
PADDING ORACLES
TTM4205 – Lecture 12

Tjerand Silde

17.10.2023

Contents

Padding Oracles

Recall: CBC mode

More CBC Problems

Length Extension Attacks

Order of Enc and Auth

2

Contents

Padding Oracles

Recall: CBC mode

More CBC Problems

Length Extension Attacks

Order of Enc and Auth

3

Reference Material

These slides are based on:

▶ The referred papers in the slides

▶ JPA: parts of chapter 4, 6 and 7

▶ DW: parts of chapter 2 to 4

4

Padding Oracles

By this we mean, on a high level, an API that allows an
adversary to check if some input is correctly formed.

We limit ourselves to input with a particular padding.

A limited version of the protocol APIs from last week.

5

Padding Oracles

We will look at symmetric and asymmetric padding schemes:

▶ more in depth on CBC mode (today)

▶ extension attacks against hashing (today)

▶ padding attacks against RSA scheme (next)

Several of which are relevant to the weekly problems.

We will also look at some mitigations to these issues.

6

Contents

Padding Oracles

Recall: CBC mode

More CBC Problems

Length Extension Attacks

Order of Enc and Auth

7

AES-CBC

Recall the CBC mode without authentication:

▶ Cipher mode for symmetric ciphers (e.g. AES)

▶ Proposed in 1976, proven in 1997, broken 2002

▶ CPA secure (theory), not CCA (practice), patched

▶ A variety of padding oracle attacks in practice

▶ Revoked from some applications (e.g. TLS) in 2018

8

AES-CBC

Recall the CBC mode without authentication:

▶ Cipher mode for symmetric ciphers (e.g. AES)

▶ Proposed in 1976, proven in 1997, broken 2002

▶ CPA secure (theory), not CCA (practice), patched

▶ A variety of padding oracle attacks in practice

▶ Revoked from some applications (e.g. TLS) in 2018

8

AES-CBC

Recall the CBC mode without authentication:

▶ Cipher mode for symmetric ciphers (e.g. AES)

▶ Proposed in 1976, proven in 1997, broken 2002

▶ CPA secure (theory), not CCA (practice), patched

▶ A variety of padding oracle attacks in practice

▶ Revoked from some applications (e.g. TLS) in 2018

8

AES-CBC

Recall the CBC mode without authentication:

▶ Cipher mode for symmetric ciphers (e.g. AES)

▶ Proposed in 1976, proven in 1997, broken 2002

▶ CPA secure (theory), not CCA (practice), patched

▶ A variety of padding oracle attacks in practice

▶ Revoked from some applications (e.g. TLS) in 2018

8

AES-CBC

Recall the CBC mode without authentication:

▶ Cipher mode for symmetric ciphers (e.g. AES)

▶ Proposed in 1976, proven in 1997, broken 2002

▶ CPA secure (theory), not CCA (practice), patched

▶ A variety of padding oracle attacks in practice

▶ Revoked from some applications (e.g. TLS) in 2018

8

AES-CBC

Recall the CBC mode without authentication:

▶ Cipher mode for symmetric ciphers (e.g. AES)

▶ Proposed in 1976, proven in 1997, broken 2002

▶ CPA secure (theory), not CCA (practice), patched

▶ A variety of padding oracle attacks in practice

▶ Revoked from some applications (e.g. TLS) in 2018

8

AES-CBC

9

CBC Attack

▶ Each block must be of exactly 128 bits

▶ Shorter message leads to padding at the end

▶ Add one byte ends with 01, two with 02, etc. ...

▶ An API outputs errors when wrong padding

10

CBC Attack

▶ Each block must be of exactly 128 bits

▶ Shorter message leads to padding at the end

▶ Add one byte ends with 01, two with 02, etc. ...

▶ An API outputs errors when wrong padding

10

CBC Attack

▶ Each block must be of exactly 128 bits

▶ Shorter message leads to padding at the end

▶ Add one byte ends with 01, two with 02, etc. ...

▶ An API outputs errors when wrong padding

10

CBC Attack

▶ Each block must be of exactly 128 bits

▶ Shorter message leads to padding at the end

▶ Add one byte ends with 01, two with 02, etc. ...

▶ An API outputs errors when wrong padding

10

CBC Attack

▶ Each block must be of exactly 128 bits

▶ Shorter message leads to padding at the end

▶ Add one byte ends with 01, two with 02, etc. ...

▶ An API outputs errors when wrong padding

10

CBC Attack

▶ Let C2 be an encryption of X that you want to decrypt

▶ Choose random C1 and ask for C1|C2 to be decrypted

▶ Successful decryption if C1 ⊕X has valid padding

▶ Vary last byte of C1 until correct to find last byte of X

▶ Find next byte by C1[15] = X[15]⊕ 02 and vary C1[14]

▶ Continue until you have all bytes of X , max 128 · 16 trials

11

CBC Attack

▶ Let C2 be an encryption of X that you want to decrypt

▶ Choose random C1 and ask for C1|C2 to be decrypted

▶ Successful decryption if C1 ⊕X has valid padding

▶ Vary last byte of C1 until correct to find last byte of X

▶ Find next byte by C1[15] = X[15]⊕ 02 and vary C1[14]

▶ Continue until you have all bytes of X , max 128 · 16 trials

11

CBC Attack

▶ Let C2 be an encryption of X that you want to decrypt

▶ Choose random C1 and ask for C1|C2 to be decrypted

▶ Successful decryption if C1 ⊕X has valid padding

▶ Vary last byte of C1 until correct to find last byte of X

▶ Find next byte by C1[15] = X[15]⊕ 02 and vary C1[14]

▶ Continue until you have all bytes of X , max 128 · 16 trials

11

CBC Attack

▶ Let C2 be an encryption of X that you want to decrypt

▶ Choose random C1 and ask for C1|C2 to be decrypted

▶ Successful decryption if C1 ⊕X has valid padding

▶ Vary last byte of C1 until correct to find last byte of X

▶ Find next byte by C1[15] = X[15]⊕ 02 and vary C1[14]

▶ Continue until you have all bytes of X , max 128 · 16 trials

11

CBC Attack

▶ Let C2 be an encryption of X that you want to decrypt

▶ Choose random C1 and ask for C1|C2 to be decrypted

▶ Successful decryption if C1 ⊕X has valid padding

▶ Vary last byte of C1 until correct to find last byte of X

▶ Find next byte by C1[15] = X[15]⊕ 02 and vary C1[14]

▶ Continue until you have all bytes of X , max 128 · 16 trials

11

CBC Attack

▶ Let C2 be an encryption of X that you want to decrypt

▶ Choose random C1 and ask for C1|C2 to be decrypted

▶ Successful decryption if C1 ⊕X has valid padding

▶ Vary last byte of C1 until correct to find last byte of X

▶ Find next byte by C1[15] = X[15]⊕ 02 and vary C1[14]

▶ Continue until you have all bytes of X , max 128 · 16 trials

11

CBC Attack

▶ Let C2 be an encryption of X that you want to decrypt

▶ Choose random C1 and ask for C1|C2 to be decrypted

▶ Successful decryption if C1 ⊕X has valid padding

▶ Vary last byte of C1 until correct to find last byte of X

▶ Find next byte by C1[15] = X[15]⊕ 02 and vary C1[14]

▶ Continue until you have all bytes of X , max 128 · 16 trials

11

CBC Attack

Figure: https://research.nccgroup.com/2021/02/17/cryptopal
s-exploiting-cbc-padding-oracles

12

https://research.nccgroup.com/2021/02/17/cryptopals-exploiting-cbc-padding-oracles
https://research.nccgroup.com/2021/02/17/cryptopals-exploiting-cbc-padding-oracles

CBC Attack

Figure: https://blog.cryptographyengineering.com/2011/10/2
3/attack-of-week-xml-encryption

13

https://blog.cryptographyengineering.com/2011/10/23/attack-of-week-xml-encryption
https://blog.cryptographyengineering.com/2011/10/23/attack-of-week-xml-encryption

Contents

Padding Oracles

Recall: CBC mode

More CBC Problems

Length Extension Attacks

Order of Enc and Auth

14

Authenticated CBC Mode

If we check that the CBC encryption was correctly computed,
then we do not need to worry about the padding oracle.

Question 1: How to securely use CBC mode with MAC?

15

Authenticated CBC Mode

If we check that the CBC encryption was correctly computed,
then we do not need to worry about the padding oracle.

Question 2: What are possible mitigations for CBC?

16

Possible Mitigations

▶ Randomized padding scheme

▶ Fixed size padding

▶ Additional randomized delay

▶ No specific error message

Question: What might go wrong in these cases?

17

Figure: https:
//www.ieee-security.org/TC/SP2013/papers/4977a526.pdf

18

https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf
https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf

General Solutions

▶ Always use authenticated encryption

▶ Avoid CBC mode if possible (use GCM)

▶ Constant time padding check

▶ No specific error messages

19

Figure: https:
//www.ieee-security.org/TC/SP2013/papers/4977a526.pdf

20

https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf
https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf

Contents

Padding Oracles

Recall: CBC mode

More CBC Problems

Length Extension Attacks

Order of Enc and Auth

21

Hashing as MAC

Assume that we are in the following setting:

▶ Let sk be a fixed size secret

▶ Letm be a known message

▶ Let H be a the SHA2 hash function

▶ Let MAC be h = H(sk||m)

Question 1: Do you remember how SHA2 works?

22

Hashing as MAC

Assume that we are in the following setting:

▶ Let sk be a fixed size secret

▶ Letm be a known message

▶ Let H be a the SHA2 hash function

▶ Let MAC be h = H(sk||m)

Question 2: How can we forge h′ = H(sk||m′)?

23

Hashing as MAC

The issue is that SHA2 apply a compression function on
blocks of the message using length padding in the end.

If you know the length of the secret and the message, then
you also know the padding, and you can append a message
at the end to get a valid hash without knowing the secret.

24

Hashing as MAC

This attack applies to SHA2, but not to SHA3. SHA3 has a
different structure. Does not apply to HMAC using SHA2.

25

26

27

Figure: https:
//deeprnd.medium.com/length-extension-attack-bff5b1ad2f70

28

https://deeprnd.medium.com/length-extension-attack-bff5b1ad2f70
https://deeprnd.medium.com/length-extension-attack-bff5b1ad2f70

Contents

Padding Oracles

Recall: CBC mode

More CBC Problems

Length Extension Attacks

Order of Enc and Auth

29

Order of Enc and Auth

CPA secure symmetric crypto with input messagem:

▶ SSL/TLS: a = AuthskA(m), c = EncskE(a,m), send c

▶ IPSec: c = EncskE(m), a = AuthskA(c), send (a, c)

▶ SSH: c = EncskE(m), a = AuthskA(m), send (a, c)

30

Order of Enc and Auth

We refer to these methods as:

▶ SSL/TLS: authenticate-then-encrypt (AtE)

▶ IPSec: encrypt-then-authenticate (EtA)

▶ SSH: encrypt-and-authenticate (E&A)

31

Order of Enc and Auth

We refer to these methods as:

▶ SSL/TLS: authenticate-then-encrypt (AtE) (can be secure)

▶ IPSec: encrypt-then-authenticate (EtA) (proven secure)

▶ SSH: encrypt-and-authenticate (E&A) (shown broken)

Interestingly, AtE is proven secure when using CBC mode.

32

Figure: https://iacr.org/archive/crypto2001/21390309.pdf

33

https://iacr.org/archive/crypto2001/21390309.pdf

Questions?

34

	Padding Oracles
	Recall: CBC mode
	More CBC Problems
	Length Extension Attacks
	Order of Enc and Auth

