NTNU | Norwegian University of Science and Technology

RANDOMNESS 2

TTM4205 – Lecture 3

Caroline Sandsbråten

29.08.2023

Who am I?

Elliptic Curves

ECDSA

Breaking ECDSA

Breaking (Bad) ECDSA in practice

Who am I?

Elliptic Curves

ECDSA

Breaking ECDSA

Breaking (Bad) ECDSA in practice

Caroline Sandsbråten

- > 2nd year PhD student at IIK
- Tjerand is my PhD supervisor
- Researching lattice-based PQC
- I finished KomTek in 2022, thesis on ECC
- I volunteer at Samfundet. Previously in Fotogjengen, currently in ITK.

Who am I?

Elliptic Curves

ECDSA

Breaking ECDSA

Breaking (Bad) ECDSA in practice

Elliptic Curves

Definitions

- ► (Elliptic Curves) Let *K* be a field. An elliptic curve over *K* is a non-singular cubic curve whose points satisfy the equation $Ax^3 + Bx^2y + Cxy^2 + Dy^3 + Ex^2 + Fxy + Gy^2 + Hx + Iy + J = 0.$
- (Elliptic Curves over \mathbb{F}_p) Let \mathbb{F}_p , where $p \neq 2, p \neq 3$ be a finite field. An elliptic curve over \mathbb{F}_p is a non-singular cubic curve whose points satisfy the equation $y^2 = x^3 + Ax + B$, and the non-singular condition $4A^3 + 27B^2 \neq 0$.

Why Elliptic Curves?

Hard problems

- ▶ (DLP) Let *p* be a prime, and let *a*, *b* be integers such that $a \mod p \neq 0$ and *b* mod $p \neq 0$. Assume there exists an integer *x* such that $a^x \equiv b \mod p$ The DLP is then to find *x* such that $a^x \equiv b \mod p$. More generally, we have the following. Let *G* be any multiplicative group, and let $a, b \in G$. Assume that $a^x = b$ for some integer *x*. The DLP is then to find *x* such that the above equation is satisfied.
- Using Elliptic Curves, the same problems becomes the ECDLP:
- (ECDLP) Let $P_1, P_2 \in E(\mathbb{F}_p)$, where $E(\mathbb{F}_p)$ is an elliptic curve over a finite field \mathbb{F}_p and p is a prime, and P_1 , and P_2 is points on the elliptic curve $E(\mathbb{F}_p)$. The ECDLP is then to find an integer x satisfying the equation $xP_1 = P_2$.

Who am I?

Elliptic Curves

ECDSA

Breaking ECDSA

Breaking (Bad) ECDSA in practice

ECDSA Signature Algorithm

(Input): Message m, private key α , the elliptic curve $E(\mathbb{F})$, and the domain parameters, G, and p.

(Output): Digital signature r, s.

(Algorithm):

$$\begin{split} h &\leftarrow hash(m) \\ k &\leftarrow random(0,n) \\ (x,y) &\leftarrow kG \\ r &\leftarrow x \mod n \\ s &\leftarrow k^{-1} \cdot (h+r \cdot \alpha) \mod p \\ \textbf{return } r, s \end{split}$$

▶ What would happen if *k* is not random?

ECDSA Signature Verification

(**Input**): Message *m*, public key *Q*, the elliptic curve *E*, and domain parameters of the elliptic curve *G*, and *p*.

(Output): Boolean value. True if the signature is verified as being correct, False if not.

(Algorithm): if Q = O or Q is not on E then return False end if $h \leftarrow hash(m)$ $u_1 \leftarrow h \cdot s^{-1} \mod p$ $u_2 \leftarrow r \cdot s^{-1} \mod p$ $(x,y) \leftarrow u_1 \cdot G + u_2 \cdot Q$ if (x, y) = O then return False end if if $r \equiv x \mod p$ then return True end if return False

Who am I?

Elliptic Curves

ECDSA

Breaking ECDSA

Breaking (Bad) ECDSA in practice

What mistakes do we see in practice?

Using a hash as a nonce

- "Smart" software made to trick people
- People trying and failing to do everything "by hand"
- And more? Let's discuss

Two methods

- One utilizing Fourier Analysis
- One utilizing the Hidden Number Problem and lattice basis reduction
- Today: The Hidden Number Problem (HNP)

Lattices

Definition

Let $B = [b_1, \ldots, b_k] \in \mathbb{R}^{n \cdot k}$ be a linearly independent set in \mathbb{R}^n . The lattice L(B) generated by matrix B is the set of all linear combinations of the columns of B with integer coefficients. B is thus a basis for lattice L(B).

$$L(B) = \left\{ Bx : x \in \mathbb{Z}^k \right\} = \left\{ \sum_{i=1}^k x_i \cdot b_i : x_i \in \mathbb{Z} \right\}$$

Lattice Problems

Definition (Shortest Vector Problem.)

Given a lattice *L*, find a vector $v \in L \setminus \{0\}$ such that $||v|| \le ||u_i|| \forall u_i \in L \setminus \{0\}$

Definition (Closest Vector Problem.)

Given a lattice *L*, and a vector *u*, find the lattice vector *v* such that $||u - v|| \le ||u - v_i||, \forall v_i \in L.$

Solving Lattice Problems

- 1. The Lenstra-Lenstra-Lovàsz Algorithm (LLL)
- 2. The block Korkine-Zolotarev Algorithm (BKZ)

The Hidden Number Problem (HNP)

Adversary is given d pairs of integers $\{(t_i, u_i)\}_{i=1}^d$ Such that $t_i x - u_i \mod p = b_i$ (1) Where $|b_i| < B$, for some B < p

Who am I?

Elliptic Curves

ECDSA

Breaking ECDSA

Breaking (Bad) ECDSA in practice

Lets try our attack

Lets write some code!

Who am I?

Elliptic Curves

ECDSA

Breaking ECDSA

Breaking (Bad) ECDSA in practice

Biased Nonce Sense: Lattice Attacks against Weak ECDSA Signatures in Cryptocurrencies

Links https://eprint.iacr.org/2019/023

Authors

► Joachim Breitner

Nadia Heninger

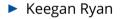
The curious case of the half-half Bitcoin ECDSA nonces

Links

https://eprint.iacr.org/2023/841

Authors

- Dylan Rowe
- Joachim Breitner
- Nadia Heninger



Fast Practical Lattice Reduction through Iterated Compression

Links

Paper: https://eprint.iacr.org/2023/237
Implementation: https://github.com/keeganryan/flatter

Authors

Nadia Heninger

Books

Elliptic Curves: Number Theory and Cryptography

https://people.cs.nctu.edu.tw/~rjchen/ECC2012S/Elliptic%20Curves% 20Number%20Theory%20And%20Cryptography%202n.pdf

Bitcoin and Cryptocurrency Technologies

https://bitcoinbook.cs.princeton.edu/

