B NTNU | sencianaechnoiogy

RANDOMNESS 1
TTM4205 - Lecture 2

Tjerand Silde

24.08.2023

Contents

Introduction

Security Parameter

Random Number Generators
Pseudorandom Number Generators
Schnorr Signatures

ElGamal Encryption

RSA Cryptosystem

Secure Hash Functions

@ NTNU | ey

Contents

Introduction

@ NTNU | ey

Randomness

Randomness is the foundation in designing secure schemes:

» parameter and key generation

» probabilistic encryption and signatures
» modeling of hash functions

» analyzing attacks and security

> protecting implementations

@ NTNU | cacnremons

Entropy

Let X be an alphabet. For example, we have X = {0, 1} when
flipping a coin and X = {1,2,3,4,5,6} when rolling a die.

Let p(z) be a probability distribution over X s.t. p: X — [0, 1].
We can e.g. assume that p is the uniform distribution over X.

Let X be a random variable. The (bit) entropy H of X with

respect to probability distribution p over alphabet X is
defined as H(X) = — > v p(x)logy p(x) = E[—log, p(X)].

@ NTNU | cacnremons

Entropy

int getRandomNumber ()

return Y. // chosen by fuir dice roll.
// Quaranteed to be random.

@ NTNU | caemremons

Entropy

Examples
» Let X = {0,1} where p(0) = 0,p(1) = 1. Entropy is 0 bits.

@ NTNU | sty

Entropy

Examples
» Let X = {0,1} where p(0) = 0,p(1) = 1. Entropy is 0 bits.

> Let X = {0,1} where p(0) = p(1) = 1/2. Entropy is 1 bit.

@ NTNU | sty

Entropy

Examples
» Let X = {0,1} where p(0) = 0,p(1) = 1. Entropy is 0 bits.

> Let X = {0,1} where p(0) = p(1) = 1/2. Entropy is 1 bit.

> Let X ={0,1} where p(0) =1/3,p(1) = 2/3. Entropy
is —(1/3-—1.584 +2/3-—0.584) = 0.92 bits.

@ NTNU | cacnremons

Entropy

Examples
» Let X = {0,1} where p(0) = 0,p(1) = 1. Entropy is 0 bits.

> Let X = {0,1} where p(0) = p(1) = 1/2. Entropy is 1 bit.

> Let X ={0,1} where p(0) =1/3,p(1) = 2/3. Entropy
is —(1/3-—1.584 +2/3-—0.584) = 0.92 bits.

> Let X = {0,1} where p(0) = 1/4,p(1) = 3/4. Entropy
is —(1/4-—2+3/4-—0.42) = 0.81 bits.

@ NTNU | cacnremons

Entropy

Examples
» Let X = {0,1} where p(0) = 0,p(1) = 1. Entropy is 0 bits.
> Let X = {0,1} where p(0) = p(1) = 1/2. Entropy is 1 bit.
> Let X ={0,1} where p(0) =1/3,p(1) = 2/3. Entropy
is —(1/3- —1.584 4 2/3 - —0.584) = 0.92 bits.
> Let X = {0,1} where p(0) = 1/4,p(1) = 3/4. Entropy
is —(1/4 - —2+3/4-—0.42) = 0.81 bits.
> Let X = {0,1}*, uniform distribution. Entropy is X bits.

@ NTNU | cacnremons

Contents

Security Parameter

@ NTNU | ey

Security Parameter

We estimate the security of a scheme by how many
bit-operations are needed to break it.

If an AES-128 key is sampled uniformly at random,
then it takes 2'28 trials to guess the right key.

We do not know of more efficient attacks against
AES-128 than brute force guessing the key.

@ NTNU | cacnremons

Security Parameter

We have more efficient algorithms for computing discrete
logarithms. The generic algorithms run in time ~ /G, ops.

Elliptic curves are generic groups without more structure.
Need groups of prime size 256 bits to get 128 bits of security.

@ NTNU | cacnremons

Security Parameter

We have even more efficient algorithms for computing
discrete logarithms in finite fields and factoring bi-primes.

For finite field DH and DSA over F,, and for RSA encryption
and signatures over Z,, we need p and n to be of 3072 bits.

@ NTNU | cacnremons

Security Parameter

The computing power of the Bitcoin blockchain network is
roughly 260 operations per second. 2% operations per year.

RSA-1024 has only 80 bits of security. We think this has been
breakable by the NSA for at least ten years already.

We estimate that 2'2% operations are infeasible even when
using all computing power on Earth for the rest of the
universe's lifetime. Quantum computers are not faster, but
quantum algorithms might be more efficient.

@ NTNU | cacnrecmons

Contents

Random Number Generators

@ NTNU | ey

Sources of Randomness

To generate real randomness, we need a source of entropy:

> temperature measurements
» acoustic noise
» air turbulence

» electromagnetic radiation

These sources are hard to come by, measure, and analyse.

@ NTNU | cacnremons 14

Random Numbers - Numberphile

P 1

1 A
- \ u
JAMES CLEWITT: | think this is

going to be a really exciti_
] LA O

i» B oTEO 3

/)
y

Figure: https://www.youtube.com/watch?v=SxP30euw3-0

@ NTNU | sy 15

https://www.youtube.com/watch?v=SxP30euw3-0

Sources of Randomness

What modern computers do today:

» keyboard timings
» mouse movements
» disk and network activity

» lava lamps*

It is recommended to use more than only one source. The
operating system usually mixes several of the above.

@ NTNU | scnrecmons

Sources of Randomness

WEE

A A|A Ay
il ol

Figure: Cloudflare lava lamps: https://www.cloudflare.com/
en-gb/learning/ssl/lava-lamp-encryption

@ NTNU | saoenirecmons

17

https://www.cloudflare.com/en-gb/learning/ssl/lava-lamp-encryption
https://www.cloudflare.com/en-gb/learning/ssl/lava-lamp-encryption

Bad Sources of Randomness

Sources that you should not use:

> the (exact) time of day (in us))
» precomputed factory seed files
» process id or other environment variables

» whatever your “new friend” told you to use

If you extract too much randomness within a short time
frame, then the entropy of fresh samples goes down.

@ NTNU | cacnremons

Sources of Randomness

TOUR OF ACCOUNTING |§ ¢[ane
3 NINE NINE <l vou THAT'S THE
OVER HERE H NINE NINE £l sume PROBLEM
3 H WITH RAN-
WE HAVE OUR] NINE NINE 5| Thats
RANDOM NUMBER |3 £l RANDOM? DOMMNESS
GENERATOR. \ £ YOU CAN
E 3 L NEVER BE
HE 5 SURE.
3
e D 5

@ NTNU | sy

Contents

Pseudorandom Number Generators

@ NTNU | ey

20

Pseudorandom Number Generators

Pseudorandom Number Generators are deterministic
algorithms that take as input a small sequence of real
random bits and expand it into long sequences of
pseudorandom bits streams.

A PRNG can perform three operations:

1. init() Initializes the internal state of the PRNG
2. refresh(R) Updates the state with randomness R

3. next(N) Returns N pseudorandom bits and refresh

@ NTNU | cacnremons

21

Security Concerns

We want the following security properties of a PRNG:

1. forward secrecy means that previously generated
pseudorandom bits are impossible to recover

2. prediction resistance means that future pseudorandom
bits are impossible to predict

@ NTNU | cacnremons

22

Under the Hood

Given a source of real randomness, the PRNGs we use today
takes that as input and uses symmetric ciphers (e.g. AES) or
hash-functions (e.g. SHA-2) to generate pseudorandom bits.

@ NTNU | cacnremons

23

Non-Cryptographic PRNGs

Be aware that most programming languages provide
non-cryptographic PRNGs by default. These PRNGs output
random-looking numbers that might be predictable given e.g.
a few samples or by running statistical tests on the output.

Some classic non-cryptographic PRNGs that people use:

» Mersenne Twister (Python, PHP, Ruby, Pascal,...)
» Linear Congruential Generator (Java, Python, Rust,...)

» rand and drand48 (libc), rand and mt_rand (PHP)

@ NTNU | cacnremons 24

Contents

Schnorr Signatures

@ NTNU | ey

25

Schnorr Signatures

Let G be a group of prime order p and let g be a generator
for G. Denote by pp the public parameters (G, g, p).

Let H be a cryptographic hash function that outputs
uniformly random elements in Z,,.

Let the secret key sk < Z, be sampled uniformly at random,
and let the public key be pk = ¢°, where pk is made public.

@ NTNU | cacnremons 26

Schnorr Signatures

The Schnorr signature of message m is computed as:

1. Sample random r < Z, and compute R = ¢".
2. Compute the output challenge as ¢ = H(pp, pk, m, R).

3. Compute the response z = r — ¢ - sk. Output o = (¢, 2).

To verify the signature, compute R’ = ¢* - pk® and check if

c= H (pp, pk, m, R'). If correct, accept, and otherwise reject.

@ NTNU | cacnremons

27

Contents

ElGamal Encryption

@ NTNU | ey

28

ElGamal Encryption

Let pp = (G, g, p) as above. Sample uniform sk < Z, and
compute pk = ¢*, where pk is made public.

The ElGamal scheme, with m € G, works as follows:

Enc: Sample a random z <+ Z, and compute the
ciphertextas X = ¢g* and Y = pk® - m.

Dec : Decrypt the ciphertext (X,Y) to get the
message masm =Y - XK,

@ NTNU | cacnremons

29

Contents

RSA Cryptosystem

@ NTNU | ey

30

RSA Cryptosystem

Sample large random prime numbers p and ¢ and compute
productn =p-q. Compute ¢(n) =(p—1)- (¢ —1).

Choose integer e (co-prime with ¢(n)) and compute d such
thate-d =1 mod ¢(n). Let sk = (p,q,d) and pk = (n, e).

The RSA encryption scheme, with m € Z,,, works as follows:

Enc: Use (randomized) padding scheme p to
compute the ciphertext ¢ = u(m)¢ mod n.

Dec : Decrypt the ciphertext ¢ to get the message m
as the inverse padding ~!(c? mod n).

@ NTNU | cacnremons

31

Contents

Secure Hash Functions

@ NTNU | ey

32

Secure Hash Functions

When proving the security of cryptographic schemes that
use hash functions H as underlying building blocks, we often
model H as random oracles with an internal table of values.

You can read more about random oracles at Matthew
Green'’s blog on cryptographic engineering:
https://blog.cryptographyengineering.com/2011/09/29/
what-is-random-oracle-model-and-why-3

@ NTNU | cacnremons

33

https://blog.cryptographyengineering.com/2011/09/29/what-is-random-oracle-model-and-why-3
https://blog.cryptographyengineering.com/2011/09/29/what-is-random-oracle-model-and-why-3

@ NTNU | sanctamirecnon

Questions?

ity of
logy

34

	Introduction
	Security Parameter
	Random Number Generators
	Pseudorandom Number Generators
	Schnorr Signatures
	ElGamal Encryption
	RSA Cryptosystem
	Secure Hash Functions

