B NTNU | sencianaechnoiogy

PROTOCOL COMPOSITION 2
TTM4205 - Lecture 16

Tjerand Silde

31.10.2023

Contents

General Information

MEGA E2EE Cloud Storage
Malleable Encryption Goes Awry
Cryptanalyzing MEGA in Six Queries

Caveat Implementor!

@ NTNU | sty

Contents

General Information

@ NTNU | sty

Reminder: Special Topic Project

The deadline for submitting group and topic is Nov 1st.

@ NTNU | sty

The Remaining Schedule

44 31/10 Lecture Tjerand Protocol Composition 2

44 31/10 Lab/Ex Jonathan Composition Exercises 1

44 2/ Lab/Ex Jonathan Composition Exercises 2

45 7m Lecture Tjerand Protocol Composition 3

45 7m Lab/Ex Jonathan Assignments

45 9/ Lecture Tjerand Course Summary

46 141 Tjerand Guest Lecture: Hakon Jacobsen
46 141 Lab/Ex Tjerand Assignments

46 16/11 Tjerand Guest Lecture: Oskar Goldhahn
47 211 Lab/Ex Jonathan Assigments

47 21 Tjerand Guest Lecture: Vadim Lyubashevsky
47 23/11 Lecture Tjerand Project Presentations

@ NTNU | sy

Reference Group Meeting

Summary.

@ NTNU | sty

Invited Talk Today

Invited talk by Matthias Wichtlhuber (DE-CIX) from
15:00-16:00 in Realfagbygget R1 today on:

"DDoS Defense at Scale: Automated Training Data
Generation for ML-Based Protection at DE-CIX".

@ NTNU | ccnremons

Contents

MEGA E2EE Cloud Storage

@ NTNU | sty

MEGA E2EE Cloud Storage

Online privacy for everyone

Privacy is not an option with MEGA, it standard. That's because we believe that everyone
should be able to store data and communicate securely and privately online,

Try MEGA for free

@ NTNU | sy

MEGA E2EE Cloud Storage

» The user encrypt all files locally

» It upload ciphertexts to the cloud

» File-keys are encrypted under master-key
» Master-key is encrypted under password
» The user can log in from anywhere

» The user must sign a challenge on log-in

@ NTNU | ccnrecmons

This is initially a secure infrastructure, but we will see that 1)
the choice of ciphers, 2) how they are composed, 3) the lack
of integrity checks, 4) custom padding, 5) key-reuse, and 6)
server-chosen plaintexts breaks the security in many ways.

@ NTNU | cacnremons

Contents

Malleable Encryption Goes Awry

@ NTNU | sty

MEGA: Malleable Encryption Goes Awry

Matilda Backendal, Miro Haller and Kenneth G. Paterson
Department of Computer Science, ETH Zurich, Zurich, Switzerland
Email: {mbackendal, kenny.paterson}@inf.ethz.ch, miro.haller@alumni.ethz.ch

Figure: https://eprint.iacr.org/2022/959.pdf

@ NTNU | sy

https://eprint.iacr.org/2022/959.pdf

MEGA: MALLEABLE
ENCRYPTION GOES AWRY

MEGA is a leading cloud storage platform with more than 250 million users and 1000
Petabytes of stored data, which aims to achieve user-controlled end-to-end encryption.
We show that MEGA's system does not protect its users against a malicious server and
present five distinct attacks, which together allow for a full compromise of the
confidentiality of user files. Additionally, the integrity of user data is damaged to the extent
that an attacker can insert malicious files of their choice which pass all authenticity checks
of the client. We built proof-of-concept versions of all the attacks, showcasing their
practicality and exploitability.

Figure: https://mega-awry.io

@ NTNU | ccnrecmons

https://mega-awry.io

kennyog

@kennyog
MEGA - Malleable Encryption Goes Awry: I'm excited to share details of
some new research on the security of @MEGAprivacy. Details at: mega-
awry.io (1/28)

11:00 PM - Jun 21, 2022

Figure:
https://twitter.com/kennyog/status/1539352663770509314

@ NTNU | sy

https://twitter.com/kennyog/status/1539352663770509314

Attacks

Attacks
S g
) o S
RSA Key Recovery Attack Plaintext Recovery Framing Attack
MEGA can recover a user's RSA private key by MEGA can decrypt other key material, such MEGA can insert arbitrary files into the
maliciously tampering with 512 login as node keys, and use them to decrypt all user user's file storage which are
attempts. communication and files. indistinguishable from genuinely uploaded
ones.
e O]
Integrity Attack GaP-Bleichenbacher Attack

The impact of this attack is the same as that of the MEGA can decrypt RSA ciphertexts using an

framing attack, trading off less stealthiness for expensive padding oracle attack.

easier pre-requisites.

@ NTNU | sy

RSA Key Recovery Attack

@ NTNU | sty

RSA Key Recovery Attack

» ks is an AES key derived from a password

@ NTNU | sty

RSA Key Recovery Attack

» ks is an AES key derived from a password

» pkepare iS @ RSA public key (N =p- g, e)

@ NTNU | sty

RSA Key Recovery Attack
» ks is an AES key derived from a password
» pkehare IS @ RSA publickey (N =p-q,e)

> skencoded s the corresponding secret key

share

@ NTNU | sty

RSA Key Recovery Attack

» ks is an AES key derived from a password
» pkehare IS @ RSA publickey (N =p-q,e)
> skénceded js the corresponding secret key

share

> [skenceded), is AES encrypted under &y

share

@ NTNU | ccnrecmons

RSA Key Recovery Attack

» ks is an AES key derived from a password

> pkenare IS @ RSA public key (N =p - ¢, ¢e)

v

skeneeded s the corresponding secret key

share

> [skenceded), is AES encrypted under &y

share

> the client is given [sk&nceded), at every log-in

share

@ NTNU | ccnrecmons

RSA Key Recovery Attack

» ks is an AES key derived from a password

> pkenare IS @ RSA public key (N =p - ¢, ¢e)

v

skeneeded s the corresponding secret key

share

> [skepsoded], is AES encrypted under ky,

share

> the client is given [sk&nceded), at every log-in

share

> the clientis also given [m], _ atlog-in

@ NTNU | ccnrecmons

RSA Key Recovery Attack

» ks is an AES key derived from a password

> pkenare IS @ RSA public key (N =p - ¢, ¢e)

v

skeneeded s the corresponding secret key

share

> [skepsoded], is AES encrypted under ky,

share

> the client is given [sk&nceded), at every log-in

> the clientis also given [m], _ atlog-in

» m is a randomly sampled 43 B session ID

@ NTNU | ccnrecmons

RSA Key Recovery Attack

The master secret key is encoded in the following way:

skhere = < 1(@)lal|L(p) Ipl11(d) 1] [L () ||| | P

where [(-) is a length function, ¢ and p are 1024-bit primes, d
is the secret RSA exponent, u = ¢! mod p and P is padding.

@ NTNU | scnrecmons 18

RSA Key Recovery Attack

The following happens when the client log in:

@ NTNU | sty

RSA Key Recovery Attack

The following happens when the client log in:

» The client derives k), locally from password

@ NTNU | sty

RSA Key Recovery Attack

The following happens when the client log in:
» The client derives k), locally from password

> The server sends stored [sk&seded], to client

share

@ NTNU | scnremons

RSA Key Recovery Attack
The following happens when the client log in:
» The client derives k), locally from password
> The server sends stored [sk&seded], to client

share

> The server samples m and sends [m],_ to client

@ NTNU | scnremons

RSA Key Recovery Attack
The following happens when the client log in:
» The client derives k), locally from password
> The server sends stored [sk&c%ed], to client

> The server samples m and sends [m],_ to client

> The client decrypts [sk&1so],,, then decrypts [m]ux,

share

@ NTNU | scnremons

RSA Key Recovery Attack

The following happens when the client log in:

» The client derives k), locally from password
> The server sends stored [sk&seded], to client

share

> The server samples m and sends [m],_ to client
> The client decrypts [sk&1so],,, then decrypts [m]ux,

share

» The client sends m to the server which accepts/rejects

@ NTNU | cacnremons

RSA Key Recovery Attack

The following happens when the client log in:

» The client derives k), locally from password

> The server sends stored [sk&c%ed], to client

> The server samples m and sends [m],_ to client

> The client decrypts [sk&1so],,, then decrypts [m]ux,

» The client sends m to the server which accepts/rejects

» The server sends all encrypted files to client if accept

@ NTNU | ccnremons

DecSid ([skeo® e, 1M pkyre):

encoded

Given: encrypted RSA private key [skeaps - iy €ncrypted
message [l i,

Returns: decrypted and unpadded SID sid’

skepeod*d « AES-ECB.Dec(kyr, [skSsod*s,)

N,e,d, p,q, dp, dq, u + DecodeRsaKey (sk&ceded

mj, < ([m]pi,,,)” mod p

¢ (mlpi,,)" mod g

t < m;, — mg mod p

h+ t-umodp

m' < h-q+m;

sid’ < m'[3:45]// Unpad 43 B SID.
return sid’

O 0w J o U W N

Fig. 5. SID decryption during MEGA’s client authentication using RSA.

@ NTNU | sy

20

RSA Key Recovery Attack

We can break the system in the following way:

@ NTNU | sty

21

RSA Key Recovery Attack

We can break the system in the following way:

> the secret key skén<eded js encrypted with AES-ECB

share

@ NTNU | sty

21

RSA Key Recovery Attack

We can break the system in the following way:

> the secret key skén<eded js encrypted with AES-ECB

share

> there is no integrity check for [sk&iseded],,

share] M

@ NTNU | cacnremons

21

RSA Key Recovery Attack

We can break the system in the following way:

> the secret key skén<eded js encrypted with AES-ECB

share

> there is no integrity check for [sk&iseded],,

share] M

> we can edit [sk¥s2%ed], so that only u changes

share

@ NTNU | cacnremons

21

RSA Key Recovery Attack

We can break the system in the following way:

> the secret key skén<eded js encrypted with AES-ECB

share

> there is no integrity check for [sk&iseded],,

share] M

> we can edit [sk¥s2%ed], so that only u changes

share

» recover parts of ¢ from chosen m with faulty «

@ NTNU | cacnremons

RSA Key Recovery Attack

We can break the system in the following way:

> the secret key skén<eded js encrypted with AES-ECB

share

> there is no integrity check for [sk&iseded],,

share] M

> we can edit [sk¥s2%ed], so that only u changes

» recover parts of ¢ from chosen m with faulty «

» decrypt all files that the client stored under [sk

@ NTNU | sacnrecmons

pkAEs] pkshare

21

RSA Key Recovery Attack

We can recover ¢ from faulty u as follows:

@ NTNU | sty

22

RSA Key Recovery Attack

We can recover ¢ from faulty u as follows:

> If m < qthen we get m;, =m =m;

@ NTNU | sty

22

RSA Key Recovery Attack

We can recover ¢ from faulty u as follows:

> If m < qthen we get m;, =m =m;

» Thent=0and h =0and m' = m < 256128

@ NTNU | sty

22

RSA Key Recovery Attack

We can recover ¢ from faulty u as follows:
> If m < g then we get m;, = m =m,

q

» Thent=0and h =0and m' = m < 256128

» m’ is padded with zeros to 256 bytes

@ NTNU | sty

22

RSA Key Recovery Attack

We can recover ¢ from faulty u as follows:

> If m < qthen we get m;, =m =m;
» Thent=0and h=0and m' =m < 256'%
» m’ is padded with zeros to 256 bytes

» Remove the 211 rightmost bytes

@ NTNU | cacnremons

22

RSA Key Recovery Attack

We can recover ¢ from faulty u as follows:

> If m < qthen we get m;, =m =m;
» Thent=0and h=0and m' =m < 256'%
» m’ is padded with zeros to 256 bytes

» Remove the 211 rightmost bytes

» Then the returned sid = m[3:45] =0

@ NTNU | cacnremons

22

RSA Key Recovery Attack

We can recover ¢ from faulty u as follows:

@ NTNU | sty

23

RSA Key Recovery Attack

We can recover ¢ from faulty u as follows:

> If m > g then we get m;, # m # mj

@ NTNU | sty

23

RSA Key Recovery Attack

We can recover ¢ from faulty u as follows:
/ !/
> If m > g then we get m;, # m # mj

» Thent # 0andh # 0 since u # ¢~ mod p

@ NTNU | sty

23

RSA Key Recovery Attack

We can recover ¢ from faulty u as follows:
> If m > g then we get m;, # m # mj
» Thent # 0andh # 0 since u # ¢~ mod p

» Then m/ # m > 25612 with high prob.

@ NTNU | sty

23

RSA Key Recovery Attack

We can recover ¢ from faulty u as follows:
> If m > g then we get m;, # m # mj
» Thent # 0andh # 0 since u # ¢~ mod p
» Then m/ # m > 25612 with high prob.

» Remove the 211 rightmost bytes

@ NTNU | cacnremons

23

RSA Key Recovery Attack

We can recover ¢ from faulty u as follows:
> If m > g then we get m;, # m # mj
» Thent # 0andh # 0 since u # ¢~ mod p
» Then m/ # m > 25612 with high prob.
» Remove the 211 rightmost bytes

» Then the returned sid = m[3: 45] # 0

@ NTNU | cacnremons

23

RSA Key Recovery Attack

This means that we learn 1 bit of information each time, and
can use a binary search between [21923 21024) to find ¢ in at
most 1023 queries i.e. each time the client tries to log in.

Using an improved lattice-attack similar to the attack on
ECDSA allowed for a reduction to 512 queries total.

@ NTNU | cacnremons

24

Other Attacks

The re-use of keys also allowed for decryption oracles, the
custom RSA padding P allowed for Bleichenbacher attacks,
lack of integrity checks allowed for uploading malicious
material, and more.

They added HMAC checks, updated padding and updated

the key-hierarchy after this work, but claimed that 512 log-in
attempts was too much for this to be a realistic attack...

@ NTNU | cacnremons

25

Contents

Cryptanalyzing MEGA in Six Queries

@ NTNU | sty

26

The Hidden Number Problem with Small
Unknown Multipliers: Cryptanalyzing MEGA in
Six Queries and Other Applications

Keegan Ryan and Nadia Heninger

University of California, San Diego
kryan@eng.ucsd.edu,nadiah@cs.ucsd.edu

Figure: https://eprint.iacr.org/2022/914.pdf

@ NTNU | ccnrecmons

27

https://eprint.iacr.org/2022/914.pdf

We actually learn more than 1 bit per query. The sid is of size
43 bytes, and this leaks much more information. With a lot

of pre-processing, it was shown that we can recover ¢ in only
6 queries (!). The lattice-attack achieving this is out of scope.

@ NTNU | cacnremons 28

Contents

Caveat Implementor!

@ NTNU | sty

29

Caveat Implementor! Key Recovery Attacks on MEGA

Martin R. Albrecht!, Miro Haller?®, Lenka Marekov4®®, and Kenneth G. Paterson?

1 King’s College London
martin.albrecht@kcl.ac.uk
2 Applied Cryptography Group, ETH Zurich
kenny.paterson@inf.ethz.ch, miro.haller@ethz.ch
3 Information Security Group, Royal Holloway, University of London
lenka.marekova.2018@rhul.ac.uk

Figure: https://eprint.iacr.org/2023/329.pdf

@ NTNU | sy

30

https://eprint.iacr.org/2023/329.pdf

Caveat Implementor!
Key Recovery Attacks on MEGA

MEGA is a large-scale cloud storage and communication platform that aims to provide
end-to-end encryption for stored data. Recent work by

invalidated these security claims by showing practical attacks against MEGA that could be
mounted by the MEGA service provider. In response, the MEGA developers added
lightweight sanity checks on the user RSA private keys used in MEGA, sufficient to prevent
the previous attacks. We analysed these new sanity checks and show how they themselves
could be exploited to mount novel attacks on MEGA that recover a target user's RSA private
key with only slightly higher attack complexity than the original attacks.

Figure: https://mega-caveat.github.io

@ NTNU | sy

31

https://mega-caveat.github.io

kennyog
@kennyog

In a new paper, @martinralbrecht, @M__Haller, Lenka Marekova, and |
took a fresh look at @MEGAprivacy. TL;DR: we broke the fixed version
with attacks that can recover user RSA private keys and file keys. Paper
and more at: mega-caveat.github.io (1/16)

Figure:
https://twitter.com/kennyog/status/1632718211476078592

@ NTNU | sy

32

https://twitter.com/kennyog/status/1632718211476078592

New Attacks

They came up with the following new attacks:

@ NTNU | sty

33

New Attacks

They came up with the following new attacks:

» Reducing the original attack from 512 to 2 queries

@ NTNU | ccnrecmons

33

New Attacks

They came up with the following new attacks:

» Reducing the original attack from 512 to 2 queries

» Exploiting re-encryption with adversarial keys

@ NTNU | ccnrecmons

33

New Attacks

They came up with the following new attacks:

» Reducing the original attack from 512 to 2 queries
» Exploiting re-encryption with adversarial keys

» Error messages that reveal more information

@ NTNU | ccnrecmons

33

New Attacks

They came up with the following new attacks:

» Reducing the original attack from 512 to 2 queries
» Exploiting re-encryption with adversarial keys
» Error messages that reveal more information

» Still using AES-ECB because it is "cheaper”

@ NTNU | ccnrecmons

33

New Attacks

They came up with the following new attacks:

» Reducing the original attack from 512 to 2 queries
» Exploiting re-encryption with adversarial keys

» Error messages that reveal more information

» Still using AES-ECB because it is "cheaper”

> Key-overwriting attacks from lacking integrity

@ NTNU | cacnremons

33

@ NTNU | sanctamirecnon

Questions?

ity of
logy

34

	General Information
	MEGA E2EE Cloud Storage
	Malleable Encryption Goes Awry
	Cryptanalyzing MEGA in Six Queries
	Caveat Implementor!

