
COURSE SUMMARY
TTM4205 – Lecture 18

Tjerand Silde

09.11.2023



Contents
General Information

Randomness

Legacy Crypto

Side-Channel Attacks

Protocols APIs

Padding Oracles

Commitments and Zero-Knowledge

Protocol Composition

Final Thoughts

2



Contents
General Information

Randomness

Legacy Crypto

Side-Channel Attacks

Protocols APIs

Padding Oracles

Commitments and Zero-Knowledge

Protocol Composition

Final Thoughts

3



The Aim of the Course

My goal was to show you a variety of different attacks and
mitigations for cryptography systems that we use today. I
wanted you to learn how to think as an attacker, so that you
better can protect your own schemes going forward.

We went through a lot of material. You are not supposed to
remember everything. But you are expected to know what
to look for, how to find resources to learn more, have a
basic understanding that you can apply to similar issues,
and have ideas for how to protect against these attacks.

4



Course Content

The course covers how to implement, analyse, attack,
protect and securely compose cryptographic algorithms in
practice. It goes in depth on how to

▶ implement computer arithmetic

▶ attack implementations using side-channel attacks and
fault injection

▶ exploit padding oracles and low-entropy randomness

▶ utilise techniques to defend against these attacks

▶ securely design misuse-resistant APIs

5



Learning Outcome

Knowledge
Advanced knowledge about the mathematical building
blocks underlying modern cryptography, properties of and
applications of cryptographic primitives, challenges and
common mistakes when implementing cryptography,
side-channel attacks and countermeasures, and high level
design principles for secure use of cryptography in practice.

6



Learning Outcome

Skills
Able to implement the underlying mathematics and
high-level protocols used in symmetric key and public key
cryptosystems, perform simple side-channel attacks and
implement countermeasures, analyse side-channel
countermeasures and design misuse resistant APIs for
cryptography.

7



Guest Lectures

We have three upcoming guest lectures in this course:

▶ Tuesday November 14 at 12:15-14:00 in R92: Håkon
Jacobsen (Thales Norway) – “FPGAs and Cryptography”

▶ Thursday November 16 at 10:15-12:00 in B3: Oskar
Goldhahn (IMF, NTNU) on “Formal Verification”

▶ Tuesday November 21 at 15:00-16:00 in G1: Vadim
Lyubashevsky (IBM Zurich) – “Post-Quantum Crypto”

8



Project Presentations

I am planning to organize the presentations so that 3
projects are presented on Tuesday November 21st and
8 projects are presented on Thursday November 23rd.

Martin Reimer will present on November 21st. I need two
more groups to volunteer so that the schedule works out.

9



Contents
General Information

Randomness

Legacy Crypto

Side-Channel Attacks

Protocols APIs

Padding Oracles

Commitments and Zero-Knowledge

Protocol Composition

Final Thoughts

10



Main Takeaways

▶ Security is never better than your entropy source

▶ Security is based on the best attack against a scheme

▶ Today we require 128 bits of security in cryptography

▶ We need to ensure access to high entropy randomness

▶ Pseudorandom Number Generators (PRNGs) expand
true randomness into pseudorandom bit streams

11



Main Takeaways

▶ Security is never better than your entropy source

▶ Security is based on the best attack against a scheme

▶ Today we require 128 bits of security in cryptography

▶ We need to ensure access to high entropy randomness

▶ Pseudorandom Number Generators (PRNGs) expand
true randomness into pseudorandom bit streams

11



Main Takeaways

▶ Security is never better than your entropy source

▶ Security is based on the best attack against a scheme

▶ Today we require 128 bits of security in cryptography

▶ We need to ensure access to high entropy randomness

▶ Pseudorandom Number Generators (PRNGs) expand
true randomness into pseudorandom bit streams

11



Main Takeaways

▶ Security is never better than your entropy source

▶ Security is based on the best attack against a scheme

▶ Today we require 128 bits of security in cryptography

▶ We need to ensure access to high entropy randomness

▶ Pseudorandom Number Generators (PRNGs) expand
true randomness into pseudorandom bit streams

11



Main Takeaways

▶ Security is never better than your entropy source

▶ Security is based on the best attack against a scheme

▶ Today we require 128 bits of security in cryptography

▶ We need to ensure access to high entropy randomness

▶ Pseudorandom Number Generators (PRNGs) expand
true randomness into pseudorandom bit streams

11



Main Takeaways

▶ Security is never better than your entropy source

▶ Security is based on the best attack against a scheme

▶ Today we require 128 bits of security in cryptography

▶ We need to ensure access to high entropy randomness

▶ Pseudorandom Number Generators (PRNGs) expand
true randomness into pseudorandom bit streams

11



Main Takeaways

▶ Most built-in PRNGs are not cryptographically secure

▶ We broke schemes using low-entropy randomness

▶ The most efficient algorithms for checking if a number is
prime, to compute a discrete logarithm or factor a large
bi-prime are all randomized Monte Carlo algorithms

▶ Can fool prime-checking if not properly randomized

▶ Faulty parameters easily breaks a cryptographic scheme

12



Main Takeaways

▶ Most built-in PRNGs are not cryptographically secure

▶ We broke schemes using low-entropy randomness

▶ The most efficient algorithms for checking if a number is
prime, to compute a discrete logarithm or factor a large
bi-prime are all randomized Monte Carlo algorithms

▶ Can fool prime-checking if not properly randomized

▶ Faulty parameters easily breaks a cryptographic scheme

12



Main Takeaways

▶ Most built-in PRNGs are not cryptographically secure

▶ We broke schemes using low-entropy randomness

▶ The most efficient algorithms for checking if a number is
prime, to compute a discrete logarithm or factor a large
bi-prime are all randomized Monte Carlo algorithms

▶ Can fool prime-checking if not properly randomized

▶ Faulty parameters easily breaks a cryptographic scheme

12



Main Takeaways

▶ Most built-in PRNGs are not cryptographically secure

▶ We broke schemes using low-entropy randomness

▶ The most efficient algorithms for checking if a number is
prime, to compute a discrete logarithm or factor a large
bi-prime are all randomized Monte Carlo algorithms

▶ Can fool prime-checking if not properly randomized

▶ Faulty parameters easily breaks a cryptographic scheme

12



Main Takeaways

▶ Most built-in PRNGs are not cryptographically secure

▶ We broke schemes using low-entropy randomness

▶ The most efficient algorithms for checking if a number is
prime, to compute a discrete logarithm or factor a large
bi-prime are all randomized Monte Carlo algorithms

▶ Can fool prime-checking if not properly randomized

▶ Faulty parameters easily breaks a cryptographic scheme

12



Main Takeaways

▶ Most built-in PRNGs are not cryptographically secure

▶ We broke schemes using low-entropy randomness

▶ The most efficient algorithms for checking if a number is
prime, to compute a discrete logarithm or factor a large
bi-prime are all randomized Monte Carlo algorithms

▶ Can fool prime-checking if not properly randomized

▶ Faulty parameters easily breaks a cryptographic scheme

12



Contents
General Information

Randomness

Legacy Crypto

Side-Channel Attacks

Protocols APIs

Padding Oracles

Commitments and Zero-Knowledge

Protocol Composition

Final Thoughts

13



Main Takeaways

▶ There is an ongoing debate on regulating cryptography
and its effect on privacy, security and safety

▶ Many old and weak ciphers are still used today

▶ E.g. MD5, SHA-1, RC4, 3DES are not fully revoked yet

▶ Export ciphers leading to weak parameters for DH

▶ Use ephemeral elliptic curve DH for key exchange

▶ DualEC and standardized schemes with backdoors

14



Main Takeaways

▶ There is an ongoing debate on regulating cryptography
and its effect on privacy, security and safety

▶ Many old and weak ciphers are still used today

▶ E.g. MD5, SHA-1, RC4, 3DES are not fully revoked yet

▶ Export ciphers leading to weak parameters for DH

▶ Use ephemeral elliptic curve DH for key exchange

▶ DualEC and standardized schemes with backdoors

14



Main Takeaways

▶ There is an ongoing debate on regulating cryptography
and its effect on privacy, security and safety

▶ Many old and weak ciphers are still used today

▶ E.g. MD5, SHA-1, RC4, 3DES are not fully revoked yet

▶ Export ciphers leading to weak parameters for DH

▶ Use ephemeral elliptic curve DH for key exchange

▶ DualEC and standardized schemes with backdoors

14



Main Takeaways

▶ There is an ongoing debate on regulating cryptography
and its effect on privacy, security and safety

▶ Many old and weak ciphers are still used today

▶ E.g. MD5, SHA-1, RC4, 3DES are not fully revoked yet

▶ Export ciphers leading to weak parameters for DH

▶ Use ephemeral elliptic curve DH for key exchange

▶ DualEC and standardized schemes with backdoors

14



Main Takeaways

▶ There is an ongoing debate on regulating cryptography
and its effect on privacy, security and safety

▶ Many old and weak ciphers are still used today

▶ E.g. MD5, SHA-1, RC4, 3DES are not fully revoked yet

▶ Export ciphers leading to weak parameters for DH

▶ Use ephemeral elliptic curve DH for key exchange

▶ DualEC and standardized schemes with backdoors

14



Main Takeaways

▶ There is an ongoing debate on regulating cryptography
and its effect on privacy, security and safety

▶ Many old and weak ciphers are still used today

▶ E.g. MD5, SHA-1, RC4, 3DES are not fully revoked yet

▶ Export ciphers leading to weak parameters for DH

▶ Use ephemeral elliptic curve DH for key exchange

▶ DualEC and standardized schemes with backdoors

14



Main Takeaways

▶ There is an ongoing debate on regulating cryptography
and its effect on privacy, security and safety

▶ Many old and weak ciphers are still used today

▶ E.g. MD5, SHA-1, RC4, 3DES are not fully revoked yet

▶ Export ciphers leading to weak parameters for DH

▶ Use ephemeral elliptic curve DH for key exchange

▶ DualEC and standardized schemes with backdoors

14



Contents
General Information

Randomness

Legacy Crypto

Side-Channel Attacks

Protocols APIs

Padding Oracles

Commitments and Zero-Knowledge

Protocol Composition

Final Thoughts

15



Main Takeaways

▶ Black-box crypto, Kerckhoff’s principle, implementation

▶ Leakage such as timings, power consumption, radiation,
temperature, memory patterns, sound, ...

▶ Examples: credit cards, shared resources, malware,...

▶ Remote vs physical, and software vs hardware attacks

▶ Passive vs active, and invasive vs non-invasive attacks

▶ Constant time code, randomization, fault protection,...

16



Main Takeaways

▶ Black-box crypto, Kerckhoff’s principle, implementation

▶ Leakage such as timings, power consumption, radiation,
temperature, memory patterns, sound, ...

▶ Examples: credit cards, shared resources, malware,...

▶ Remote vs physical, and software vs hardware attacks

▶ Passive vs active, and invasive vs non-invasive attacks

▶ Constant time code, randomization, fault protection,...

16



Main Takeaways

▶ Black-box crypto, Kerckhoff’s principle, implementation

▶ Leakage such as timings, power consumption, radiation,
temperature, memory patterns, sound, ...

▶ Examples: credit cards, shared resources, malware,...

▶ Remote vs physical, and software vs hardware attacks

▶ Passive vs active, and invasive vs non-invasive attacks

▶ Constant time code, randomization, fault protection,...

16



Main Takeaways

▶ Black-box crypto, Kerckhoff’s principle, implementation

▶ Leakage such as timings, power consumption, radiation,
temperature, memory patterns, sound, ...

▶ Examples: credit cards, shared resources, malware,...

▶ Remote vs physical, and software vs hardware attacks

▶ Passive vs active, and invasive vs non-invasive attacks

▶ Constant time code, randomization, fault protection,...

16



Main Takeaways

▶ Black-box crypto, Kerckhoff’s principle, implementation

▶ Leakage such as timings, power consumption, radiation,
temperature, memory patterns, sound, ...

▶ Examples: credit cards, shared resources, malware,...

▶ Remote vs physical, and software vs hardware attacks

▶ Passive vs active, and invasive vs non-invasive attacks

▶ Constant time code, randomization, fault protection,...

16



Main Takeaways

▶ Black-box crypto, Kerckhoff’s principle, implementation

▶ Leakage such as timings, power consumption, radiation,
temperature, memory patterns, sound, ...

▶ Examples: credit cards, shared resources, malware,...

▶ Remote vs physical, and software vs hardware attacks

▶ Passive vs active, and invasive vs non-invasive attacks

▶ Constant time code, randomization, fault protection,...

16



Main Takeaways

▶ Black-box crypto, Kerckhoff’s principle, implementation

▶ Leakage such as timings, power consumption, radiation,
temperature, memory patterns, sound, ...

▶ Examples: credit cards, shared resources, malware,...

▶ Remote vs physical, and software vs hardware attacks

▶ Passive vs active, and invasive vs non-invasive attacks

▶ Constant time code, randomization, fault protection,...

16



Main Takeaways

▶ Square-and-multiply must be regular and randomized

▶ We studied how to implement Montgomery Ladder

▶ Integer arithmetic such as IMUL must be constant time

▶ Modular addition and reduction must be constant time

▶ Modular inversion must also be constant time

▶ We use universal curve-dependent formulas for ECC

▶ We can use bit-slicing and masking to protect AES

17



Main Takeaways

▶ Square-and-multiply must be regular and randomized

▶ We studied how to implement Montgomery Ladder

▶ Integer arithmetic such as IMUL must be constant time

▶ Modular addition and reduction must be constant time

▶ Modular inversion must also be constant time

▶ We use universal curve-dependent formulas for ECC

▶ We can use bit-slicing and masking to protect AES

17



Main Takeaways

▶ Square-and-multiply must be regular and randomized

▶ We studied how to implement Montgomery Ladder

▶ Integer arithmetic such as IMUL must be constant time

▶ Modular addition and reduction must be constant time

▶ Modular inversion must also be constant time

▶ We use universal curve-dependent formulas for ECC

▶ We can use bit-slicing and masking to protect AES

17



Main Takeaways

▶ Square-and-multiply must be regular and randomized

▶ We studied how to implement Montgomery Ladder

▶ Integer arithmetic such as IMUL must be constant time

▶ Modular addition and reduction must be constant time

▶ Modular inversion must also be constant time

▶ We use universal curve-dependent formulas for ECC

▶ We can use bit-slicing and masking to protect AES

17



Main Takeaways

▶ Square-and-multiply must be regular and randomized

▶ We studied how to implement Montgomery Ladder

▶ Integer arithmetic such as IMUL must be constant time

▶ Modular addition and reduction must be constant time

▶ Modular inversion must also be constant time

▶ We use universal curve-dependent formulas for ECC

▶ We can use bit-slicing and masking to protect AES

17



Main Takeaways

▶ Square-and-multiply must be regular and randomized

▶ We studied how to implement Montgomery Ladder

▶ Integer arithmetic such as IMUL must be constant time

▶ Modular addition and reduction must be constant time

▶ Modular inversion must also be constant time

▶ We use universal curve-dependent formulas for ECC

▶ We can use bit-slicing and masking to protect AES

17



Main Takeaways

▶ Square-and-multiply must be regular and randomized

▶ We studied how to implement Montgomery Ladder

▶ Integer arithmetic such as IMUL must be constant time

▶ Modular addition and reduction must be constant time

▶ Modular inversion must also be constant time

▶ We use universal curve-dependent formulas for ECC

▶ We can use bit-slicing and masking to protect AES

17



Main Takeaways

▶ Square-and-multiply must be regular and randomized

▶ We studied how to implement Montgomery Ladder

▶ Integer arithmetic such as IMUL must be constant time

▶ Modular addition and reduction must be constant time

▶ Modular inversion must also be constant time

▶ We use universal curve-dependent formulas for ECC

▶ We can use bit-slicing and masking to protect AES

17



Contents
General Information

Randomness

Legacy Crypto

Side-Channel Attacks

Protocols APIs

Padding Oracles

Commitments and Zero-Knowledge

Protocol Composition

Final Thoughts

18



Main Takeaways

▶ Must enforce honest behavior in protocols

▶ Must verify correctness of parameters and inputs

▶ Must avoid corner case leakage and replay attacks

▶ Must always verify output values for faults

19



Main Takeaways

▶ Must enforce honest behavior in protocols

▶ Must verify correctness of parameters and inputs

▶ Must avoid corner case leakage and replay attacks

▶ Must always verify output values for faults

19



Main Takeaways

▶ Must enforce honest behavior in protocols

▶ Must verify correctness of parameters and inputs

▶ Must avoid corner case leakage and replay attacks

▶ Must always verify output values for faults

19



Main Takeaways

▶ Must enforce honest behavior in protocols

▶ Must verify correctness of parameters and inputs

▶ Must avoid corner case leakage and replay attacks

▶ Must always verify output values for faults

19



Main Takeaways

▶ Must enforce honest behavior in protocols

▶ Must verify correctness of parameters and inputs

▶ Must avoid corner case leakage and replay attacks

▶ Must always verify output values for faults

19



Contents
General Information

Randomness

Legacy Crypto

Side-Channel Attacks

Protocols APIs

Padding Oracles

Commitments and Zero-Knowledge

Protocol Composition

Final Thoughts

20



Main Takeaways

▶ Error messages can leak important information

▶ Padding checks can leak important information

▶ Adaptive decryption queries can exploit this

▶ AES-CBC is only CPA secure, not CCA

▶ AES-CBC is removed in TLS 1.3 to avoid attacks

▶ AES-CBS and RSA-PKCS#1v1.5 are vulnerable

▶ Efficiency depends on how strict checks

21



Main Takeaways

▶ Error messages can leak important information

▶ Padding checks can leak important information

▶ Adaptive decryption queries can exploit this

▶ AES-CBC is only CPA secure, not CCA

▶ AES-CBC is removed in TLS 1.3 to avoid attacks

▶ AES-CBS and RSA-PKCS#1v1.5 are vulnerable

▶ Efficiency depends on how strict checks

21



Main Takeaways

▶ Error messages can leak important information

▶ Padding checks can leak important information

▶ Adaptive decryption queries can exploit this

▶ AES-CBC is only CPA secure, not CCA

▶ AES-CBC is removed in TLS 1.3 to avoid attacks

▶ AES-CBS and RSA-PKCS#1v1.5 are vulnerable

▶ Efficiency depends on how strict checks

21



Main Takeaways

▶ Error messages can leak important information

▶ Padding checks can leak important information

▶ Adaptive decryption queries can exploit this

▶ AES-CBC is only CPA secure, not CCA

▶ AES-CBC is removed in TLS 1.3 to avoid attacks

▶ AES-CBS and RSA-PKCS#1v1.5 are vulnerable

▶ Efficiency depends on how strict checks

21



Main Takeaways

▶ Error messages can leak important information

▶ Padding checks can leak important information

▶ Adaptive decryption queries can exploit this

▶ AES-CBC is only CPA secure, not CCA

▶ AES-CBC is removed in TLS 1.3 to avoid attacks

▶ AES-CBS and RSA-PKCS#1v1.5 are vulnerable

▶ Efficiency depends on how strict checks

21



Main Takeaways

▶ Error messages can leak important information

▶ Padding checks can leak important information

▶ Adaptive decryption queries can exploit this

▶ AES-CBC is only CPA secure, not CCA

▶ AES-CBC is removed in TLS 1.3 to avoid attacks

▶ AES-CBS and RSA-PKCS#1v1.5 are vulnerable

▶ Efficiency depends on how strict checks

21



Main Takeaways

▶ Error messages can leak important information

▶ Padding checks can leak important information

▶ Adaptive decryption queries can exploit this

▶ AES-CBC is only CPA secure, not CCA

▶ AES-CBC is removed in TLS 1.3 to avoid attacks

▶ AES-CBS and RSA-PKCS#1v1.5 are vulnerable

▶ Efficiency depends on how strict checks

21



Main Takeaways

▶ Error messages can leak important information

▶ Padding checks can leak important information

▶ Adaptive decryption queries can exploit this

▶ AES-CBC is only CPA secure, not CCA

▶ AES-CBC is removed in TLS 1.3 to avoid attacks

▶ AES-CBS and RSA-PKCS#1v1.5 are vulnerable

▶ Efficiency depends on how strict checks

21



Main Takeaways

▶ Use authenticated mode of AES (AEAD)

▶ Be vary of length extension attacks against SHA-2

▶ Do not use RSA encryption unless you really must

▶ If you must, then use RSA-OAEP padding

▶ We studied the Bleichenbacher attack

▶ Use encrypt-then-authenticate if possible

22



Main Takeaways

▶ Use authenticated mode of AES (AEAD)

▶ Be vary of length extension attacks against SHA-2

▶ Do not use RSA encryption unless you really must

▶ If you must, then use RSA-OAEP padding

▶ We studied the Bleichenbacher attack

▶ Use encrypt-then-authenticate if possible

22



Main Takeaways

▶ Use authenticated mode of AES (AEAD)

▶ Be vary of length extension attacks against SHA-2

▶ Do not use RSA encryption unless you really must

▶ If you must, then use RSA-OAEP padding

▶ We studied the Bleichenbacher attack

▶ Use encrypt-then-authenticate if possible

22



Main Takeaways

▶ Use authenticated mode of AES (AEAD)

▶ Be vary of length extension attacks against SHA-2

▶ Do not use RSA encryption unless you really must

▶ If you must, then use RSA-OAEP padding

▶ We studied the Bleichenbacher attack

▶ Use encrypt-then-authenticate if possible

22



Main Takeaways

▶ Use authenticated mode of AES (AEAD)

▶ Be vary of length extension attacks against SHA-2

▶ Do not use RSA encryption unless you really must

▶ If you must, then use RSA-OAEP padding

▶ We studied the Bleichenbacher attack

▶ Use encrypt-then-authenticate if possible

22



Main Takeaways

▶ Use authenticated mode of AES (AEAD)

▶ Be vary of length extension attacks against SHA-2

▶ Do not use RSA encryption unless you really must

▶ If you must, then use RSA-OAEP padding

▶ We studied the Bleichenbacher attack

▶ Use encrypt-then-authenticate if possible

22



Main Takeaways

▶ Use authenticated mode of AES (AEAD)

▶ Be vary of length extension attacks against SHA-2

▶ Do not use RSA encryption unless you really must

▶ If you must, then use RSA-OAEP padding

▶ We studied the Bleichenbacher attack

▶ Use encrypt-then-authenticate if possible

22



Contents
General Information

Randomness

Legacy Crypto

Side-Channel Attacks

Protocols APIs

Padding Oracles

Commitments and Zero-Knowledge

Protocol Composition

Final Thoughts

23



Main Takeaways

▶ Commitments: binding and hiding

▶ ZK Proofs: sound and zero-knowledge

▶ Pedersen and ElGamal commitment backdoors

▶ ZKPs can be faked if we do not hash everything

▶ The Schnorr signature is a ZKP of discrete log

24



Main Takeaways

▶ Commitments: binding and hiding

▶ ZK Proofs: sound and zero-knowledge

▶ Pedersen and ElGamal commitment backdoors

▶ ZKPs can be faked if we do not hash everything

▶ The Schnorr signature is a ZKP of discrete log

24



Main Takeaways

▶ Commitments: binding and hiding

▶ ZK Proofs: sound and zero-knowledge

▶ Pedersen and ElGamal commitment backdoors

▶ ZKPs can be faked if we do not hash everything

▶ The Schnorr signature is a ZKP of discrete log

24



Main Takeaways

▶ Commitments: binding and hiding

▶ ZK Proofs: sound and zero-knowledge

▶ Pedersen and ElGamal commitment backdoors

▶ ZKPs can be faked if we do not hash everything

▶ The Schnorr signature is a ZKP of discrete log

24



Main Takeaways

▶ Commitments: binding and hiding

▶ ZK Proofs: sound and zero-knowledge

▶ Pedersen and ElGamal commitment backdoors

▶ ZKPs can be faked if we do not hash everything

▶ The Schnorr signature is a ZKP of discrete log

24



Main Takeaways

▶ Commitments: binding and hiding

▶ ZK Proofs: sound and zero-knowledge

▶ Pedersen and ElGamal commitment backdoors

▶ ZKPs can be faked if we do not hash everything

▶ The Schnorr signature is a ZKP of discrete log

24



Contents
General Information

Randomness

Legacy Crypto

Side-Channel Attacks

Protocols APIs

Padding Oracles

Commitments and Zero-Knowledge

Protocol Composition

Final Thoughts

25



Main Takeaways

▶ Consistency of keygen and parameters matters

▶ How schemes (AES+RSA) are composed matters

▶ We need very concise protocol descriptions

▶ Always (try to) prove security of a protocol

▶ Make code open source and pay for audits

26



Main Takeaways

▶ Consistency of keygen and parameters matters

▶ How schemes (AES+RSA) are composed matters

▶ We need very concise protocol descriptions

▶ Always (try to) prove security of a protocol

▶ Make code open source and pay for audits

26



Main Takeaways

▶ Consistency of keygen and parameters matters

▶ How schemes (AES+RSA) are composed matters

▶ We need very concise protocol descriptions

▶ Always (try to) prove security of a protocol

▶ Make code open source and pay for audits

26



Main Takeaways

▶ Consistency of keygen and parameters matters

▶ How schemes (AES+RSA) are composed matters

▶ We need very concise protocol descriptions

▶ Always (try to) prove security of a protocol

▶ Make code open source and pay for audits

26



Main Takeaways

▶ Consistency of keygen and parameters matters

▶ How schemes (AES+RSA) are composed matters

▶ We need very concise protocol descriptions

▶ Always (try to) prove security of a protocol

▶ Make code open source and pay for audits

26



Main Takeaways

▶ Consistency of keygen and parameters matters

▶ How schemes (AES+RSA) are composed matters

▶ We need very concise protocol descriptions

▶ Always (try to) prove security of a protocol

▶ Make code open source and pay for audits

26



Main Takeaways

▶ Use domain separation for similar functions

▶ Have integrity checks for all messages

▶ Do not re-use keys across applications

▶ Do not design your own schemes / protocols

▶ Use up-to-date modern primitives and libraries

27



Main Takeaways

▶ Use domain separation for similar functions

▶ Have integrity checks for all messages

▶ Do not re-use keys across applications

▶ Do not design your own schemes / protocols

▶ Use up-to-date modern primitives and libraries

27



Main Takeaways

▶ Use domain separation for similar functions

▶ Have integrity checks for all messages

▶ Do not re-use keys across applications

▶ Do not design your own schemes / protocols

▶ Use up-to-date modern primitives and libraries

27



Main Takeaways

▶ Use domain separation for similar functions

▶ Have integrity checks for all messages

▶ Do not re-use keys across applications

▶ Do not design your own schemes / protocols

▶ Use up-to-date modern primitives and libraries

27



Main Takeaways

▶ Use domain separation for similar functions

▶ Have integrity checks for all messages

▶ Do not re-use keys across applications

▶ Do not design your own schemes / protocols

▶ Use up-to-date modern primitives and libraries

27



Main Takeaways

▶ Use domain separation for similar functions

▶ Have integrity checks for all messages

▶ Do not re-use keys across applications

▶ Do not design your own schemes / protocols

▶ Use up-to-date modern primitives and libraries

27



Contents
General Information

Randomness

Legacy Crypto

Side-Channel Attacks

Protocols APIs

Padding Oracles

Commitments and Zero-Knowledge

Protocol Composition

Final Thoughts

28



From what I can see, you have learned a lot and performed
very well this semester. I am 100% sure that the way of
thinking, our discussions, and the problems you have solved
in this course will be useful for all of you going forward.

I hope that you enjoyed the course, that it was challenging
but interesting, and that you see the value of your effort.

29



Questions?

30


	General Information
	Randomness
	Legacy Crypto
	Side-Channel Attacks
	Protocols APIs
	Padding Oracles
	Commitments and Zero-Knowledge
	Protocol Composition
	Final Thoughts

