
PROTOCOL COMPOSITION 1
TTM4205 – Lecture 15
Jonathan Komada Eriksen

25.10.2023

Contents

OpenPGP and ElGamal

Algorithms for Discrete Logarithms

Cross-Implementation Attack on Elgamal

2

Contents

OpenPGP and ElGamal

Algorithms for Discrete Logarithms

Cross-Implementation Attack on Elgamal

3

OpenPGP

I Recall TTM4135: Securing email.

I Standardised in RFC4880

I Encryption: ElGamal Hybrid Encryption (...or RSA).

I Signatures: DSA or RSA.

I Today: Cross-implementation attack on OpenPGP.

4

https://datatracker.ietf.org/doc/html/rfc4880

Figure: On the (in)security of ElGamal in OpenPGP

5

https://dl.acm.org/doi/pdf/10.1145/3460120.3485257?casa_token=5bE0mgTrZjUAAAAA:hwvdWXjrxJ1Q5HTblnIqSjZWHdzVy0sioKvV-AVGlIaE2sHkRX5PnP1DNuBgIrHLBLfX_X6-E65-_A

ElGamal Hybrid Encryption
Key Generation
I Work in the group G = 〈g〉.
I Secret key: sk = x.
I Public key: pk = X = gx

Encryption
I Select y, compute Y = gy, and Z = Xy = gxy.
I Use Z as a symmetric key, to encrypt messagem to ct.
I Send C = (Y, ct)

Decryption
I Compute Z = Y x and use Z to decrypt ct

6

ElGamal Hybrid Encryption
Key Generation
I Work in the group G = 〈g〉.
I Secret key: sk = x.
I Public key: pk = X = gx

Encryption
I Select y, compute Y = gy, and Z = Xy = gxy.
I Use Z as a symmetric key, to encrypt messagem to ct.
I Send C = (Y, ct)

Decryption
I Compute Z = Y x and use Z to decrypt ct

6

ElGamal Hybrid Encryption
Key Generation
I Work in the group G = 〈g〉.
I Secret key: sk = x.
I Public key: pk = X = gx

Encryption
I Select y, compute Y = gy, and Z = Xy = gxy.
I Use Z as a symmetric key, to encrypt messagem to ct.
I Send C = (Y, ct)

Decryption
I Compute Z = Y x and use Z to decrypt ct

6

ElGamal Hybrid Encryption

Key Generation
I Work in the group G, select some generator g ∈ G.
I Secret key: sk = x.
I Public key: pk = X = gx

Questions
What group should G be? How should g be selected?? What
interval should x and y be picked from??? We’ll see four
different configurations that are all used in practice. In all
cases, G = (Z/pZ)× for some prime p.

7

Repitition?

I Recall that (Z/pZ)× is cyclic of order p− 1.

I Let p− 1 = q1q2 · · · qn, with qi relatively prime powers.

I (Z/pZ)× ∼= Z/(p− 1)Z ∼= Z/q1Z× Z/q2Z× · · · × Z/qnZ.

8

Two easy configs we’ll focus on
Configuration A
I G = (Z/pZ)× where p− 1 has at least one large prime

factor.
I g should be a generator of G.
I x, y picked from [0, p− 1].

Configuration B
I G = (Z/pZ)× where p− 1 has at least one large prime

factor, say q.
I g should be a generator of the subgroup G′ ⊆ G, of

order q
I x, y should be picked from [0, q − 1] for efficiency.

Note that in Configuration B, q � p.

9

Two more
Configuration C - Safe Primes
I G = (Z/pZ)× where p− 1 = 2q, where q is prime.
I g = 4 (note that this is a generator of the group G′ ⊆ G

of order q)
I x, y picked from [0, p− 1].

Configuration C - Lim-Lee Primes
I G′ = (Z/pZ)× where p− 1 = 2q1q2 · qn, with qi all different

primes of roughly the same size.
I g should be a generator of the subgroup G′ ⊆ G, of

order qi for some i.
I x, y should be picked from [0, qi − 1] for efficiency.

10

Contents

OpenPGP and ElGamal

Algorithms for Discrete Logarithms

Cross-Implementation Attack on Elgamal

11

Pohlig-Hellman

Discrete logartihm
Let G = 〈g〉, with |G| = pe11 pe22 · · · penn , where pi are prime
powers. Given X ∈ G, compute x s.t. gx = X.

I Pohlig-Hellman reduces this to the task of computing
discrete logs in groups of order pi.

I Solving discrete logs in groups of prime power order.

I Combining results using CRT

12

Pohlig-Hellman

Discrete logartihm
Let G = 〈g〉, with |G| = pe11 pe22 · · · penn , where pi are prime
powers. Given X ∈ G, compute x s.t. gx = X.
I Pohlig-Hellman reduces this to the task of computing

discrete logs in groups of order pi.

I Solving discrete logs in groups of prime power order.

I Combining results using CRT

12

Pohlig-Hellman

Discrete logartihm
Let G = 〈g〉, with |G| = pe11 pe22 · · · penn , where pi are prime
powers. Given X ∈ G, compute x s.t. gx = X.
I Pohlig-Hellman reduces this to the task of computing

discrete logs in groups of order pi.

I Solving discrete logs in groups of prime power order.

I Combining results using CRT

12

Pohlig-Hellman

Discrete logartihm
Let G = 〈g〉, with |G| = pe11 pe22 · · · penn , where pi are prime
powers. Given X ∈ G, compute x s.t. gx = X.
I Pohlig-Hellman reduces this to the task of computing

discrete logs in groups of order pi.

I Solving discrete logs in groups of prime power order.

I Combining results using CRT

12

Pohlig-Hellman - Prime power case

We compute the discrete log of X to base g, where g
generates a group of order pe.

1. Let x0 := 0

2. Set gsmall := gp
e−1 .

3. For 0 ≤ k < e:
3.1 Compute Xk := (g−xkX)p

e−1−k

3.2 Compute dk s.t. Xk = gdk
small

3.3 Set xk+1 := xk + pkdk

4. Return xe.
To see that this algorithm is correct, write x in base p.

13

Pohlig-Hellman - Prime power case

We compute the discrete log of X to base g, where g
generates a group of order pe.
1. Let x0 := 0

2. Set gsmall := gp
e−1 .

3. For 0 ≤ k < e:
3.1 Compute Xk := (g−xkX)p

e−1−k

3.2 Compute dk s.t. Xk = gdk
small

3.3 Set xk+1 := xk + pkdk

4. Return xe.
To see that this algorithm is correct, write x in base p.

13

Pohlig-Hellman - Full algorithm
We compute the discrete log of X to base g, where g
generates a group of order |G| = N = pe11 pe22 · · · penn .

Abstractly: Since G ' Z/pe11 Z× Z/pe22 Z× · · · × Z/penn Z,
simply project onto each summand, and recover x with CRT.
Concrete:
1. For each 0 < i ≤ n:

1.1 Compute gi := gN/(p
ei
i) and Xi = XN/(p

ei
i)

1.2 Compute xi s.t. Xi = gxi
i using the previous algorithm.

2. We now have a system of congruences

x ≡ x1 (mod pe11),

...
x ≡ xn (mod penn),

which you learned to solve in kindergarden.

14

Pohlig-Hellman - Full algorithm
We compute the discrete log of X to base g, where g
generates a group of order |G| = N = pe11 pe22 · · · penn .
Abstractly: Since G ' Z/pe11 Z× Z/pe22 Z× · · · × Z/penn Z,
simply project onto each summand, and recover x with CRT.

Concrete:
1. For each 0 < i ≤ n:

1.1 Compute gi := gN/(p
ei
i) and Xi = XN/(p

ei
i)

1.2 Compute xi s.t. Xi = gxi
i using the previous algorithm.

2. We now have a system of congruences

x ≡ x1 (mod pe11),

...
x ≡ xn (mod penn),

which you learned to solve in kindergarden.

14

Pohlig-Hellman - Full algorithm
We compute the discrete log of X to base g, where g
generates a group of order |G| = N = pe11 pe22 · · · penn .
Abstractly: Since G ' Z/pe11 Z× Z/pe22 Z× · · · × Z/penn Z,
simply project onto each summand, and recover x with CRT.
Concrete:
1. For each 0 < i ≤ n:

1.1 Compute gi := gN/(p
ei
i) and Xi = XN/(p

ei
i)

1.2 Compute xi s.t. Xi = gxi
i using the previous algorithm.

2. We now have a system of congruences

x ≡ x1 (mod pe11),

...
x ≡ xn (mod penn),

which you learned to solve in kindergarden.

14

Reference Group

Any comments to the reference group? How’s the course
going? How’s the workload? Any comments to lectures
and/or exercise classes? 10 mins discussion :)

15

Baby Step - Giant Step

We compute the discrete log X to base g, where g generates
a group of prime order p.
BS-GS
Solves in O(

√
p) time and memory.

Idea: Write x = am+ b form = d√pe. Store all gb for b < m,
and solve for a such that gb = X(g−m)a.

16

BS-GS Algorithm

1. Setm = d√pe.

2. For each 0 ≤ b < m:
2.1 Compute and save the pair (b, gb) in a table.

3. compute Y = g−m.

4. For each 0 ≤ a < m:
4.1 Compute and check if XY a is in the table, say for b.
4.2 If so, return am+ b.

17

Small note on a different algorithm

Pollard Rho
A different algorithm for the same problem as BS-GS, but
which only uses constant memory. Flavor is more similar to
the following algortihm....

18

Pollard’s Kangaroo

We compute the discrete log X to base g in G, where we
know that the solution x lies in some interval [a, b].
Pollard’s Kangaroo/Lambda Algorithm
Solves (probabilistically) in O(

√
b− a) time.

Requires a hash function H : G→ S, where S is a set of
random integers, roughly of size

√
b− a.

19

Pollard’s Kangaroo

1. Set Y0 := gb.
2. Set d := 0

3. For 0 ≤ i < N for some bound N :
3.1 Compute Yi+1 = Yig

f(Yi).
3.2 Update d := d+ f(Yi).

4. d′ := 0

5. X0 := X

5.1 Compute Xi+1 = Xig
f(Xi)

5.2 Update d′ := d′ + f(Xi).
5.3 If Xi+1 = YN , return the solution.
5.4 If d′ > b− a+ d, restart with a new choice of f .

Solution given as Xgd
′
= Xi+1 = YN = gb+d ⇒ X = gb+d−d′

20

Contents

OpenPGP and ElGamal

Algorithms for Discrete Logarithms

Cross-Implementation Attack on Elgamal

21

Weakness across implementations in ElGamal

I By themselves, configuration A/B/C/D are all secure.

I However, by combining them, they can become
insecure.

I Specific attack: User using config B/D sends person
using configuration A an PGP encrypted email.
I Sender uses small exponents x ∈ [0, . . . , 2256].
I Receiver uses g generator of group of order

N = pe11 qe22 . . . penn N ′, where pi are all small enough
primes to solve discrete logs in.

22

Weakness across implementations in ElGamal

I By themselves, configuration A/B/C/D are all secure.

I However, by combining them, they can become
insecure.

I Specific attack: User using config B/D sends person
using configuration A an PGP encrypted email.
I Sender uses small exponents x ∈ [0, . . . , 2256].
I Receiver uses g generator of group of order

N = pe11 qe22 . . . penn N ′, where pi are all small enough
primes to solve discrete logs in.

22

Weakness across implementations in ElGamal

I By themselves, configuration A/B/C/D are all secure.

I However, by combining them, they can become
insecure.

I Specific attack: User using config B/D sends person
using configuration A an PGP encrypted email.

I Sender uses small exponents x ∈ [0, . . . , 2256].
I Receiver uses g generator of group of order

N = pe11 qe22 . . . penn N ′, where pi are all small enough
primes to solve discrete logs in.

22

Weakness across implementations in ElGamal

I By themselves, configuration A/B/C/D are all secure.

I However, by combining them, they can become
insecure.

I Specific attack: User using config B/D sends person
using configuration A an PGP encrypted email.
I Sender uses small exponents x ∈ [0, . . . , 2256].
I Receiver uses g generator of group of order

N = pe11 qe22 . . . penn N ′, where pi are all small enough
primes to solve discrete logs in.

22

Attack
We are computing the discrete log of X to base g where:
I g generates a group of order N = pe11 qe22 . . . penn N ′, where

pi are all small-ish primes. LetM := N/N ′.
I The solution x lies in [0, . . . , 2256]

Attack:
1. Use Pohlig-Hellman combined with BS-GS (or Pollard

rho) to compute w ≡ x (mod M), by computing the dlog
of XN ′ to the base gN

′ .
2. Note now that X = gzM+w for some unknown

z ∈ [0, . . . ,M/(2256)]. Therefore, find z by using
computing the discrete log of X/gw to the base gM ,
using Pollard’s kangaroo.

23

Attack
We are computing the discrete log of X to base g where:
I g generates a group of order N = pe11 qe22 . . . penn N ′, where

pi are all small-ish primes. LetM := N/N ′.
I The solution x lies in [0, . . . , 2256]

Attack:
1. Use Pohlig-Hellman combined with BS-GS (or Pollard

rho) to compute w ≡ x (mod M), by computing the dlog
of XN ′ to the base gN

′ .
2. Note now that X = gzM+w for some unknown

z ∈ [0, . . . ,M/(2256)]. Therefore, find z by using
computing the discrete log of X/gw to the base gM ,
using Pollard’s kangaroo.

23

Practicality of attack

Set computational power to 250 operations.
1. To solve, we need p− 1 to be divisible by enough small

primes pi < 2100.
2. Same as before, write p− 1 = pe11 qe22 . . . penn N ′, where

pi < 2100, and letM := N/N ′.
3. For the last step we need (2256)/M < 2100.

Computing the exact probability of this happening when p
and g comes from configuration A is complicated, but it
happens very frequently.

24

Further reading

I When additionally considering side-channel attacks, the
previous attack becomes even more prominent.
I See Chp 5 in On the (in)security of ElGamal in OpenPGP

I Bridge between this week and next week:
I What can the attacker do when having write access to

the public/encrypted private keys?
I Why is this attack scenario realistic? Cloud based key

management etc.
I Turns out, quite a lot

25

https://dl.acm.org/doi/pdf/10.1145/3460120.3485257?casa_token=5bE0mgTrZjUAAAAA:hwvdWXjrxJ1Q5HTblnIqSjZWHdzVy0sioKvV-AVGlIaE2sHkRX5PnP1DNuBgIrHLBLfX_X6-E65-_A

Further reading

I When additionally considering side-channel attacks, the
previous attack becomes even more prominent.
I See Chp 5 in On the (in)security of ElGamal in OpenPGP

I Bridge between this week and next week:
I What can the attacker do when having write access to

the public/encrypted private keys?
I Why is this attack scenario realistic? Cloud based key

management etc.
I Turns out, quite a lot

25

https://dl.acm.org/doi/pdf/10.1145/3460120.3485257?casa_token=5bE0mgTrZjUAAAAA:hwvdWXjrxJ1Q5HTblnIqSjZWHdzVy0sioKvV-AVGlIaE2sHkRX5PnP1DNuBgIrHLBLfX_X6-E65-_A

Figure: Victory by KO: Attacking OpenPGP Using Key Overwriting

26

https://dl.acm.org/doi/pdf/10.1145/3548606.3559363?casa_token=QcOcB7vgWCQAAAAA:M0I3dFjAGxLhMGxbZxrqTXqwkSvv5CyQzk0ZGwxAeSZakPTzrCLssIX4_OX1l9_vurhSQg1_S9NRCA

Questions?

27

	OpenPGP and ElGamal
	Algorithms for Discrete Logarithms
	Cross-Implementation Attack on Elgamal

