O NTNU I

Norwegian University of Science and Technology

PADDING ORACLES

TTM4205 – Lecture 13

Tjerand Silde

19.10.2023

Contents

[Padding Oracles](#page-2-0)

[Recall: RSA Encryption](#page-6-0)

[RSA Padding Schemes](#page-12-0)

[The Bleichenbacher Attack](#page-18-0)

[Improved Bleichenbacher Attack](#page-30-0)

[RSA Padding Oracle Mitigations](#page-44-0)

Contents

[Padding Oracles](#page-2-0)

- **[Recall: RSA Encryption](#page-6-0)**
- **[RSA Padding Schemes](#page-12-0)**
- **[The Bleichenbacher Attack](#page-18-0)**
- **[Improved Bleichenbacher Attack](#page-30-0)**
- **[RSA Padding Oracle Mitigations](#page-44-0)**

Reference Material

These slides are based on:

- \blacktriangleright The referred papers in the slides
- ▶ JPA: parts of chapter 10
- ▶ DW: parts of chapter 6

By this we mean, on a high level, an API that allows an adversary to check if some input is correctly formed.

We limit ourselves to input with a particular padding.

A limited version of the protocol APIs from last week.

Padding Oracles

We will look at symmetric and asymmetric padding schemes:

- ▶ more in depth on CBC mode (last time)
- \blacktriangleright extension attacks against hashing (last time)
- ▶ padding attacks against RSA scheme (today)

Several of which are relevant to the weekly problems.

We will also look at some mitigations to these issues.

Contents

[Padding Oracles](#page-2-0)

[Recall: RSA Encryption](#page-6-0)

[RSA Padding Schemes](#page-12-0)

[The Bleichenbacher Attack](#page-18-0)

[Improved Bleichenbacher Attack](#page-30-0)

[RSA Padding Oracle Mitigations](#page-44-0)

The plain RSA encryption scheme works as follows:

KGen:

- \blacktriangleright Samples primes p and q of appropriate size and entropy
- ▶ Use fixed e and compute $d \equiv e^{-1} \mod \text{lcm}(p-1, q-1)$
- \triangleright Output the key pair pk = $(e, n = p \cdot q)$ and sk = (d, p, q)

The plain RSA encryption scheme works as follows:

Enc:

- \blacktriangleright Takes as input a message m and public key pk = (e, n)
- ▶ Computes the ciphertext $c \equiv m^e \mod n$ and outputs c

The plain RSA encryption scheme works as follows:

Dec:

- \blacktriangleright Takes as input a ciphertext c and secret key sk = (d, p, q)
- ▶ Computes the message $m \equiv c^d \bmod p \cdot q$ and outputs m

Question: Why is not the textbook RSA scheme secure?

The following things make the RSA scheme insecure:

- \blacktriangleright It is not randomized and hence not even CPA secure
- \blacktriangleright Given a ciphertext you can search for the message
- ▶ High-entropy messages still gives the same ciphertext
- \blacktriangleright The Jacobi symbol of m and c will be the same

Solution: structured, but randomized padding

Contents

[Padding Oracles](#page-2-0)

[Recall: RSA Encryption](#page-6-0)

[RSA Padding Schemes](#page-12-0)

[The Bleichenbacher Attack](#page-18-0)

[Improved Bleichenbacher Attack](#page-30-0)

[RSA Padding Oracle Mitigations](#page-44-0)

Let n be of k bytes. Given a message m of $\ell \leq k - 11$ bytes, the padded messages \bar{m} of length k bytes is constructed as follows: 00 02 {at least 8 non-zero random bytes} 00 $\{m\}$.

Quite simple, not proven secure, not secure in practice...

A bad couple of years for the cryptographic token industry

Figure: [https://blog.cryptographyengineering.com/2012/06/2](https://blog.cryptographyengineering.com/2012/06/21/bad-couple-of-years-for-cryptographic) [1/bad-couple-of-years-for-cryptographic](https://blog.cryptographyengineering.com/2012/06/21/bad-couple-of-years-for-cryptographic)

More complex, proven secure, what you should use:

- \blacktriangleright Let n be of k bytes and message m be of ℓ bytes.
- \blacktriangleright Let MGF and Hash be hash functions with output h bytes.
- \blacktriangleright Let L be a label (which can be set to the all zero string)
- \blacktriangleright Let seed be an ephemeral random string of h bytes.
- ► Let PS be a all zero string of length $k \ell 2h 2$ bytes.

OAEP

Optimal Asymmetric Encryption — How to Encrypt with RSA

MIHIR BELLARE* PHILLIP ROGAWAY[†]

November 19, 1995

Figure: <https://cseweb.ucsd.edu/~mihir/papers/oaep.pdf>

Contents

[Padding Oracles](#page-2-0)

[Recall: RSA Encryption](#page-6-0)

[RSA Padding Schemes](#page-12-0)

[The Bleichenbacher Attack](#page-18-0)

[Improved Bleichenbacher Attack](#page-30-0)

[RSA Padding Oracle Mitigations](#page-44-0)

New cryptographers

However, many implementations (still) use RSA-PKCS#1v1.5 or similar padding schemes (note that this is version 1.5).

Recall: 00 02 {at least 8 non-zero random bytes} 00 { m }.

Question: Assuming no integrity check of RSA ciphertexts, how could you attack this scheme?

▶ Recall that RSA is homomorphic: $\bar{m}^e \cdot r^e \equiv (\bar{m} \cdot r)^e \bmod n$.

- ▶ Recall that RSA is homomorphic: $\bar{m}^e \cdot r^e \equiv (\bar{m} \cdot r)^e \bmod n$.
- \blacktriangleright We can multiply a ciphertext c by a chosen $r^e \bmod n$.

- ▶ Recall that RSA is homomorphic: $\bar{m}^e \cdot r^e \equiv (\bar{m} \cdot r)^e \bmod n$.
- \blacktriangleright We can multiply a ciphertext c by a chosen $r^e \bmod n$.
- ▶ We learn if padding is valid (error message or timings).

- ▶ Recall that RSA is homomorphic: $\bar{m}^e \cdot r^e \equiv (\bar{m} \cdot r)^e \bmod n$.
- \blacktriangleright We can multiply a ciphertext c by a chosen $r^e \bmod n$.
- ▶ We learn if padding is valid (error message or timings).
- \triangleright We know the value r since we could choose it ourselves.

- ▶ Recall that RSA is homomorphic: $\bar{m}^e \cdot r^e \equiv (\bar{m} \cdot r)^e \bmod n$.
- \blacktriangleright We can multiply a ciphertext c by a chosen $r^e \bmod n$.
- ▶ We learn if padding is valid (error message or timings).
- \blacktriangleright We know the value r since we could choose it ourselves.
- ▶ Then we learn that unknown \bar{m} times r is valid encoding.

- ▶ Recall that RSA is homomorphic: $\bar{m}^e \cdot r^e \equiv (\bar{m} \cdot r)^e \bmod n$.
- \blacktriangleright We can multiply a ciphertext c by a chosen $r^e \bmod n$.
- ▶ We learn if padding is valid (error message or timings).
- \blacktriangleright We know the value r since we could choose it ourselves.
- ▶ Then we learn that unknown \bar{m} times r is valid encoding.
- ▶ We know that if valid then $2 \cdot 2^{8(k-2)} \leq \bar{m} \cdot r < 3 \cdot 2^{8(k-2)}$.

- ▶ Recall that RSA is homomorphic: $\bar{m}^e \cdot r^e \equiv (\bar{m} \cdot r)^e \bmod n$.
- \blacktriangleright We can multiply a ciphertext c by a chosen $r^e \bmod n$.
- ▶ We learn if padding is valid (error message or timings).
- \blacktriangleright We know the value r since we could choose it ourselves.
- ▶ Then we learn that unknown \bar{m} times r is valid encoding.
- ▶ We know that if valid then $2 \cdot 2^{8(k-2)} \leq \bar{m} \cdot r < 3 \cdot 2^{8(k-2)}$.
- ▶ Repeat for fresh values r until we have a unique \bar{m} left.

Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard $PKCS#1$

Daniel Bleichenbacher

Bell Laboratories 700 Mountain Ave. Murray Hill, NJ 07974 E-mail: bleichen@research.bell-labs.com

Figure: <https://spar.isi.jhu.edu/~mgreen/bleichenbacher.pdf>

Contents

[Padding Oracles](#page-2-0)

[Recall: RSA Encryption](#page-6-0)

[RSA Padding Schemes](#page-12-0)

[The Bleichenbacher Attack](#page-18-0)

[Improved Bleichenbacher Attack](#page-30-0)

[RSA Padding Oracle Mitigations](#page-44-0)

1. Be clever when choosing r using co-prime samples.

- **1.** Be clever when choosing r using co-prime samples.
- **2.** Trim the randomness to a specific interval $[a, b]$

- **1.** Be clever when choosing r using co-prime samples.
- **2.** Trim the randomness to a specific interval $[a, b]$
- **3.** Parallelization and threading and pre-computation

- **1.** Be clever when choosing r using co-prime samples.
- **2.** Trim the randomness to a specific interval $[a, b]$
- **3.** Parallelization and threading and pre-computation
- **4.** Adapt based on how strict padding checks are

The efficiency depends on how strict the padding check is:

1. FFF: padding is 'ok' only if correctly padded and plaintext is of a specific length (e.g., it's a 128-bit AES key).

- **1.** FFF: padding is 'ok' only if correctly padded and plaintext is of a specific length (e.g., it's a 128-bit AES key).
- **2.** FFT: padding is 'ok' only if correctly padded, but plaintext can be any length.

- **1.** FFF: padding is 'ok' only if correctly padded and plaintext is of a specific length (e.g., it's a 128-bit AES key).
- **2.** FFT: padding is 'ok' only if correctly padded, but plaintext can be any length.
- **3.** FTT: same as above, but also allows 0s in the "non-zero random bytes".

- **1.** FFF: padding is 'ok' only if correctly padded and plaintext is of a specific length (e.g., it's a 128-bit AES key).
- **2.** FFT: padding is 'ok' only if correctly padded, but plaintext can be any length.
- **3.** FTT: same as above, but also allows 0s in the "non-zero random bytes".
- **4.** TFT: same as above, but 'ok' even if there are no zeros after the first byte.

- **1.** FFF: padding is 'ok' only if correctly padded and plaintext is of a specific length (e.g., it's a 128-bit AES key).
- **2.** FFT: padding is 'ok' only if correctly padded, but plaintext can be any length.
- **3.** FTT: same as above, but also allows 0s in the "non-zero random bytes".
- **4.** TFT: same as above, but 'ok' even if there are no zeros after the first byte.
- **5.** TTT: padding is 'ok' as long as it starts with 0x 00 02.

Table 1: Performance of the original and modified algorithms.

Figure: <https://eprint.iacr.org/2012/417.pdf>

Efficient Padding Oracle Attacks on Cryptographic Hardware*

Romain Bardou¹, Riccardo Focardi^{2**}, Yusuke Kawamoto^{3***}, Lorenzo Simionato^{2†}, Graham Steel^{4***}, and Joe-Kai Tsay^{5***}

 1 INRIA SecSI, LSV, CNRS & ENS-Cachan, France ² DAIS, Università Ca' Foscari, Venezia, Italy 3 School of Computer Science, University of Birmingham, UK ⁴ INRIA Project ProSecCo, Paris, France ⁵ Department of Telematics, NTNU, Norway

Figure: <https://eprint.iacr.org/2012/417.pdf>

Contents

[Padding Oracles](#page-2-0)

[Recall: RSA Encryption](#page-6-0)

[RSA Padding Schemes](#page-12-0)

[The Bleichenbacher Attack](#page-18-0)

[Improved Bleichenbacher Attack](#page-30-0)

[RSA Padding Oracle Mitigations](#page-44-0)

▶ Use OAEP padding for encryption

- ▶ Use OAEP padding for encryption
- ▶ Encrypt-then-Authenticate

- ▶ Use OAEP padding for encryption
- ▶ Encrypt-then-Authenticate
- ▶ Do not use RSA for encryption

Questions?

