
RANDOMNESS 1
TTM4205 – Lecture 2

Tjerand Silde

24.08.2023



Contents

Introduction

Security Parameter

Random Number Generators

Pseudorandom Number Generators

Schnorr Signatures

ElGamal Encryption

RSA Cryptosystem

Secure Hash Functions

2



Contents

Introduction

Security Parameter

Random Number Generators

Pseudorandom Number Generators

Schnorr Signatures

ElGamal Encryption

RSA Cryptosystem

Secure Hash Functions

3



Randomness

Randomness is the foundation in designing secure schemes:

▶ parameter and key generation

▶ probabilistic encryption and signatures

▶ modeling of hash functions

▶ analyzing attacks and security

▶ protecting implementations

4



Entropy

Let X be an alphabet. For example, we have X = {0, 1} when
flipping a coin and X = {1, 2, 3, 4, 5, 6} when rolling a die.

Let p(x) be a probability distribution over X s.t. p : X → [0, 1].
We can e.g. assume that p is the uniform distribution over X .

Let X be a random variable. The (bit) entropy H of X with
respect to probability distribution p over alphabet X is
defined as H(X) = −

∑
x∈X p(x) log2 p(x) = E[− log2 p(X)].

5



Entropy

6



Entropy

Examples
▶ Let X = {0, 1} where p(0) = 0, p(1) = 1. Entropy is 0 bits.

▶ Let X = {0, 1} where p(0) = p(1) = 1/2. Entropy is 1 bit.

▶ Let X = {0, 1} where p(0) = 1/3, p(1) = 2/3. Entropy
is −(1/3 · −1.584 + 2/3 · −0.584) = 0.92 bits.

▶ Let X = {0, 1} where p(0) = 1/4, p(1) = 3/4. Entropy
is −(1/4 · −2 + 3/4 · −0.42) = 0.81 bits.

▶ Let X = {0, 1}λ, uniform distribution. Entropy is λ bits.

7



Entropy

Examples
▶ Let X = {0, 1} where p(0) = 0, p(1) = 1. Entropy is 0 bits.

▶ Let X = {0, 1} where p(0) = p(1) = 1/2. Entropy is 1 bit.

▶ Let X = {0, 1} where p(0) = 1/3, p(1) = 2/3. Entropy
is −(1/3 · −1.584 + 2/3 · −0.584) = 0.92 bits.

▶ Let X = {0, 1} where p(0) = 1/4, p(1) = 3/4. Entropy
is −(1/4 · −2 + 3/4 · −0.42) = 0.81 bits.

▶ Let X = {0, 1}λ, uniform distribution. Entropy is λ bits.

7



Entropy

Examples
▶ Let X = {0, 1} where p(0) = 0, p(1) = 1. Entropy is 0 bits.

▶ Let X = {0, 1} where p(0) = p(1) = 1/2. Entropy is 1 bit.

▶ Let X = {0, 1} where p(0) = 1/3, p(1) = 2/3. Entropy
is −(1/3 · −1.584 + 2/3 · −0.584) = 0.92 bits.

▶ Let X = {0, 1} where p(0) = 1/4, p(1) = 3/4. Entropy
is −(1/4 · −2 + 3/4 · −0.42) = 0.81 bits.

▶ Let X = {0, 1}λ, uniform distribution. Entropy is λ bits.

7



Entropy

Examples
▶ Let X = {0, 1} where p(0) = 0, p(1) = 1. Entropy is 0 bits.

▶ Let X = {0, 1} where p(0) = p(1) = 1/2. Entropy is 1 bit.

▶ Let X = {0, 1} where p(0) = 1/3, p(1) = 2/3. Entropy
is −(1/3 · −1.584 + 2/3 · −0.584) = 0.92 bits.

▶ Let X = {0, 1} where p(0) = 1/4, p(1) = 3/4. Entropy
is −(1/4 · −2 + 3/4 · −0.42) = 0.81 bits.

▶ Let X = {0, 1}λ, uniform distribution. Entropy is λ bits.

7



Entropy

Examples
▶ Let X = {0, 1} where p(0) = 0, p(1) = 1. Entropy is 0 bits.

▶ Let X = {0, 1} where p(0) = p(1) = 1/2. Entropy is 1 bit.

▶ Let X = {0, 1} where p(0) = 1/3, p(1) = 2/3. Entropy
is −(1/3 · −1.584 + 2/3 · −0.584) = 0.92 bits.

▶ Let X = {0, 1} where p(0) = 1/4, p(1) = 3/4. Entropy
is −(1/4 · −2 + 3/4 · −0.42) = 0.81 bits.

▶ Let X = {0, 1}λ, uniform distribution. Entropy is λ bits.

7



Contents

Introduction

Security Parameter

Random Number Generators

Pseudorandom Number Generators

Schnorr Signatures

ElGamal Encryption

RSA Cryptosystem

Secure Hash Functions

8



Security Parameter

We estimate the security of a scheme by how many
bit-operations are needed to break it.

If an AES-128 key is sampled uniformly at random,
then it takes 2128 trials to guess the right key.

We do not know of more efficient attacks against
AES-128 than brute force guessing the key.

9



Security Parameter

We have more efficient algorithms for computing discrete
logarithms. The generic algorithms run in time ≈

√
Gp ops.

Elliptic curves are generic groups without more structure.
Need groups of prime size 256 bits to get 128 bits of security.

10



Security Parameter

We have even more efficient algorithms for computing
discrete logarithms in finite fields and factoring bi-primes.

For finite field DH and DSA over Fp and for RSA encryption
and signatures over Zn we need p and n to be of 3072 bits.

11



Security Parameter

The computing power of the Bitcoin blockchain network is
roughly 260 operations per second. 285 operations per year.

RSA-1024 has only 80 bits of security. We think this has been
breakable by the NSA for at least ten years already.

We estimate that 2128 operations are infeasible even when
using all computing power on Earth for the rest of the
universe’s lifetime. Quantum computers are not faster, but
quantum algorithms might be more efficient.

12



Contents

Introduction

Security Parameter

Random Number Generators

Pseudorandom Number Generators

Schnorr Signatures

ElGamal Encryption

RSA Cryptosystem

Secure Hash Functions

13



Sources of Randomness

To generate real randomness, we need a source of entropy:

▶ temperature measurements

▶ acoustic noise

▶ air turbulence

▶ electromagnetic radiation

These sources are hard to come by, measure, and analyse.

14



Random Numbers - Numberphile

Figure: https://www.youtube.com/watch?v=SxP30euw3-0

15

https://www.youtube.com/watch?v=SxP30euw3-0


Sources of Randomness

What modern computers do today:

▶ keyboard timings

▶ mouse movements

▶ disk and network activity

▶ lava lamps∗

It is recommended to use more than only one source. The
operating system usually mixes several of the above.

16



Sources of Randomness

Figure: Cloudflare lava lamps: https://www.cloudflare.com/
en-gb/learning/ssl/lava-lamp-encryption

17

https://www.cloudflare.com/en-gb/learning/ssl/lava-lamp-encryption
https://www.cloudflare.com/en-gb/learning/ssl/lava-lamp-encryption


Bad Sources of Randomness

Sources that you should not use:

▶ the (exact) time of day (in µs))

▶ precomputed factory seed files

▶ process id or other environment variables

▶ whatever your “new friend” told you to use

If you extract too much randomness within a short time
frame, then the entropy of fresh samples goes down.

18



Sources of Randomness

19



Contents

Introduction

Security Parameter

Random Number Generators

Pseudorandom Number Generators

Schnorr Signatures

ElGamal Encryption

RSA Cryptosystem

Secure Hash Functions

20



Pseudorandom Number Generators

Pseudorandom Number Generators are deterministic
algorithms that take as input a small sequence of real
random bits and expand it into long sequences of
pseudorandom bits streams.

A PRNG can perform three operations:

1. init() Initializes the internal state of the PRNG

2. refresh(R) Updates the state with randomness R

3. next(N ) Returns N pseudorandom bits and refresh

21



Security Concerns

We want the following security properties of a PRNG:

1. forward secrecy means that previously generated
pseudorandom bits are impossible to recover

2. prediction resistance means that future pseudorandom
bits are impossible to predict

22



Under the Hood

Given a source of real randomness, the PRNGs we use today
takes that as input and uses symmetric ciphers (e.g. AES) or
hash-functions (e.g. SHA-2) to generate pseudorandom bits.

23



Non-Cryptographic PRNGs

Be aware that most programming languages provide
non-cryptographic PRNGs by default. These PRNGs output
random-looking numbers that might be predictable given e.g.
a few samples or by running statistical tests on the output.

Some classic non-cryptographic PRNGs that people use:

▶ Mersenne Twister (Python, PHP, Ruby, Pascal,...)

▶ Linear Congruential Generator (Java, Python, Rust,...)

▶ rand and drand48 (libc), rand andmt_rand (PHP)

24



Contents

Introduction

Security Parameter

Random Number Generators

Pseudorandom Number Generators

Schnorr Signatures

ElGamal Encryption

RSA Cryptosystem

Secure Hash Functions

25



Schnorr Signatures

Let G be a group of prime order p and let g be a generator
for G. Denote by pp the public parameters (G, g, p).

Let H be a cryptographic hash function that outputs
uniformly random elements in Zp.

Let the secret key sk←$ Zp be sampled uniformly at random,
and let the public key be pk = gsk, where pk is made public.

26



Schnorr Signatures

The Schnorr signature of messagem is computed as:

1. Sample random r ←$ Zp and compute R = gr.

2. Compute the output challenge as c = H(pp, pk,m,R).

3. Compute the response z = r − c · sk. Output σ = (c, z).

To verify the signature, compute R′ = gz · pkc and check if
c

?
= H(pp, pk,m,R′). If correct, accept, and otherwise reject.

27



Contents

Introduction

Security Parameter

Random Number Generators

Pseudorandom Number Generators

Schnorr Signatures

ElGamal Encryption

RSA Cryptosystem

Secure Hash Functions

28



ElGamal Encryption

Let pp = (G, g, p) as above. Sample uniform sk←$ Zp and
compute pk = gsk, where pk is made public.

The ElGamal scheme, withm ∈ G, works as follows:

Enc : Sample a random x←$ Zp and compute the
ciphertext as X = gx and Y = pkx ·m.

Dec : Decrypt the ciphertext (X,Y ) to get the
messagem asm = Y ·X−sk.

29



Contents

Introduction

Security Parameter

Random Number Generators

Pseudorandom Number Generators

Schnorr Signatures

ElGamal Encryption

RSA Cryptosystem

Secure Hash Functions

30



RSA Cryptosystem

Sample large random prime numbers p and q and compute
product n = p · q. Compute ϕ(n) = (p− 1) · (q − 1).

Choose integer e (co-prime with ϕ(n)) and compute d such
that e · d ≡ 1 mod ϕ(n). Let sk = (p, q, d) and pk = (n, e).

The RSA encryption scheme, withm ∈ Zn, works as follows:

Enc : Use (randomized) padding scheme µ to
compute the ciphertext c ≡ µ(m)e mod n.

Dec : Decrypt the ciphertext c to get the messagem
as the inverse padding µ−1(cd mod n).

31



Contents

Introduction

Security Parameter

Random Number Generators

Pseudorandom Number Generators

Schnorr Signatures

ElGamal Encryption

RSA Cryptosystem

Secure Hash Functions

32



Secure Hash Functions

When proving the security of cryptographic schemes that
use hash functionsH as underlying building blocks, we often
model H as random oracles with an internal table of values.

You can read more about random oracles at Matthew
Green’s blog on cryptographic engineering:
https://blog.cryptographyengineering.com/2011/09/29/
what-is-random-oracle-model-and-why-3

33

https://blog.cryptographyengineering.com/2011/09/29/what-is-random-oracle-model-and-why-3
https://blog.cryptographyengineering.com/2011/09/29/what-is-random-oracle-model-and-why-3


Questions?

34


	Introduction
	Security Parameter
	Random Number Generators
	Pseudorandom Number Generators
	Schnorr Signatures
	ElGamal Encryption
	RSA Cryptosystem
	Secure Hash Functions

