
PROTOCOL COMPOSITION 2
TTM4205 – Lecture 16

Tjerand Silde

31.10.2023

Contents

General Information

MEGA E2EE Cloud Storage

Malleable Encryption Goes Awry

Cryptanalyzing MEGA in Six Queries

Caveat Implementor!

2

Contents

General Information

MEGA E2EE Cloud Storage

Malleable Encryption Goes Awry

Cryptanalyzing MEGA in Six Queries

Caveat Implementor!

3

Reminder: Special Topic Project

The deadline for submitting group and topic is Nov 1st.

4

The Remaining Schedule

5

Reference Group Meeting

Summary.

6

Invited Talk Today

Invited talk by Matthias Wichtlhuber (DE-CIX) from
15:00-16:00 in Realfagbygget R1 today on:

"DDoS Defense at Scale: Automated Training Data
Generation for ML-Based Protection at DE-CIX".

7

Contents

General Information

MEGA E2EE Cloud Storage

Malleable Encryption Goes Awry

Cryptanalyzing MEGA in Six Queries

Caveat Implementor!

8

MEGA E2EE Cloud Storage

9

MEGA E2EE Cloud Storage

▶ The user encrypt all files locally

▶ It upload ciphertexts to the cloud

▶ File-keys are encrypted under master-key

▶ Master-key is encrypted under password

▶ The user can log in from anywhere

▶ The user must sign a challenge on log-in

10

This is initially a secure infrastructure, but we will see that 1)
the choice of ciphers, 2) how they are composed, 3) the lack
of integrity checks, 4) custom padding, 5) key-reuse, and 6)
server-chosen plaintexts breaks the security in many ways.

11

Contents

General Information

MEGA E2EE Cloud Storage

Malleable Encryption Goes Awry

Cryptanalyzing MEGA in Six Queries

Caveat Implementor!

12

Figure: https://eprint.iacr.org/2022/959.pdf

13

https://eprint.iacr.org/2022/959.pdf

Figure: https://mega-awry.io

14

https://mega-awry.io

Figure:
https://twitter.com/kennyog/status/1539352663770509314

15

https://twitter.com/kennyog/status/1539352663770509314

Attacks

16

RSA Key Recovery Attack

▶ kM is an AES key derived from a password

▶ pkshare is a RSA public key (N = p · q, e)

▶ skencodedshare is the corresponding secret key

▶ [skencodedshare]kM is AES encrypted under kM

▶ the client is given [skencodedshare]kM at every log-in

▶ the client is also given [m]pkshare at log-in

▶ m is a randomly sampled 43 B session ID

17

RSA Key Recovery Attack

▶ kM is an AES key derived from a password

▶ pkshare is a RSA public key (N = p · q, e)

▶ skencodedshare is the corresponding secret key

▶ [skencodedshare]kM is AES encrypted under kM

▶ the client is given [skencodedshare]kM at every log-in

▶ the client is also given [m]pkshare at log-in

▶ m is a randomly sampled 43 B session ID

17

RSA Key Recovery Attack

▶ kM is an AES key derived from a password

▶ pkshare is a RSA public key (N = p · q, e)

▶ skencodedshare is the corresponding secret key

▶ [skencodedshare]kM is AES encrypted under kM

▶ the client is given [skencodedshare]kM at every log-in

▶ the client is also given [m]pkshare at log-in

▶ m is a randomly sampled 43 B session ID

17

RSA Key Recovery Attack

▶ kM is an AES key derived from a password

▶ pkshare is a RSA public key (N = p · q, e)

▶ skencodedshare is the corresponding secret key

▶ [skencodedshare]kM is AES encrypted under kM

▶ the client is given [skencodedshare]kM at every log-in

▶ the client is also given [m]pkshare at log-in

▶ m is a randomly sampled 43 B session ID

17

RSA Key Recovery Attack

▶ kM is an AES key derived from a password

▶ pkshare is a RSA public key (N = p · q, e)

▶ skencodedshare is the corresponding secret key

▶ [skencodedshare]kM is AES encrypted under kM

▶ the client is given [skencodedshare]kM at every log-in

▶ the client is also given [m]pkshare at log-in

▶ m is a randomly sampled 43 B session ID

17

RSA Key Recovery Attack

▶ kM is an AES key derived from a password

▶ pkshare is a RSA public key (N = p · q, e)

▶ skencodedshare is the corresponding secret key

▶ [skencodedshare]kM is AES encrypted under kM

▶ the client is given [skencodedshare]kM at every log-in

▶ the client is also given [m]pkshare at log-in

▶ m is a randomly sampled 43 B session ID

17

RSA Key Recovery Attack

▶ kM is an AES key derived from a password

▶ pkshare is a RSA public key (N = p · q, e)

▶ skencodedshare is the corresponding secret key

▶ [skencodedshare]kM is AES encrypted under kM

▶ the client is given [skencodedshare]kM at every log-in

▶ the client is also given [m]pkshare at log-in

▶ m is a randomly sampled 43 B session ID

17

RSA Key Recovery Attack

▶ kM is an AES key derived from a password

▶ pkshare is a RSA public key (N = p · q, e)

▶ skencodedshare is the corresponding secret key

▶ [skencodedshare]kM is AES encrypted under kM

▶ the client is given [skencodedshare]kM at every log-in

▶ the client is also given [m]pkshare at log-in

▶ m is a randomly sampled 43 B session ID

17

RSA Key Recovery Attack

The master secret key is encoded in the following way:

skencodedshare ← l(q)||q||l(p)||p||l(d)||d||l(u)||u||P

where l(·) is a length function, q and p are 1024-bit primes, d
is the secret RSA exponent, u = q−1 mod p and P is padding.

18

RSA Key Recovery Attack
The following happens when the client log in:

▶ The client derives kM locally from password

▶ The server sends stored [skencodedshare]kM to client

▶ The server samplesm and sends [m]pkshare to client

▶ The client decrypts [skencodedshare]kM then decrypts [m]pkshare

▶ The client sendsm to the server which accepts/rejects

▶ The server sends all encrypted files to client if accept

19

RSA Key Recovery Attack
The following happens when the client log in:

▶ The client derives kM locally from password

▶ The server sends stored [skencodedshare]kM to client

▶ The server samplesm and sends [m]pkshare to client

▶ The client decrypts [skencodedshare]kM then decrypts [m]pkshare

▶ The client sendsm to the server which accepts/rejects

▶ The server sends all encrypted files to client if accept

19

RSA Key Recovery Attack
The following happens when the client log in:

▶ The client derives kM locally from password

▶ The server sends stored [skencodedshare]kM to client

▶ The server samplesm and sends [m]pkshare to client

▶ The client decrypts [skencodedshare]kM then decrypts [m]pkshare

▶ The client sendsm to the server which accepts/rejects

▶ The server sends all encrypted files to client if accept

19

RSA Key Recovery Attack
The following happens when the client log in:

▶ The client derives kM locally from password

▶ The server sends stored [skencodedshare]kM to client

▶ The server samplesm and sends [m]pkshare to client

▶ The client decrypts [skencodedshare]kM then decrypts [m]pkshare

▶ The client sendsm to the server which accepts/rejects

▶ The server sends all encrypted files to client if accept

19

RSA Key Recovery Attack
The following happens when the client log in:

▶ The client derives kM locally from password

▶ The server sends stored [skencodedshare]kM to client

▶ The server samplesm and sends [m]pkshare to client

▶ The client decrypts [skencodedshare]kM then decrypts [m]pkshare

▶ The client sendsm to the server which accepts/rejects

▶ The server sends all encrypted files to client if accept

19

RSA Key Recovery Attack
The following happens when the client log in:

▶ The client derives kM locally from password

▶ The server sends stored [skencodedshare]kM to client

▶ The server samplesm and sends [m]pkshare to client

▶ The client decrypts [skencodedshare]kM then decrypts [m]pkshare

▶ The client sendsm to the server which accepts/rejects

▶ The server sends all encrypted files to client if accept

19

RSA Key Recovery Attack
The following happens when the client log in:

▶ The client derives kM locally from password

▶ The server sends stored [skencodedshare]kM to client

▶ The server samplesm and sends [m]pkshare to client

▶ The client decrypts [skencodedshare]kM then decrypts [m]pkshare

▶ The client sendsm to the server which accepts/rejects

▶ The server sends all encrypted files to client if accept

19

20

RSA Key Recovery Attack

We can break the system in the following way:

▶ the secret key skencodedshare is encrypted with AES-ECB

▶ there is no integrity check for [skencodedshare]kM

▶ we can edit [skencodedshare]kM so that only u changes

▶ recover parts of q from chosenm with faulty u

▶ decrypt all files that the client stored under [skpkAES]pkshare

21

RSA Key Recovery Attack

We can break the system in the following way:

▶ the secret key skencodedshare is encrypted with AES-ECB

▶ there is no integrity check for [skencodedshare]kM

▶ we can edit [skencodedshare]kM so that only u changes

▶ recover parts of q from chosenm with faulty u

▶ decrypt all files that the client stored under [skpkAES]pkshare

21

RSA Key Recovery Attack

We can break the system in the following way:

▶ the secret key skencodedshare is encrypted with AES-ECB

▶ there is no integrity check for [skencodedshare]kM

▶ we can edit [skencodedshare]kM so that only u changes

▶ recover parts of q from chosenm with faulty u

▶ decrypt all files that the client stored under [skpkAES]pkshare

21

RSA Key Recovery Attack

We can break the system in the following way:

▶ the secret key skencodedshare is encrypted with AES-ECB

▶ there is no integrity check for [skencodedshare]kM

▶ we can edit [skencodedshare]kM so that only u changes

▶ recover parts of q from chosenm with faulty u

▶ decrypt all files that the client stored under [skpkAES]pkshare

21

RSA Key Recovery Attack

We can break the system in the following way:

▶ the secret key skencodedshare is encrypted with AES-ECB

▶ there is no integrity check for [skencodedshare]kM

▶ we can edit [skencodedshare]kM so that only u changes

▶ recover parts of q from chosenm with faulty u

▶ decrypt all files that the client stored under [skpkAES]pkshare

21

RSA Key Recovery Attack

We can break the system in the following way:

▶ the secret key skencodedshare is encrypted with AES-ECB

▶ there is no integrity check for [skencodedshare]kM

▶ we can edit [skencodedshare]kM so that only u changes

▶ recover parts of q from chosenm with faulty u

▶ decrypt all files that the client stored under [skpkAES]pkshare

21

RSA Key Recovery Attack

We can recover q from faulty u as follows:

▶ Ifm < q then we getm′
p = m = m′

q

▶ Then t = 0 and h = 0 andm′ = m < 256128

▶ m′ is padded with zeros to 256 bytes

▶ Remove the 211 rightmost bytes

▶ Then the returned sid = m[3 : 45] = 0

22

RSA Key Recovery Attack

We can recover q from faulty u as follows:

▶ Ifm < q then we getm′
p = m = m′

q

▶ Then t = 0 and h = 0 andm′ = m < 256128

▶ m′ is padded with zeros to 256 bytes

▶ Remove the 211 rightmost bytes

▶ Then the returned sid = m[3 : 45] = 0

22

RSA Key Recovery Attack

We can recover q from faulty u as follows:

▶ Ifm < q then we getm′
p = m = m′

q

▶ Then t = 0 and h = 0 andm′ = m < 256128

▶ m′ is padded with zeros to 256 bytes

▶ Remove the 211 rightmost bytes

▶ Then the returned sid = m[3 : 45] = 0

22

RSA Key Recovery Attack

We can recover q from faulty u as follows:

▶ Ifm < q then we getm′
p = m = m′

q

▶ Then t = 0 and h = 0 andm′ = m < 256128

▶ m′ is padded with zeros to 256 bytes

▶ Remove the 211 rightmost bytes

▶ Then the returned sid = m[3 : 45] = 0

22

RSA Key Recovery Attack

We can recover q from faulty u as follows:

▶ Ifm < q then we getm′
p = m = m′

q

▶ Then t = 0 and h = 0 andm′ = m < 256128

▶ m′ is padded with zeros to 256 bytes

▶ Remove the 211 rightmost bytes

▶ Then the returned sid = m[3 : 45] = 0

22

RSA Key Recovery Attack

We can recover q from faulty u as follows:

▶ Ifm < q then we getm′
p = m = m′

q

▶ Then t = 0 and h = 0 andm′ = m < 256128

▶ m′ is padded with zeros to 256 bytes

▶ Remove the 211 rightmost bytes

▶ Then the returned sid = m[3 : 45] = 0

22

RSA Key Recovery Attack

We can recover q from faulty u as follows:

▶ Ifm ≥ q then we getm′
p ̸= m ̸= m′

q

▶ Then t ̸= 0 and h ̸= 0 since u ̸= q−1 mod p

▶ Thenm′ ̸= m > 256128 with high prob.

▶ Remove the 211 rightmost bytes

▶ Then the returned sid = m[3 : 45] ̸= 0

23

RSA Key Recovery Attack

We can recover q from faulty u as follows:

▶ Ifm ≥ q then we getm′
p ̸= m ̸= m′

q

▶ Then t ̸= 0 and h ̸= 0 since u ̸= q−1 mod p

▶ Thenm′ ̸= m > 256128 with high prob.

▶ Remove the 211 rightmost bytes

▶ Then the returned sid = m[3 : 45] ̸= 0

23

RSA Key Recovery Attack

We can recover q from faulty u as follows:

▶ Ifm ≥ q then we getm′
p ̸= m ̸= m′

q

▶ Then t ̸= 0 and h ̸= 0 since u ̸= q−1 mod p

▶ Thenm′ ̸= m > 256128 with high prob.

▶ Remove the 211 rightmost bytes

▶ Then the returned sid = m[3 : 45] ̸= 0

23

RSA Key Recovery Attack

We can recover q from faulty u as follows:

▶ Ifm ≥ q then we getm′
p ̸= m ̸= m′

q

▶ Then t ̸= 0 and h ̸= 0 since u ̸= q−1 mod p

▶ Thenm′ ̸= m > 256128 with high prob.

▶ Remove the 211 rightmost bytes

▶ Then the returned sid = m[3 : 45] ̸= 0

23

RSA Key Recovery Attack

We can recover q from faulty u as follows:

▶ Ifm ≥ q then we getm′
p ̸= m ̸= m′

q

▶ Then t ̸= 0 and h ̸= 0 since u ̸= q−1 mod p

▶ Thenm′ ̸= m > 256128 with high prob.

▶ Remove the 211 rightmost bytes

▶ Then the returned sid = m[3 : 45] ̸= 0

23

RSA Key Recovery Attack

We can recover q from faulty u as follows:

▶ Ifm ≥ q then we getm′
p ̸= m ̸= m′

q

▶ Then t ̸= 0 and h ̸= 0 since u ̸= q−1 mod p

▶ Thenm′ ̸= m > 256128 with high prob.

▶ Remove the 211 rightmost bytes

▶ Then the returned sid = m[3 : 45] ̸= 0

23

RSA Key Recovery Attack

This means that we learn 1 bit of information each time, and
can use a binary search between [21023, 21024) to find q in at
most 1023 queries i.e. each time the client tries to log in.

Using an improved lattice-attack similar to the attack on
ECDSA allowed for a reduction to 512 queries total.

24

Other Attacks

The re-use of keys also allowed for decryption oracles, the
custom RSA padding P allowed for Bleichenbacher attacks,
lack of integrity checks allowed for uploading malicious
material, and more.

They added HMAC checks, updated padding and updated
the key-hierarchy after this work, but claimed that 512 log-in
attempts was too much for this to be a realistic attack...

25

Contents

General Information

MEGA E2EE Cloud Storage

Malleable Encryption Goes Awry

Cryptanalyzing MEGA in Six Queries

Caveat Implementor!

26

Figure: https://eprint.iacr.org/2022/914.pdf

27

https://eprint.iacr.org/2022/914.pdf

We actually learn more than 1 bit per query. The sid is of size
43 bytes, and this leaks much more information. With a lot
of pre-processing, it was shown that we can recover q in only
6 queries (!). The lattice-attack achieving this is out of scope.

28

Contents

General Information

MEGA E2EE Cloud Storage

Malleable Encryption Goes Awry

Cryptanalyzing MEGA in Six Queries

Caveat Implementor!

29

Figure: https://eprint.iacr.org/2023/329.pdf

30

https://eprint.iacr.org/2023/329.pdf

Figure: https://mega-caveat.github.io

31

https://mega-caveat.github.io

Figure:
https://twitter.com/kennyog/status/1632718211476078592

32

https://twitter.com/kennyog/status/1632718211476078592

New Attacks

They came up with the following new attacks:

▶ Reducing the original attack from 512 to 2 queries

▶ Exploiting re-encryption with adversarial keys

▶ Error messages that reveal more information

▶ Still using AES-ECB because it is "cheaper"

▶ Key-overwriting attacks from lacking integrity

33

New Attacks

They came up with the following new attacks:

▶ Reducing the original attack from 512 to 2 queries

▶ Exploiting re-encryption with adversarial keys

▶ Error messages that reveal more information

▶ Still using AES-ECB because it is "cheaper"

▶ Key-overwriting attacks from lacking integrity

33

New Attacks

They came up with the following new attacks:

▶ Reducing the original attack from 512 to 2 queries

▶ Exploiting re-encryption with adversarial keys

▶ Error messages that reveal more information

▶ Still using AES-ECB because it is "cheaper"

▶ Key-overwriting attacks from lacking integrity

33

New Attacks

They came up with the following new attacks:

▶ Reducing the original attack from 512 to 2 queries

▶ Exploiting re-encryption with adversarial keys

▶ Error messages that reveal more information

▶ Still using AES-ECB because it is "cheaper"

▶ Key-overwriting attacks from lacking integrity

33

New Attacks

They came up with the following new attacks:

▶ Reducing the original attack from 512 to 2 queries

▶ Exploiting re-encryption with adversarial keys

▶ Error messages that reveal more information

▶ Still using AES-ECB because it is "cheaper"

▶ Key-overwriting attacks from lacking integrity

33

New Attacks

They came up with the following new attacks:

▶ Reducing the original attack from 512 to 2 queries

▶ Exploiting re-encryption with adversarial keys

▶ Error messages that reveal more information

▶ Still using AES-ECB because it is "cheaper"

▶ Key-overwriting attacks from lacking integrity

33

Questions?

34

	General Information
	MEGA E2EE Cloud Storage
	Malleable Encryption Goes Awry
	Cryptanalyzing MEGA in Six Queries
	Caveat Implementor!

