# NTNU | Norwegian University of Science and Technology

## **RANDOMNESS 1**

TTM4205 – Lecture 2

Tjerand Silde

24.08.2023

- Introduction
- **Security Parameter**
- **Random Number Generators**
- **Pseudorandom Number Generators**
- **Schnorr Signatures**
- **ElGamal Encryption**
- **RSA Cryptosystem**
- **Secure Hash Functions**



#### Introduction

- **Security Parameter**
- **Random Number Generators**
- **Pseudorandom Number Generators**
- **Schnorr Signatures**
- **ElGamal Encryption**
- **RSA Cryptosystem**
- **Secure Hash Functions**



#### Randomness

Randomness is the foundation in designing secure schemes:

- parameter and key generation
- probabilistic encryption and signatures
- modeling of hash functions
- analyzing attacks and security
- protecting implementations



Let  $\mathcal{X}$  be an alphabet. For example, we have  $\mathcal{X} = \{0, 1\}$  when flipping a coin and  $\mathcal{X} = \{1, 2, 3, 4, 5, 6\}$  when rolling a die.

Let p(x) be a probability distribution over  $\mathcal{X}$  s.t.  $p: \mathcal{X} \to [0, 1]$ . We can e.g. assume that p is the uniform distribution over  $\mathcal{X}$ .

Let *X* be a random variable. The *(bit) entropy H* of *X* with respect to probability distribution *p* over alphabet  $\mathcal{X}$  is defined as  $H(X) = -\sum_{x \in \mathcal{X}} p(x) \log_2 p(x) = \mathbb{E}[-\log_2 p(X)].$ 



## int getRandomNumber() { return 4; // chosen by fair dice roll. // guaranteed to be random. }



#### **Examples**

• Let  $\mathcal{X} = \{0,1\}$  where p(0) = 0, p(1) = 1. Entropy is 0 bits.



#### **Examples**

• Let  $\mathcal{X} = \{0,1\}$  where p(0) = 0, p(1) = 1. Entropy is 0 bits.

• Let  $\mathcal{X} = \{0, 1\}$  where p(0) = p(1) = 1/2. Entropy is 1 bit.



#### **Examples**

- Let  $\mathcal{X} = \{0,1\}$  where p(0) = 0, p(1) = 1. Entropy is 0 bits.
- Let  $\mathcal{X} = \{0, 1\}$  where p(0) = p(1) = 1/2. Entropy is 1 bit.
- ▶ Let  $\mathcal{X} = \{0, 1\}$  where p(0) = 1/3, p(1) = 2/3. Entropy is  $-(1/3 \cdot -1.584 + 2/3 \cdot -0.584) = 0.92$  bits.



#### **Examples**

- Let  $\mathcal{X} = \{0, 1\}$  where p(0) = 0, p(1) = 1. Entropy is 0 bits.
- Let  $\mathcal{X} = \{0, 1\}$  where p(0) = p(1) = 1/2. Entropy is 1 bit.
- Let  $\mathcal{X} = \{0, 1\}$  where p(0) = 1/3, p(1) = 2/3. Entropy is  $-(1/3 \cdot -1.584 + 2/3 \cdot -0.584) = 0.92$  bits.
- ▶ Let  $\mathcal{X} = \{0, 1\}$  where p(0) = 1/4, p(1) = 3/4. Entropy is  $-(1/4 \cdot -2 + 3/4 \cdot -0.42) = 0.81$  bits.



#### **Examples**

- Let  $\mathcal{X} = \{0, 1\}$  where p(0) = 0, p(1) = 1. Entropy is 0 bits.
- Let  $\mathcal{X} = \{0, 1\}$  where p(0) = p(1) = 1/2. Entropy is 1 bit.
- ▶ Let  $\mathcal{X} = \{0, 1\}$  where p(0) = 1/3, p(1) = 2/3. Entropy is  $-(1/3 \cdot -1.584 + 2/3 \cdot -0.584) = 0.92$  bits.
- ▶ Let  $\mathcal{X} = \{0, 1\}$  where p(0) = 1/4, p(1) = 3/4. Entropy is  $-(1/4 \cdot -2 + 3/4 \cdot -0.42) = 0.81$  bits.

• Let  $\mathcal{X} = \{0,1\}^{\lambda}$ , uniform distribution. Entropy is  $\lambda$  bits.



#### Introduction

#### **Security Parameter**

**Random Number Generators** 

**Pseudorandom Number Generators** 

**Schnorr Signatures** 

**ElGamal Encryption** 

**RSA Cryptosystem** 

**Secure Hash Functions** 



We estimate the security of a scheme by how many bit-operations are needed to break it.

If an AES-128 key is sampled uniformly at random, then it takes  $2^{128}$  trials to guess the right key.

We do not know of more efficient attacks against AES-128 than brute force guessing the key.



We have more efficient algorithms for computing discrete logarithms. The generic algorithms run in time  $\approx \sqrt{\mathbb{G}_p}$  ops.

Elliptic curves are generic groups without more structure. Need groups of prime size 256 bits to get 128 bits of security.



#### **Security Parameter**

We have even more efficient algorithms for computing discrete logarithms in finite fields and factoring bi-primes.

For finite field DH and DSA over  $\mathbb{F}_p$  and for RSA encryption and signatures over  $\mathbb{Z}_n$  we need p and n to be of 3072 bits.



## **Security Parameter**

The computing power of the Bitcoin blockchain network is roughly  $2^{60}$  operations per second.  $2^{85}$  operations per year.

RSA-1024 has only 80 bits of security. We think this has been breakable by the NSA for at least ten years already.

We estimate that 2<sup>128</sup> operations are infeasible even when using all computing power on Earth for the rest of the universe's lifetime. Quantum computers are not faster, but quantum algorithms might be more efficient.



#### Introduction

**Security Parameter** 

#### **Random Number Generators**

- **Pseudorandom Number Generators**
- **Schnorr Signatures**
- **ElGamal Encryption**
- **RSA Cryptosystem**
- **Secure Hash Functions**



#### **Sources of Randomness**

To generate *real* randomness, we need a source of entropy:

- temperature measurements
- acoustic noise
- air turbulence
- electromagnetic radiation

These sources are hard to come by, measure, and analyse.



#### **Random Numbers - Numberphile**



#### Figure: https://www.youtube.com/watch?v=SxP30euw3-0



#### **Sources of Randomness**

What modern computers do today:

keyboard timings

- mouse movements
- disk and network activity

lava lamps\*

It is recommended to use more than only one source. The operating system usually mixes several of the above.



#### Sources of Randomness



**Figure:** Cloudflare lava lamps: https://www.cloudflare.com/ en-gb/learning/ssl/lava-lamp-encryption



## **Bad Sources of Randomness**

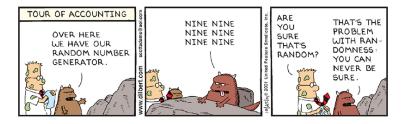
Sources that you should not use:

- the (exact) time of day (in μs))
- precomputed factory seed files
- process id or other environment variables
- whatever your "new friend" told you to use

If you extract too much randomness within a short time frame, then the entropy of fresh samples goes down.



#### **Sources of Randomness**





- Introduction
- **Security Parameter**
- **Random Number Generators**

#### **Pseudorandom Number Generators**

- **Schnorr Signatures**
- **ElGamal Encryption**
- **RSA Cryptosystem**
- **Secure Hash Functions**



## **Pseudorandom Number Generators**

Pseudorandom Number Generators are deterministic algorithms that take as input a small sequence of *real* random bits and expand it into long sequences of *pseudorandom* bits streams.

A PRNG can perform three operations:

- 1. init() Initializes the internal state of the PRNG
- **2. refresh**(*R*) Updates the state with randomness *R*
- **3. next(***N***)** Returns *N* pseudorandom bits and refresh



## **Security Concerns**

We want the following security properties of a PRNG:

- **1.** *forward secrecy* means that previously generated pseudorandom bits are impossible to recover
- **2.** *prediction resistance* means that future pseudorandom bits are impossible to predict



#### **Under the Hood**

Given a source of *real* randomness, the PRNGs we use today takes that as input and uses symmetric ciphers (e.g. AES) or hash-functions (e.g. SHA-2) to generate pseudorandom bits.



## Non-Cryptographic PRNGs

Be aware that most programming languages provide non-cryptographic PRNGs by default. These PRNGs output *random-looking* numbers that might be predictable given e.g. a few samples or by running statistical tests on the output.

Some classic non-cryptographic PRNGs that people use:

- Mersenne Twister (Python, PHP, Ruby, Pascal,...)
- Linear Congruential Generator (Java, Python, Rust,...)
- rand and drand48 (libc), rand and mt\_rand (PHP)



- Introduction
- **Security Parameter**
- **Random Number Generators**
- **Pseudorandom Number Generators**

#### **Schnorr Signatures**

- **ElGamal Encryption**
- **RSA Cryptosystem**
- **Secure Hash Functions**



Let  $\mathbb{G}$  be a group of prime order p and let g be a generator for  $\mathbb{G}$ . Denote by pp the public parameters  $(\mathbb{G}, g, p)$ .

Let *H* be a cryptographic hash function that outputs uniformly random elements in  $\mathbb{Z}_p$ .

Let the secret key sk  $\leftarrow$ s  $\mathbb{Z}_p$  be sampled uniformly at random, and let the public key be  $pk = g^{sk}$ , where pk is made public.



#### **Schnorr Signatures**

The Schnorr signature of message m is computed as:

- **1.** Sample random  $r \leftarrow \mathbb{Z}_p$  and compute  $R = g^r$ .
- **2.** Compute the output challenge as c = H(pp, pk, m, R).
- **3.** Compute the response  $z = r c \cdot \text{sk}$ . Output  $\sigma = (c, z)$ .

To verify the signature, compute  $R' = g^z \cdot pk^c$  and check if  $c \stackrel{?}{=} H(pp, pk, m, R')$ . If correct, accept, and otherwise reject.



- Introduction
- **Security Parameter**
- **Random Number Generators**
- **Pseudorandom Number Generators**
- **Schnorr Signatures**
- **ElGamal Encryption**
- **RSA Cryptosystem**
- **Secure Hash Functions**



## **ElGamal Encryption**

Let  $pp = (\mathbb{G}, g, p)$  as above. Sample uniform sk  $\leftarrow \$ \mathbb{Z}_p$  and compute  $pk = g^{sk}$ , where pk is made public.

The ElGamal scheme, with  $m \in \mathbb{G}$ , works as follows:

Enc : Sample a random  $x \leftarrow \mathbb{Z}_p$  and compute the ciphertext as  $X = g^x$  and  $Y = pk^x \cdot m$ .

Dec : Decrypt the ciphertext (X, Y) to get the message m as  $m = Y \cdot X^{-sk}$ .



- Introduction
- **Security Parameter**
- **Random Number Generators**
- **Pseudorandom Number Generators**
- **Schnorr Signatures**
- **ElGamal Encryption**
- **RSA Cryptosystem**
- **Secure Hash Functions**



## **RSA Cryptosystem**

Sample large random prime numbers p and q and compute product  $n = p \cdot q$ . Compute  $\phi(n) = (p - 1) \cdot (q - 1)$ .

Choose integer *e* (co-prime with  $\phi(n)$ ) and compute *d* such that  $e \cdot d \equiv 1 \mod \phi(n)$ . Let sk = (p, q, d) and pk = (n, e).

The RSA encryption scheme, with  $m \in \mathbb{Z}_n$ , works as follows:

- Enc : Use (randomized) padding scheme  $\mu$  to compute the ciphertext  $c \equiv \mu(m)^e \mod n$ .
- Dec : Decrypt the ciphertext c to get the message m as the inverse padding  $\mu^{-1}(c^d \mod n)$ .



- Introduction
- **Security Parameter**
- **Random Number Generators**
- **Pseudorandom Number Generators**
- **Schnorr Signatures**
- **ElGamal Encryption**
- **RSA Cryptosystem**
- **Secure Hash Functions**



#### **Secure Hash Functions**

When proving the security of cryptographic schemes that use hash functions H as underlying building blocks, we often model H as *random oracles* with an internal table of values.

You can read more about random oracles at Matthew Green's blog on cryptographic engineering: https://blog.cryptographyengineering.com/2011/09/29/ what-is-random-oracle-model-and-why-3



# Questions?

