B NTNU | siencEana rechnoiogy

PROTOCOL COMPOSITION 1
TTM4205 - Lecture 15

IIREIGERRCINERERH S

25.10.2023

Contents

OpenPGP and ElGamal

Algorithms for Discrete Logarithms

Cross-Implementation Attack on Elgamal

@ NTNU | sty

Contents

OpenPGP and ElGamal

@ NTNU | sty

OpenPGP

v

Recall TTM4135: Securing email.

» Standardised in RFC4880

» Encryption: EIGamal Hybrid Encryption (...or RSA).
» Signatures: DSA or RSA.

» Today: Cross-implementation attack on OpenPGP.

@ NTNU | ccnrecmons

https://datatracker.ietf.org/doc/html/rfc4880

On the (in)security of EIGamal in OpenPGP

Luca De Feo Bertram Poettering’ Alessandro Sorniotti*
IBM Research Europe — Zurich IBM Research Europe - Zurich IBM Research Europe - Zurich
Riischlikon, Switzerland Riischlikon, Switzerland Riischlikon, Switzerland

Figure: On the (in)security of ElGamal in OpenPGP

@ NTNU | sy

https://dl.acm.org/doi/pdf/10.1145/3460120.3485257?casa_token=5bE0mgTrZjUAAAAA:hwvdWXjrxJ1Q5HTblnIqSjZWHdzVy0sioKvV-AVGlIaE2sHkRX5PnP1DNuBgIrHLBLfX_X6-E65-_A

ElGamal Hybrid Encryption

Key Generation

» Work in the group G = (g).
> Secret key: sk = z.
» Public key: pk = X = ¢*

@ NTNU | sty

ElGamal Hybrid Encryption

Key Generation

» Work in the group G = (g).
> Secret key: sk = z.
» Public key: pk = X = ¢*

Encryption
> Selecty, computeY = ¢¥, and Z = XV = ¢g"V.
» Use Z as a symmetric key, to encrypt message m to ct.
> Send C = (Y,ct)

@ NTNU | sty

ElGamal Hybrid Encryption

Key Generation

» Work in the group G = (g).
> Secret key: sk = z.
» Public key: pk = X = ¢*

Encryption
> Selecty, computeY = ¢¥, and Z = XV = ¢g"V.
» Use Z as a symmetric key, to encrypt message m to ct.
> Send C = (Y,ct)

Decryption
» Compute Z = Y* and use Z to decrypt ct

@ NTNU | sty

ElGamal Hybrid Encryption

Key Generation

» Work in the group G, select some generator g € G.
» Secret key: sk = .
» Public key: pk = X = ¢*

Questions

What group should G be? How should g be selected?? What
interval should x and y be picked from??? We'll see four
different configurations that are all used in practice. In all
cases, G = (Z/pZ)* for some prime p.

@ NTNU | cacnremons

Repitition?

» Recall that (Z/pZ)* is cyclic of order p — 1.
> Letp—1=qiq2 - gn With g; relatively prime powers.

> (Z/pZ)* 2 7)(p— 1)L =L/ T X L) g2Z % - X L g, L.

@ NTNU | sy

Two easy configs we’ll focus on
Configuration A

» G = (Z/pZ)* where p — 1 has at least one large prime
factor.
» g should be a generator of G.

» x,y picked from [0,p — 1].

Configuration B

» G = (Z/pZ)* where p — 1 has at least one large prime
factor, say q.

» ¢ should be a generator of the subgroup G’ C G, of
order ¢

» x,y should be picked from [0, ¢ — 1] for efficiency.

Note that in Configuration B, ¢ < p.

@ NTNU | ccnremons

Two more

Configuration C - Safe Primes
> G = (Z/pZ)* where p — 1 = 2¢, where ¢ is prime.
> ¢ = 4 (note that this is a generator of the group G' C G
of order q)
» x,y picked from [0,p — 1].

Configuration C - Lim-Lee Primes
> G'=(Z/pZ)* where p—1 = 2q1q2 - q,, With ¢; all different
primes of roughly the same size.

» g should be a generator of the subgroup G’ C G, of
order ¢; for some i.

» z,y should be picked from [0, ¢; — 1] for efficiency.

@ NTNU | cacnremons

Contents

Algorithms for Discrete Logarithms

@ NTNU | sty

Pohlig-Hellman

Discrete logartihm
Let G = (g), with |G| = p{'p5* - - - p&», where p; are prime
powers. Given X € G, compute z s.t. g* = X.

@ NTNU | sty

Pohlig-Hellman

Discrete logartihm
Let G = (g), with |G| = p{'p5* - - - p&», where p; are prime
powers. Given X € G, compute z s.t. g* = X.

» Pohlig-Hellman reduces this to the task of computing
discrete logs in groups of order p;.

@ NTNU | cacnremons 12

Pohlig-Hellman

Discrete logartihm
Let G = (g), with |G| = p{'p5* - - - p&», where p; are prime
powers. Given X € G, compute z s.t. g* = X.

» Pohlig-Hellman reduces this to the task of computing
discrete logs in groups of order p;.

» Solving discrete logs in groups of prime power order.

@ NTNU | cacnremons

Pohlig-Hellman

Discrete logartihm
Let G = (g), with |G| = p{'p5* - - - p&», where p; are prime
powers. Given X € G, compute z s.t. g* = X.

» Pohlig-Hellman reduces this to the task of computing
discrete logs in groups of order p;.

» Solving discrete logs in groups of prime power order.

» Combining results using CRT

@ NTNU | sacnrecmons

Pohlig-Hellman - Prime power case

We compute the discrete log of X to base g, where g
generates a group of order p°.

@ NTNU | sty

Pohlig-Hellman - Prime power case

We compute the discrete log of X to base g, where g
generates a group of order p°.

1. Letzg:=0
2. Set Osmall ‘= gp
3. For0<k<e:

3.1 Compute X, := (g~ == X)" "
3.2 Compute dy s.t. X = gk 14
3.3 Setayyy =z + pFd

4. Return z..

e—1

To see that this algorithm is correct, write = in base p.

@ NTNU | cacnremons

Pohlig-Hellman - Full algorithm
We compute the discrete log of X to base g, where g
generates a group of order |G| = N = p*p5* - - - p&.

@ NTNU | sty

Pohlig-Hellman - Full algorithm
We compute the discrete log of X to base g, where g
generates a group of order |G| = N = p*p5* - - - p&.
Abstractly: Since G ~ Z/p{'Z x Z/p3Z % - - X L pirZ,
simply project onto each summand, and recover = with CRT.

@ NTNU | cacnremons 14

Pohlig-Hellman - Full algorithm
We compute the discrete log of X to base g, where g
generates a group of order |G| = N = p*p5* - - - p&.
Abstractly: Since G ~ Z/p{'Z x Z/p3Z % - - X L pirZ,
simply project onto each summand, and recover = with CRT.
Concrete:
1. Foreach0 < i < n:
1.1 Compute g; := ¢™/®") and X; = XN/ ")
1.2 Compute z; s.t. X; = g/ using the previous algorithm.
2. We now have a system of congruences

z=z; (mod pi'),

r =2z, (modpi),

which you learned to solve in kindergarden.

@ NTNU | cacnremons

Reference Group

Any comments to the reference group? How's the course
going? How's the workload? Any comments to lectures
and/or exercise classes? 10 mins discussion :)

@ NTNU | ccnrecmons

Baby Step - Giant Step

We compute the discrete log X to base g, where g generates
a group of prime order p.

BS-GS
Solves in O(,/p) time and memory.

Idea: Write z = am + b for m = [,/p]. Store all g for b < m,
and solve for a such that ¢g® = X (¢g7™).

@ NTNU | cacnrecmons

BS-GS Algorithm

1. Setm = [,/p].

2. Foreach0 <b < m:
2.1 Compute and save the pair (b, g*) in a table.

3. computeY =g~

4. Foreach0<a < m:

4.1 Compute and check if XY is in the table, say for b.

4.2 If so, return am + b.

@ NTNU | sy

Small note on a different algorithm

Pollard Rho
A different algorithm for the same problem as BS-GS, but

which only uses constant memory. Flavor is more similar to
the following algortihm....

@ NTNU | sty

Pollard’s Kangaroo

We compute the discrete log X to base g in G, where we
know that the solution z lies in some interval [a, b].
Pollard’s Kangaroo/Lambda Algorithm

Solves (probabilistically) in O(v/b — a) time.

Requires a hash function H : G — S, where S'is a set of
random integers, roughly of size v/b — a.

@ NTNU | cacnremons

Pollard’s Kangaroo

1. Set Yy := ¢".
2. Setd:=0

3. For 0 < i < N for some bound N:
3.1 Compute Y;;; = Yig/ (),
3.2 Update d :=d + f(Y;).

4. d =0
CXo=X

[,

5.1 Compute X;;; = X;g/ (X9

5.2 Update d’ :=d’' + f(X;).

5.3 If X;11 = Yy, return the solution.

5.4 Ifd > b— a+d, restart with a new choice of f.

Solution given as X g% =

@ NTNU | sy

'
@'+1:YN:gb+d:>X:gb+d d

20

Contents

Cross-Implementation Attack on Elgamal

@ NTNU | sty

21

Weakness across implementations in EIGamal

» By themselves, configuration A/B/C/D are all secure.

@ NTNU | ety

22

Weakness across implementations in EIGamal

» By themselves, configuration A/B/C/D are all secure.

» However, by combining them, they can become
insecure.

@ NTNU | ety

22

Weakness across implementations in EIGamal

» By themselves, configuration A/B/C/D are all secure.

» However, by combining them, they can become
insecure.

» Specific attack: User using config B/D sends person
using configuration A an PGP encrypted email.

@ NTNU | cacnremons 22

Weakness across implementations in EIGamal

» By themselves, configuration A/B/C/D are all secure.

» However, by combining them, they can become
insecure.

» Specific attack: User using config B/D sends person
using configuration A an PGP encrypted email.
> Sender uses small exponents z € [0, ..., 22%].
» Receiver uses g generator of group of order
N =pitq¢s?...p5» N', where p; are all small enough
primes to solve discrete logs in.

@ NTNU | cacnremons

Attack

We are computing the discrete log of X to base g where:

> g generates a group of order N = p{'¢5*...p&* N’, where
p; are all small-ish primes. Let M := N/N'.

» The solution z lies in [0, ..., 2%5]

@ NTNU | cacnremons 23

Attack

We are computing the discrete log of X to base g where:
> g generates a group of order N = p{'¢5*...p&* N’, where
p; are all small-ish primes. Let M := N/N'.
» The solution z lies in [0, ..., 2%5]
Attack:

1. Use Pohlig-Hellman combined with BS-GS (or Pollard
rho) to compute w = = (mod M), by computing the dlog
of X' to the base ¢V'.

2. Note now that X = ¢*™** for some unknown
z€0,...,M/(2%5)]. Therefore, find 2 by using
computing the discrete log of X /¢ to the base gV,
using Pollard’s kangaroo.

@ NTNU | cacnremons 23

Practicality of attack

Set computational power to 259 operations.

1. To solve, we need p — 1 to be divisible by enough small
primes p; < 2190,

2. Same as before, write p — 1 = p{'¢5* ... p5* N', where
p; < 2'%, and let M := N/N'.
3. For the last step we need (22°%) /M < 210,

Computing the exact probability of this happening when p
and g comes from configuration A is complicated, but it
happens very frequently.

@ NTNU | ccnrecmons

24

Further reading

» When additionally considering side-channel attacks, the
previous attack becomes even more prominent.

» See Chp 5in On the (in)security of ElGamal in OpenPGP

@ NTNU | sty

25

https://dl.acm.org/doi/pdf/10.1145/3460120.3485257?casa_token=5bE0mgTrZjUAAAAA:hwvdWXjrxJ1Q5HTblnIqSjZWHdzVy0sioKvV-AVGlIaE2sHkRX5PnP1DNuBgIrHLBLfX_X6-E65-_A

Further reading

» When additionally considering side-channel attacks, the
previous attack becomes even more prominent.

» See Chp 5in On the (in)security of ElGamal in OpenPGP

» Bridge between this week and next week:

» What can the attacker do when having write access to
the public/encrypted private keys?

> Why is this attack scenario realistic? Cloud based key
management etc.

» Turns out, quite a lot

@ NTNU | cacnremons 25

https://dl.acm.org/doi/pdf/10.1145/3460120.3485257?casa_token=5bE0mgTrZjUAAAAA:hwvdWXjrxJ1Q5HTblnIqSjZWHdzVy0sioKvV-AVGlIaE2sHkRX5PnP1DNuBgIrHLBLfX_X6-E65-_A

Victory by KO: Attacking OpenPGP Using Key Overwriting

Lara Bruseghini* Daniel Huigens Kenneth G. Paterson
ETH Zurich Proton AG ETH Zurich
Switzerland Switzerland Switzerland

larabr@protonmail.com d.huigens@protonmail.com kenny.paterson@inf.ethz.ch

Figure: Victory by KO: Attacking OpenPGP Using Key Overwriting

@ NTNU | sy

26

https://dl.acm.org/doi/pdf/10.1145/3548606.3559363?casa_token=QcOcB7vgWCQAAAAA:M0I3dFjAGxLhMGxbZxrqTXqwkSvv5CyQzk0ZGwxAeSZakPTzrCLssIX4_OX1l9_vurhSQg1_S9NRCA

@ NTNU | sanctamirecnon

Questions?

ity of
logy

27

	OpenPGP and ElGamal
	Algorithms for Discrete Logarithms
	Cross-Implementation Attack on Elgamal

