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Reminder: Special Topic Project

The deadline for submitting group and topic is Nov 1st.
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Reference Group Meeting

We are planning a new meeting next week. Please provide
feedback to me or to the reference group members. We will
provide time for you to discuss in a later lecture.
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Reference Material

These slides are based on:

▶ The referred papers in the slides

▶ BS: parts of chapter 19 and 20

▶ DW: parts of chapter 7 and 15.3
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Informal Definitions

Commitments
A commitment is a way to bind yourself to information that
later can be opened. It is important that it is not possible to
change the committed value afterwards, and that the
commitment does not leak the committed value itself.

Example: a guarded safe where you know the code to open.
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Informal Definitions

Zero-Knowledge Proofs
A zero-knowledge proof is a message or a communication
protocol for a prover to convince a verifier that some
statement is true without revealing why or how it is true.

A cheating prover should not be able to convince the verifier
about false statements, and the verifier should not learn
anything else than the fact that the statement is true.
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Use-cases
Commitments and zero-knowledge proofs are widely used
in among others the following settings:

▶ To create digital signatures

▶ Anonymous contact-tracing
(implemented in Smittestopp 2.0)

▶ Electronic voting systems

▶ Privacy-preserving transactions

▶ Multi-party computation protocols
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Figure: https://blog.cryptographyengineering.com/2014/11/2
7/zero-knowledge-proofs-illustrated-primer
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Figure: https://homepages.cwi.nl/~schaffne/courses/crypto/2
014/papers/ComZK08.pdf
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Algorithms

A commitment scheme consists of the following algorithms:

KGen Outputs public parameters pp.

Com Takes as input pp and a messagem. It outputs
a commitment cmt and an opening op.

Open Takes as input pp, cmt and op and outputs 1 or 0.

Here, op usually consists ofm and some randomness w.

13



Binding

A commitment is binding if it is hard to find two valid
openings op = (m,w) and op′ = (m′, w′) such that
Open(cmt, op) and Open(cmt, op′) outputs 1 andm ̸= m′.

This is similar to collision resistance for hash functions.
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Hiding

A commitment is hiding if it is hard to decide if cmt is a
commitment to a given messagem or if cmt is sampled
uniformly at random from the commitment space.

This is similar to CPA security for encryption schemes.
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Hash-Based Commitments

Q: Are the following secure commitment schemes for
hash function H, messagem, and randomness w?

▶ Let Com output cmt = H(m) and op = m.

▶ Let Com output cmt = H(m,w) and op = (m,w).
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Hash-Based Commitments

Are the following secure commitment schemes for hash
function H , messagem, and randomness w?

▶ Let Com output cmt = H(m) and op = m.
Hiding only ifm is pseudo-random.
Binding if H is collision-resistant.

▶ Let Com output cmt = H(m,w) and op = (m,w).
Hiding, if w is pseudo-random.
Binding if H is collision-resistant.
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ElGamal Commitment

Let G be a group of prime order p and let g and h be
independent generators for G. Letm be a message in
G and w be uniform randomness in Zp.

An ElGamal commitment is computed as cmt = (gw,m · hw).

Q: Is this commitment scheme hiding and binding?
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Security

The ElGamal commitment scheme is:

▶ (computationally) hiding if w is pseudo-random
and the DLOG problem is hard in G.

▶ (unconditionally) binding since only one w exist for gw.
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Backdoor

We must be a bit careful about how we choose parameters.

▶ How can we break the scheme if we know t = logg h?

▶ We break hiding by computingm = (m · hw) · (gw)−t.
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Backdoor

We must be a bit careful about how we choose parameters.

▶ How can we break the scheme if we know t = logg h?

▶ We break hiding by computingm = (m · hw) · (gw)−t.
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Mitigations

We must make sure that no one knows t = logg h, for
example by computing both generators as outputs from a
random oracle (hash function) on publicly agreed input, e.g.,
a given number of decimals of π or e or lottery numbers etc.
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Algorithms

Let x be a NP-statement and let w be a witness such that a
given relation (e.g. discrete logarithm) R(w, x) is satisfied.

A zero-knowledge proof consists of the following algorithms:

KGen Outputs public parameters pp.
Prove Takes as input pp, x and w. It outputs a proof π.
Verify Takes as input x and π and outputs 1 or 0.

The Prove algorithm might be an interactive protocol.
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Soundness

A zero-knowledge proof is sound if it is hard for a cheating
prover to produce an accepting proof π for a statement x
without there existing or the prover knowing a witness w.

This is similar to binding for commitment schemes.
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Zero-Knowledge

A zero-knowledge proof is zero-knowledge if it is hard for a
cheating verifier to learn anything about w when given x and
π, except for learning that the relation R(w, x) is satisfied.

This is similar to hiding for commitment schemes.
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Proof of DL
Given a group G of prime order p with generator g where
the relation R(w, x) is satisfied if x = gw. The DL ZK-proof:

1. Prover samples r ←$ Zp and sends R = gr to the verifier.

2. Verifier samples c←$ Zp and sends c to the prover.

3. Prover compute z = r − c · w and sends z to the verifier.

4. If R = gz · xc then the verifier outputs 1, otherwise 0.

This is the interactive version of the Schnorr signature
scheme without the messagem and hash function H .
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Security

We argue soundness as following:

A prover that does not know w have to guess c in advance to
be able to answer the challenge correctly (unless it can
compute DL, but then it could find w in the first place).

Assuming that the prover can guess c, then it can sample a
random z and compute R as R = gz · xc and send it to the
verifier in the first round. The probability of cheating is 1/p.

(A proper proof would create an extractor using rewinding.)
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Security
We argue zero-knowledge as following:

A verifier receive R and z from the prover. r is sampled
uniformly at random, so R is a uniformly random element
in G. By a similar argument, z is a uniform element in Zp.

We create a simulator that does the following:
1. sample uniform c from Zp

2. sample uniform z from Zp

3. compute R = gz · xc in G
4. output the transcript (R, c, z)

This transcript is identically distributed as a real execution.
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Fiat-Shamir Transform

To make an interactive protocol non-interactive, we use the
Fiat-Shamir transform, where the challenge c is the output of
a hash function H applied to the context of the proof, e.g.,
the statement, public parameters and messages.

For example, c = H(pp, R) in the proof system above. Then
we do not need interaction. Or c = H(pp, R,m) for signingm.
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Fake Proofs

It is extremely important to hash everything when using
Fiat-Shamir! Otherwise the prover can produce fake proofs.

Q: How can we fake the DL proof if c = H(pp)?
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Fake Proofs

It is extremely important to hash everything when using
Fiat-Shamir! Otherwise the prover can produce fake proofs.

Q: How can we fake the DL proof above if c = H(pp)?

A: We know c before we need to choose R (simulator).
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Figure: https:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9152765
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Questions?
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