factor in $\sqrt[4]{n}$

Some trivial ways to attack an RSA moduli *n*:

- ▶ Brute force by checking if *n* is divisible by 2 or any odd numbers less than \sqrt{n} . This requires exponential work...
- Even only checking divisibility against primes between 2^{1023} and 2^{1024} for 2048 bit *n* requires exponential work...
- Fermat Factorization find prime factors close to \sqrt{n} .
- Pollard's Rho algorithm find largest prime factor in $\sqrt[4]{n}$

Randomness comes to the rescue in this situation as well!

Randomized Methods

The Number Field Sieve is the most efficient algorithm to factor large bi-primes n.

The Number Field Sieve is the most efficient algorithm to factor large bi-primes n.

Collect many random pairs (a_i, b_i) such that $a_i^x \equiv b_i^y \mod n$.

Randomized Methods

The Number Field Sieve is the most efficient algorithm to factor large bi-primes n.

Collect many random pairs (a_i, b_i) such that $a_i^x \equiv b_i^y \mod n$.

Then these equations can be combined in such a way that we can find a and b satisfying $a^2 \equiv b^2 \mod n$, which means that $a^2 - b^2 \equiv (a - b)(a + b) \equiv 0 \mod n$.

Randomized Methods

The Number Field Sieve is the most efficient algorithm to factor large bi-primes n.

Collect many random pairs (a_i, b_i) such that $a_i^x \equiv b_i^y \mod n$.

Then these equations can be combined in such a way that we can find a and b satisfying $a^2 \equiv b^2 \mod n$, which means that $a^2 - b^2 \equiv (a - b)(a + b) \equiv 0 \mod n$.

Then we *might* find a factor of n by computing the greatest common divisor between n and a - b and a + b.

Number Field Sieve

The running time of the Number Field Sieve is

$$\exp\left((64/9)^{1/3}(\log n)^{1/3}(\log\log n)^{2/3}(1+o(1))\right)$$

Number Field Sieve

The running time of the Number Field Sieve is

$$\exp\left((64/9)^{1/3}(\log n)^{1/3}(\log\log n)^{2/3}(1+o(1))\right)$$

This algorithm is *sub-exponential*. The largest number we have ever factored (in public) is of size 829 bits.

Number Field Sieve

The running time of the Number Field Sieve is

$$\exp\left((64/9)^{1/3}(\log n)^{1/3}(\log\log n)^{2/3}(1+o(1))\right)$$

This algorithm is *sub-exponential*. The largest number we have ever factored (in public) is of size 829 bits.

Factoring as a service: In 2015, it was possible to factor 512 bit RSA keys in less than four hours.

Factoring as a Service

Factoring as a Service

Luke Valenta, Shaanan Cohney, Alex Liao, Joshua Fried, Satya Bodduluri, Nadia Heninger

University of Pennsylvania

Figure: https://eprint.iacr.org/2015/1000.pdf

State of the Art

The state of the art in integer factoring and breaking public key cryptography

Fabrice Boudot¹, Pierrick Gaudry², Aurore Guillevic², Nadia Heninger³, Emmanuel Thomé², and Paul Zimmermann²

> ¹Université de Limoges, XLIM, UMR 7252, F-87000 Limoges, France ²Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France ³University of California, San Diego, USA

Figure: https://hal.science/hal-03691141/document

How do we break the following RSA keys?

Same seed when sampling primes

- Same seed when sampling primes
- Same seed + added entropy between sampling

- Same seed when sampling primes
- Same seed + added entropy between sampling
- Low entropy RNG or PRNG from known algorithm

- Same seed when sampling primes
- Same seed + added entropy between sampling
- Low entropy RNG or PRNG from known algorithm
- Related primes from known algorithm

PKE in the Wild

RSA, DH and DSA in the Wild*

Nadia Heninger

University of California, San Diego, USA

Figure: https://eprint.iacr.org/2022/048.pdf

Fermat in the Wild

Fermat Factorization in the Wild

Hanno Böck

January 8, 2023

Figure: https://eprint.iacr.org/2023/026.pdf

Shared Prime Factors

Ron was wrong, Whit is right

Arjen K. Lenstra¹, James P. Hughes², Maxime Augier¹, Joppe W. Bos¹, Thorsten Kleinjung¹, and Christophe Wachter¹

 $^1\,$ EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland $^2\,$ Self, Palo Alto, CA, USA

Figure: https://eprint.iacr.org/2012/064.pdf

Shared Prime Factors

Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices

Nadia Heninger^{†*} Zakir Durumeric^{‡*}

[†] University of California, San Diego nadiah@cs.ucsd.edu Eric Wustrow[‡] J. Alex Halderman[‡]

[‡]*The University of Michigan* {zakir, ewust, jhalderm}@umich.edu

Figure: Check out the blog post, paper and slides: 1) https://free dom-to-tinker.com/2012/02/15/new-research-theres-no-nee d-panic-over-factorable-keys-just-mind-your-ps-and-qs, 2) https://factorable.net/weakkeys12.extended.pdf, 3) https: //crypto.stanford.edu/RealWorldCrypto/slides/nadia.pdf

Contents

Announcements

Primality Testing

Factorization

De-Randomization

Takeaways

De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

Use the secret key to generate nonces

De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

Use the secret key to generate nonces

Schnorr example with r = H(sk,m)

De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

Use the secret key to generate nonces

Schnorr example with r = H(sk,m)

Counters + master seed + hashing

De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

- Use the secret key to generate nonces
- Schnorr example with r = H(sk,m)
- Counters + master seed + hashing
- HMAC with key for deterministic MAC

De-Randomized Crypto

We need randomness for CPA secure encryption !?

We DO need randomness for key generation. However:

- Use the secret key to generate nonces
- Schnorr example with r = H(sk,m)
- Counters + master seed + hashing
- HMAC with key for deterministic MAC
- Hedging techniques (next slide)

Shared Prime Factors

Hedged Public-Key Encryption: How to Protect Against Bad Randomness

Mihir Bellare[∗] Zvika Brakerski[†] Moni Naor[‡] Thomas Ristenpart[§] Gil Segev[¶] Hovav Shacham[∥] Scott Yilek^{**}

April 21, 2012

Figure: https://www.cs.utexas.edu/~hovav/dist/hedge.pdf

Contents

Announcements

Primality Testing

Factorization

De-Randomization

I am so random

Random Number Generation

Check the quality of the built-in RNG that you rely on:

- How does it collect randomness?
- Is the RNG seeded / pre-seeded?
- How much entropy does it provide?
- Does it warn you about issues?
- Is it cryptographically secure?
- (Linux's /dev/random vs /dev/urandom)

Faulty Voting Randomness

A faulty PRNG in a voting system

- a real-world cryptographic disaster

Kristian Gjøsteen

Department of Mathematical Sciences Norwegian University of Science and Technology

Real World Crypto, January 2018

Figure: https://youtu.be/xq_6ey2JGAE?feature=shared

Pseudo-Random Number Generation

Check the quality of the built-in PRNG that you rely on:

- Does it rely on a proper RNG as seed? Is it pre-seeded?
- Is the PRNG cryptographically secure? NIST-approved?
- Verify the output: Do values repeat? Correct bit-size?
- Which library/version is used? Known vulnerabilities?

Some good resources are available at https: //github.com/veorq/cryptocoding#use-strong-randomness.

NIST Standard

Technology Administration U.S. Department of Commerce Special Publication 800-22 Revision 1a

A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications

Figure: https://csrc.nist.gov/pubs/sp/800/22/r1/upd1/final

Choice of Primitives

Check the cryptographic primitive that you rely on:

- Does it rely on a proper PRNG? Is it pre-seeded?
- Is it the newest/most secure primitive? NIST-approved?
- Verify the output: Do values repeat? Correct bit-size?
- Which library/version is used? Known vulnerabilities?
- Are there de-randomized algorithms available instead?

Rolling Your Own Crypto

Security Cryptography Whatever

The Great "Roll Your Own Crypto" Debate with Filippo Valsorda

JULY 31, 2021 SECURITY, CRYPTOGRAPHY, WHATEVER

Figure: https://securitycryptographywhatever.buzzsprout.co m/1822302/8953842-the-great-roll-your-own-crypto-debate-w ith-filippo-valsorda

Questions?

