
RANDOMNESS 3
TTM4205 – Lecture 4

Tjerand Silde

31.08.2023



Contents

Announcements

Primality Testing

Factorization

De-Randomization

Takeaways

2



Contents

Announcements

Primality Testing

Factorization

De-Randomization

Takeaways

3



Reference Group

I am looking for (at least) three students to form a reference
group in this course, preferably students from different
programs. We will meet three times during the semester,
and your feedback is extremely valuable.

Send me an email and/or talk to me in the break :)

4



Open PhD Position

Figure: https://www.jobbnorge.no/en/available-jobs/job/2464
80/phd-candidate-in-cryptography-engineering

5

https://www.jobbnorge.no/en/available-jobs/job/246480/phd-candidate-in-cryptography-engineering
https://www.jobbnorge.no/en/available-jobs/job/246480/phd-candidate-in-cryptography-engineering


Uniped Observation

I am completing a course in University Pedagogy (Uniped)
this year, and next week, on Tuesday, September 5th, I have
so-called collegial coaching. This means that a few other
lecturers from different departments at NTNU will be
observing my lecture and will provide feedback to me
afterward. They are not observing you.

6



Contents

Announcements

Primality Testing

Factorization

De-Randomization

Takeaways

7



Primality Testing

How do we check if a
number is prime?

8



Deterministic Methods

▶ Brute Force

▶ Sieving methods

▶ Wilson’s Theorem?

9



Brute Force Testing

It is always possible to check all possibilities. But how long
time does it take? Assume that p is of 2048 bits.

▶ divisible by any number between 1 and p? ∼ 22048

▶ by 2 or any odd number between 1 and p? ∼ 22047

▶ by 2 or any odd number between 1 and √
p ? ∼ 21023

10



Brute Force Testing

It is always possible to check all possibilities. But how long
time does it take? Assume that p is of 2048 bits.

▶ divisible by any number between 1 and p? ∼ 22048

▶ by 2 or any odd number between 1 and p? ∼ 22047

▶ by 2 or any odd number between 1 and √
p ? ∼ 21023

10



Brute Force Testing

It is always possible to check all possibilities. But how long
time does it take? Assume that p is of 2048 bits.

▶ divisible by any number between 1 and p? ∼ 22048

▶ by 2 or any odd number between 1 and p? ∼ 22047

▶ by 2 or any odd number between 1 and √
p ? ∼ 21023

10



Brute Force Testing

It is always possible to check all possibilities. But how long
time does it take? Assume that p is of 2048 bits.

▶ divisible by any number between 1 and p? ∼ 22048

▶ by 2 or any odd number between 1 and p? ∼ 22047

▶ by 2 or any odd number between 1 and √
p ? ∼ 21023

10



Brute Force Testing

It is always possible to check all possibilities. But how long
time does it take? Assume that p is of 2048 bits.

▶ divisible by any number between 1 and p? ∼ 22048

▶ by 2 or any odd number between 1 and p? ∼ 22047

▶ by 2 or any odd number between 1 and √
p ? ∼ 21023

This is infeasible to compute! 2128 is considered impossible.

10



Sieving Methods

It is possible to pre-compute many small prime numbers to
speed up the process, e.g., the sieve of Eratosthenes:

11



Sieving Methods

It is possible to pre-compute many small prime numbers to
speed up the process, e.g., the sieve of Eratosthenes:

First, keep 2 and remove all even numbers. Then, keep 3 and
remove all multiples of three. 4 is already removed. Keep 5
and remove all multiples of five. 6 has already been
removed. ...

11



Sieving Methods

It is possible to pre-compute many small prime numbers to
speed up the process, e.g., the sieve of Eratosthenes:

First, keep 2 and remove all even numbers. Then, keep 3 and
remove all multiples of three. 4 is already removed. Keep 5
and remove all multiples of five. 6 has already been
removed. ...

It still requires exponential work to check all possibilities!

11



Wilson’s Theorem

Wilson’s Theorem: A natural number p > 1 is a prime number
if and only if the product of all the positive integers less than p is
one less than a multiple of p.

12



Wilson’s Theorem

Wilson’s Theorem: A natural number p > 1 is a prime number
if and only if the product of all the positive integers less than p is
one less than a multiple of p.

This means: (p− 1)! ≡ −1 mod p ⇐⇒ p is a prime number.

12



Wilson’s Theorem

Wilson’s Theorem: A natural number p > 1 is a prime number
if and only if the product of all the positive integers less than p is
one less than a multiple of p.

This means: (p− 1)! ≡ −1 mod p ⇐⇒ p is a prime number.

It still requires exponential work to compute (p− 1)!

12



Wilson’s Theorem

Wilson’s Theorem: A natural number p > 1 is a prime number
if and only if the product of all the positive integers less than p is
one less than a multiple of p.

This means: (p− 1)! ≡ −1 mod p ⇐⇒ p is a prime number.

It still requires exponential work to compute (p− 1)!

But it is possible to use similar techniques to speed it up.

12



Randomized Methods

▶ Monte Carlo algorithms

▶ The Miller-Rabin method

13



Monte Carlo Algorithms

A Monte Carlo algorithm is a randomized algorithm whose
output may be incorrect with a given probability.

14



Monte Carlo Algorithms

A Monte Carlo algorithm is a randomized algorithm whose
output may be incorrect with a given probability.

A false-biased Monte Carlo algorithm is always correct
when it returns false. Similar for a true-biased algorithm.

14



Monte Carlo Algorithms

A Monte Carlo algorithm is a randomized algorithm whose
output may be incorrect with a given probability.

A false-biased Monte Carlo algorithm is always correct
when it returns false. Similar for a true-biased algorithm.

If the probability is 1/2, then it can be amplified by parallel
repetition: λ rounds gives probability 1

2

λ → 0 of being wrong.

14



Monte Carlo Algorithms

A Monte Carlo algorithm is a randomized algorithm whose
output may be incorrect with a given probability.

A false-biased Monte Carlo algorithm is always correct
when it returns false. Similar for a true-biased algorithm.

If the probability is 1/2, then it can be amplified by parallel
repetition: λ rounds gives probability 1

2

λ → 0 of being wrong.

Some commonly used algorithms: Soloway-Strassen,
Fermat (warning: Carmichael numbers) and Miller-Rabin.

14



Miller-Rabin Primality Testing

Let p be an odd integer and write p− 1 as 2sd where d is odd.

15



Miller-Rabin Primality Testing

Let p be an odd integer and write p− 1 as 2sd where d is odd.

Let 1 < a < p be a randomly sampled integer. Then either
ad ≡ 1 mod p or a2rd ≡ −1 mod p for some 0 ≤ r < s.

15



Miller-Rabin Primality Testing

Let p be an odd integer and write p− 1 as 2sd where d is odd.

Let 1 < a < p be a randomly sampled integer. Then either
ad ≡ 1 mod p or a2rd ≡ −1 mod p for some 0 ≤ r < s.

If this is false, then p is composite. However, the above fact
is true for roughly 1

4 composite numbers for a given a.

15



Miller-Rabin Primality Testing

Let p be an odd integer and write p− 1 as 2sd where d is odd.

Let 1 < a < p be a randomly sampled integer. Then either
ad ≡ 1 mod p or a2rd ≡ −1 mod p for some 0 ≤ r < s.

If this is false, then p is composite. However, the above fact
is true for roughly 1

4 composite numbers for a given a.

If we sample λ random values a, the Miller-Rabin primality
testing algorithm has 1

4

λ chance of being wrong every time.

15



Primality Testing APIs

The most common way of checking the primality of a
candidate p is a combination of the above as follows:

1. Pre-compute a list of the first thousand prime numbers.

2. Check p is divisible by any prime number in the list.

3. Run the Miller-Rabin algorithm, say, ∼ 40 times.

4. If all checks succeeds, then output: probably prime.

16



Primality Testing APIs

The most common way of checking the primality of a
candidate p is a combination of the above as follows:

1. Pre-compute a list of the first thousand prime numbers.

2. Check p is divisible by any prime number in the list.

3. Run the Miller-Rabin algorithm, say, ∼ 40 times.

4. If all checks succeeds, then output: probably prime.

16



Primality Testing APIs

The most common way of checking the primality of a
candidate p is a combination of the above as follows:

1. Pre-compute a list of the first thousand prime numbers.

2. Check p is divisible by any prime number in the list.

3. Run the Miller-Rabin algorithm, say, ∼ 40 times.

4. If all checks succeeds, then output: probably prime.

16



Primality Testing APIs

The most common way of checking the primality of a
candidate p is a combination of the above as follows:

1. Pre-compute a list of the first thousand prime numbers.

2. Check p is divisible by any prime number in the list.

3. Run the Miller-Rabin algorithm, say, ∼ 40 times.

4. If all checks succeeds, then output: probably prime.

16



Primality Testing APIs

The most common way of checking the primality of a
candidate p is a combination of the above as follows:

1. Pre-compute a list of the first thousand prime numbers.

2. Check p is divisible by any prime number in the list.

3. Run the Miller-Rabin algorithm, say, ∼ 40 times.

4. If all checks succeeds, then output: probably prime.

16



Primality Testing Failures

It might be highly rewarding for an attacker to convince you
that a composite number is prime. For example:

17



Primality Testing Failures

It might be highly rewarding for an attacker to convince you
that a composite number is prime. For example:

RSA is not secure if n is not a bi-prime, and it is easy to
compute discrete logarithms in composite order groups.

17



Primality Testing Failures

It might be highly rewarding for an attacker to convince you
that a composite number is prime. For example:

RSA is not secure if n is not a bi-prime, and it is easy to
compute discrete logarithms in composite order groups.

A classic mistake in Miller-Rabin: Integers a are sampled
randomly but pre-fixed before testing. This gives an attacker
the chance to find for composite numbers that pass the test.

17



Primality Testing Failures

It might be highly rewarding for an attacker to convince you
that a composite number is prime. For example:

RSA is not secure if n is not a bi-prime, and it is easy to
compute discrete logarithms in composite order groups.

A classic mistake in Miller-Rabin: Integers a are sampled
randomly but pre-fixed before testing. This gives an attacker
the chance to find for composite numbers that pass the test.

Sometimes it is a mix between fixed a’s and freshly sampled
a’s, still giving the adversary a good chance to fool the test.

17



Primality Testing in OpenSSL

Figure: https://eprint.iacr.org/2018/749.pdf

18

https://eprint.iacr.org/2018/749.pdf


The Need for Secure Primality Testing

Figure: https://eprint.iacr.org/2019/032.pdf

19

https://eprint.iacr.org/2019/032.pdf


Secure Primality Testing API

Figure: https://eprint.iacr.org/2020/065.pdf

20

https://eprint.iacr.org/2020/065.pdf


Contents

Announcements

Primality Testing

Factorization

De-Randomization

Takeaways

21



Factorization

How do we factor
large bi-primes?

22



Deterministic Methods

Some trivial ways to attack an RSA moduli n:

▶ Brute force by checking if n is divisible by 2 or any odd
numbers less than √

n. This requires exponential work...

▶ Even only checking divisibility against primes between
21023 and 21024 for 2048 bit n requires exponential work...

▶ Fermat Factorization find prime factors close to √
n.

▶ Pollard’s Rho algorithm find largest prime factor in 4
√
n

23



Deterministic Methods

Some trivial ways to attack an RSA moduli n:

▶ Brute force by checking if n is divisible by 2 or any odd
numbers less than √

n. This requires exponential work...

▶ Even only checking divisibility against primes between
21023 and 21024 for 2048 bit n requires exponential work...

▶ Fermat Factorization find prime factors close to √
n.

▶ Pollard’s Rho algorithm find largest prime factor in 4
√
n

23



Deterministic Methods

Some trivial ways to attack an RSA moduli n:

▶ Brute force by checking if n is divisible by 2 or any odd
numbers less than √

n. This requires exponential work...

▶ Even only checking divisibility against primes between
21023 and 21024 for 2048 bit n requires exponential work...

▶ Fermat Factorization find prime factors close to √
n.

▶ Pollard’s Rho algorithm find largest prime factor in 4
√
n

23



Deterministic Methods

Some trivial ways to attack an RSA moduli n:

▶ Brute force by checking if n is divisible by 2 or any odd
numbers less than √

n. This requires exponential work...

▶ Even only checking divisibility against primes between
21023 and 21024 for 2048 bit n requires exponential work...

▶ Fermat Factorization find prime factors close to √
n.

▶ Pollard’s Rho algorithm find largest prime factor in 4
√
n

23



Deterministic Methods

Some trivial ways to attack an RSA moduli n:

▶ Brute force by checking if n is divisible by 2 or any odd
numbers less than √

n. This requires exponential work...

▶ Even only checking divisibility against primes between
21023 and 21024 for 2048 bit n requires exponential work...

▶ Fermat Factorization find prime factors close to √
n.

▶ Pollard’s Rho algorithm find largest prime factor in 4
√
n

23



Deterministic Methods
Some trivial ways to attack an RSA moduli n:

▶ Brute force by checking if n is divisible by 2 or any odd
numbers less than √

n. This requires exponential work...

▶ Even only checking divisibility against primes between
21023 and 21024 for 2048 bit n requires exponential work...

▶ Fermat Factorization find prime factors close to √
n.

▶ Pollard’s Rho algorithm find largest prime factor in 4
√
n

Randomness comes to the rescue in this situation as well!

23



Randomized Methods

The Number Field Sieve is the most efficient algorithm to
factor large bi-primes n.

24



Randomized Methods

The Number Field Sieve is the most efficient algorithm to
factor large bi-primes n.

Collect many random pairs (ai, bi) such that axi ≡ byi mod n.

24



Randomized Methods

The Number Field Sieve is the most efficient algorithm to
factor large bi-primes n.

Collect many random pairs (ai, bi) such that axi ≡ byi mod n.

Then these equations can be combined in such a way that
we can find a and b satisfying a2 ≡ b2 mod n, which means
that a2 − b2 ≡ (a− b)(a+ b) ≡ 0 mod n.

24



Randomized Methods

The Number Field Sieve is the most efficient algorithm to
factor large bi-primes n.

Collect many random pairs (ai, bi) such that axi ≡ byi mod n.

Then these equations can be combined in such a way that
we can find a and b satisfying a2 ≡ b2 mod n, which means
that a2 − b2 ≡ (a− b)(a+ b) ≡ 0 mod n.

Then wemight find a factor of n by computing the greatest
common divisor between n and a− b and a+ b.

24



Number Field Sieve

The running time of the Number Field Sieve is

exp
(
(64/9)1/3(log n)1/3(log log n)2/3(1 + o(1))

)

25



Number Field Sieve

The running time of the Number Field Sieve is

exp
(
(64/9)1/3(log n)1/3(log log n)2/3(1 + o(1))

)
This algorithm is sub-exponential. The largest number we
have ever factored (in public) is of size 829 bits.

25



Number Field Sieve

The running time of the Number Field Sieve is

exp
(
(64/9)1/3(log n)1/3(log log n)2/3(1 + o(1))

)
This algorithm is sub-exponential. The largest number we
have ever factored (in public) is of size 829 bits.

Factoring as a service: In 2015, it was possible to factor 512
bit RSA keys in less than four hours.

25



Factoring as a Service

Figure: https://eprint.iacr.org/2015/1000.pdf

26

https://eprint.iacr.org/2015/1000.pdf


State of the Art

Figure: https://hal.science/hal-03691141/document

27

https://hal.science/hal-03691141/document


RSA Failures in Practice

How do we break the following RSA keys?

▶ Same seed when sampling primes

▶ Same seed + added entropy between sampling

▶ Low entropy RNG or PRNG from known algorithm

▶ Related primes from known algorithm

28



RSA Failures in Practice

How do we break the following RSA keys?

▶ Same seed when sampling primes

▶ Same seed + added entropy between sampling

▶ Low entropy RNG or PRNG from known algorithm

▶ Related primes from known algorithm

28



RSA Failures in Practice

How do we break the following RSA keys?

▶ Same seed when sampling primes

▶ Same seed + added entropy between sampling

▶ Low entropy RNG or PRNG from known algorithm

▶ Related primes from known algorithm

28



RSA Failures in Practice

How do we break the following RSA keys?

▶ Same seed when sampling primes

▶ Same seed + added entropy between sampling

▶ Low entropy RNG or PRNG from known algorithm

▶ Related primes from known algorithm

28



RSA Failures in Practice

How do we break the following RSA keys?

▶ Same seed when sampling primes

▶ Same seed + added entropy between sampling

▶ Low entropy RNG or PRNG from known algorithm

▶ Related primes from known algorithm

28



PKE in the Wild

Figure: https://eprint.iacr.org/2022/048.pdf

29

https://eprint.iacr.org/2022/048.pdf


Fermat in the Wild

Figure: https://eprint.iacr.org/2023/026.pdf

30

https://eprint.iacr.org/2023/026.pdf


Shared Prime Factors

Figure: https://eprint.iacr.org/2012/064.pdf

31

https://eprint.iacr.org/2012/064.pdf


Shared Prime Factors

Figure: Check out the blog post, paper and slides: 1) https://free
dom-to-tinker.com/2012/02/15/new-research-theres-no-nee
d-panic-over-factorable-keys-just-mind-your-ps-and-qs, 2)
https://factorable.net/weakkeys12.extended.pdf, 3) https:
//crypto.stanford.edu/RealWorldCrypto/slides/nadia.pdf

32

https://freedom-to-tinker.com/2012/02/15/new-research-theres-no-need-panic-over-factorable-keys-just-mind-your-ps-and-qs
https://freedom-to-tinker.com/2012/02/15/new-research-theres-no-need-panic-over-factorable-keys-just-mind-your-ps-and-qs
https://freedom-to-tinker.com/2012/02/15/new-research-theres-no-need-panic-over-factorable-keys-just-mind-your-ps-and-qs
https://factorable.net/weakkeys12.extended.pdf
https://crypto.stanford.edu/RealWorldCrypto/slides/nadia.pdf
https://crypto.stanford.edu/RealWorldCrypto/slides/nadia.pdf


Contents

Announcements

Primality Testing

Factorization

De-Randomization

Takeaways

33



De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

▶ Use the secret key to generate nonces

▶ Schnorr example with r = H(sk,m)

▶ Counters + master seed + hashing

▶ HMAC with key for deterministic MAC

▶ Hedging techniques (next slide)

34



De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

▶ Use the secret key to generate nonces

▶ Schnorr example with r = H(sk,m)

▶ Counters + master seed + hashing

▶ HMAC with key for deterministic MAC

▶ Hedging techniques (next slide)

34



De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

▶ Use the secret key to generate nonces

▶ Schnorr example with r = H(sk,m)

▶ Counters + master seed + hashing

▶ HMAC with key for deterministic MAC

▶ Hedging techniques (next slide)

34



De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

▶ Use the secret key to generate nonces

▶ Schnorr example with r = H(sk,m)

▶ Counters + master seed + hashing

▶ HMAC with key for deterministic MAC

▶ Hedging techniques (next slide)

34



De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

▶ Use the secret key to generate nonces

▶ Schnorr example with r = H(sk,m)

▶ Counters + master seed + hashing

▶ HMAC with key for deterministic MAC

▶ Hedging techniques (next slide)

34



De-Randomized Crypto

We need randomness for CPA secure encryption!?

We DO need randomness for key generation. However:

▶ Use the secret key to generate nonces

▶ Schnorr example with r = H(sk,m)

▶ Counters + master seed + hashing

▶ HMAC with key for deterministic MAC

▶ Hedging techniques (next slide)

34



Shared Prime Factors

Figure: https://www.cs.utexas.edu/~hovav/dist/hedge.pdf

35

https://www.cs.utexas.edu/~hovav/dist/hedge.pdf


Contents

Announcements

Primality Testing

Factorization

De-Randomization

Takeaways

36



I am so random

37



Random Number Generation

Check the quality of the built-in RNG that you rely on:

▶ How does it collect randomness?

▶ Is the RNG seeded / pre-seeded?

▶ How much entropy does it provide?

▶ Does it warn you about issues?

▶ Is it cryptographically secure?

▶ (Linux’s /dev/random vs /dev/urandom)

38



Faulty Voting Randomness

Figure: https://youtu.be/xq_6ey2JGAE?feature=shared

39

https://youtu.be/xq_6ey2JGAE?feature=shared


Pseudo-Random Number Generation

Check the quality of the built-in PRNG that you rely on:

▶ Does it rely on a proper RNG as seed? Is it pre-seeded?

▶ Is the PRNG cryptographically secure? NIST-approved?

▶ Verify the output: Do values repeat? Correct bit-size?

▶ Which library/version is used? Known vulnerabilities?

Some good resources are available at https:
//github.com/veorq/cryptocoding#use-strong-randomness.

40

https://github.com/veorq/cryptocoding#use-strong-randomness
https://github.com/veorq/cryptocoding#use-strong-randomness


NIST Standard

Figure: https://csrc.nist.gov/pubs/sp/800/22/r1/upd1/final

41

https://csrc.nist.gov/pubs/sp/800/22/r1/upd1/final


Choice of Primitives

Check the cryptographic primitive that you rely on:

▶ Does it rely on a proper PRNG? Is it pre-seeded?

▶ Is it the newest/most secure primitive? NIST-approved?

▶ Verify the output: Do values repeat? Correct bit-size?

▶ Which library/version is used? Known vulnerabilities?

▶ Are there de-randomized algorithms available instead?

42



Rolling Your Own Crypto

Figure: https://securitycryptographywhatever.buzzsprout.co
m/1822302/8953842-the-great-roll-your-own-crypto-debate-w
ith-filippo-valsorda

43

https://securitycryptographywhatever.buzzsprout.com/1822302/8953842-the-great-roll-your-own-crypto-debate-with-filippo-valsorda
https://securitycryptographywhatever.buzzsprout.com/1822302/8953842-the-great-roll-your-own-crypto-debate-with-filippo-valsorda
https://securitycryptographywhatever.buzzsprout.com/1822302/8953842-the-great-roll-your-own-crypto-debate-with-filippo-valsorda


Questions?

44


	Announcements
	Primality Testing
	Factorization
	De-Randomization
	Takeaways

