B NTNU | sencianaechnoiogy

PADDING ORACLES
TTM4205 - Lecture 12

Tjerand Silde

17.10.2023

Contents

Padding Oracles

Recall: CBC mode

More CBC Problems
Length Extension Attacks

Order of Enc and Auth

@ NTNU | sy

Contents

Padding Oracles

@ NTNU | sy

Reference Material

These slides are based on:

» The referred papers in the slides
> JPA: parts of chapter 4, 6 and 7

» DW: parts of chapter 2to 4

@ NTNU | ccnrecmons

Padding Oracles

By this we mean, on a high level, an API that allows an
adversary to check if some input is correctly formed.

We limit ourselves to input with a particular padding.

A limited version of the protocol APIs from last week.

@ NTNU | cacnremons

Padding Oracles

We will look at symmetric and asymmetric padding schemes:

» more in depth on CBC mode (today)
> extension attacks against hashing (today)

» padding attacks against RSA scheme (next)

Several of which are relevant to the weekly problems.

We will also look at some mitigations to these issues.

@ NTNU | ccnrecmons

Contents

Recall: CBC mode

@ NTNU | sy

AES-CBC

Recall the CBC mode without authentication:

@ NTNU | sty

AES-CBC

Recall the CBC mode without authentication:

» Cipher mode for symmetric ciphers (e.g. AES)

@ NTNU | sacnrecmons

AES-CBC

Recall the CBC mode without authentication:

» Cipher mode for symmetric ciphers (e.g. AES)

» Proposed in 1976, proven in 1997, broken 2002

@ NTNU | sacnrecmons

AES-CBC

Recall the CBC mode without authentication:

» Cipher mode for symmetric ciphers (e.g. AES)
» Proposed in 1976, proven in 1997, broken 2002

» CPA secure (theory), not CCA (practice), patched

@ NTNU | sacnrecmons

AES-CBC

Recall the CBC mode without authentication:

» Cipher mode for symmetric ciphers (e.g. AES)
» Proposed in 1976, proven in 1997, broken 2002
» CPA secure (theory), not CCA (practice), patched

» Avariety of padding oracle attacks in practice

@ NTNU | sacnrecmons

AES-CBC

Recall the CBC mode without authentication:

» Cipher mode for symmetric ciphers (e.g. AES)
» Proposed in 1976, proven in 1997, broken 2002
» CPA secure (theory), not CCA (practice), patched
» Avariety of padding oracle attacks in practice

» Revoked from some applications (e.g. TLS) in 2018

@ NTNU | cacnremons

AES-CBC

Plaintext
[ENENEEEENEEEE]

Initialization \éector (IV)

[ENNEEENEEEEEE]

block cipher

ey encryption

l—

Ciphertext

Plaintext Plaintext
[ENEEEEEEEEEEE] [ENEEEEEREEEEE]
(52 9
block cipher block cipher
fey encryption ey encryption
Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

@ NTNU | sy

CBC Attack

@ NTNU | sty

CBC Attack

» Each block must be of exactly 128 bits

@ NTNU | sy

CBC Attack

» Each block must be of exactly 128 bits

» Shorter message leads to padding at the end

@ NTNU | cacnrecmons

CBC Attack

» Each block must be of exactly 128 bits

» Shorter message leads to padding at the end

» Add one byte ends with 01, two with 02, etc. ...

@ NTNU | cacnrecmons

CBC Attack

» Each block must be of exactly 128 bits

» Shorter message leads to padding at the end

» Add one byte ends with 01, two with 02, etc. ...

» An APl outputs errors when wrong padding

@ NTNU | ccnrecmons

CBC Attack

@ NTNU | sy

CBC Attack

» Let Cy be an encryption of X that you want to decrypt

@ NTNU | sy

CBC Attack

» Let Cy be an encryption of X that you want to decrypt

» Choose random C; and ask for C4|C, to be decrypted

@ NTNU | cacmrecmons

CBC Attack

» Let Cy be an encryption of X that you want to decrypt
» Choose random C; and ask for C4|C, to be decrypted

» Successful decryption if C; @ X has valid padding

@ NTNU | cacmrecmons

CBC Attack

» Let Cy be an encryption of X that you want to decrypt
» Choose random C; and ask for C4|C, to be decrypted
» Successful decryption if C; @ X has valid padding

» Vary last byte of Cy until correct to find last byte of X

@ NTNU | cacmrecmons 11

CBC Attack

» Let Cy be an encryption of X that you want to decrypt
» Choose random C; and ask for C4|C, to be decrypted
» Successful decryption if C; @ X has valid padding

» Vary last byte of Cy until correct to find last byte of X

» Find next byte by C;[15] = X[15] @ 02 and vary C[14]

@ NTNU | cacmrecmons 11

CBC Attack

» Let Cy be an encryption of X that you want to decrypt

» Choose random C; and ask for C4|C, to be decrypted

v

Successful decryption if C; @ X has valid padding

v

Vary last byte of C; until correct to find last byte of X
» Find next byte by C;[15] = X[15] @ 02 and vary C[14]

» Continue until you have all bytes of X, max 128 - 16 trials

@ NTNU | cacmrecmons

CBC Attack

Cryptopals: Exploiting CBC Padding Oracles

This is a write-up of the classic padding oracle attack on CBC-mode block ciphers. If you've
done the Cryptopals cryptography challenges, you'll remember it as challenge 17. This is a
famous and elegant attack. With it, we will see how even a small data leak (in this case, the

presence of a “padding oracle” - defined below) can lead to full plaintext recovery.
Like the Cryptopals challenges, this post is written to be accessible to anyone with an

interest in cryptography - no graduate degree required. All you need is patience, focus, and
some basic familiarity with the concepts in the following section.

Figure: https://research.nccgroup.com/2021/02/17/cryptopal
s-exploiting-cbc-padding-oracles

@ NTNU | sy

https://research.nccgroup.com/2021/02/17/cryptopals-exploiting-cbc-padding-oracles
https://research.nccgroup.com/2021/02/17/cryptopals-exploiting-cbc-padding-oracles

CBC Attack

Attack of the week: XML Encryption

Figure: https://blog.cryptographyengineering.com/2011/10/2
3/attack-of-week-xml-encryption

@ NTNU | sy

https://blog.cryptographyengineering.com/2011/10/23/attack-of-week-xml-encryption
https://blog.cryptographyengineering.com/2011/10/23/attack-of-week-xml-encryption

Contents

More CBC Problems

@ NTNU | sy

Authenticated CBC Mode

If we check that the CBC encryption was correctly computed,
then we do not need to worry about the padding oracle.

Question 1: How to securely use CBC mode with MAC?

@ NTNU | cacnremons

Authenticated CBC Mode

If we check that the CBC encryption was correctly computed,
then we do not need to worry about the padding oracle.

Question 2: What are possible mitigations for CBC?

@ NTNU | cacnremons

Possible Mitigations

» Randomized padding scheme
» Fixed size padding
» Additional randomized delay

» No specific error message

Question: What might go wrong in these cases?

@ NTNU | ccnrecmons

0.00006 - 7

0.00005 -

0.00004 |-

0.00003

Probability

0.00002 |-

0.00001 |-

150106 1.51x10° 1.52 %108 1.53 x106 1.54 x10° 1.55 %106 1.56 x 106 1.57 x10°
Hardware Cycles (Calculated by Attacker)

Figure 2. Distribution of timing values (outliers removed) for distinguish-
ing attack on OpenSSL TLS, showing faster processing time in the case of
Mp (in red) compared to M7 (in blue).

Figure: https:
//www.ieee-security.org/TC/SP2013/papers/4977a526.pdf

@ NTNU | sy

https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf
https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf

General Solutions

> Always use authenticated encryption
» Avoid CBC mode if possible (use GCM)
» Constant time padding check

» No specific error messages

@ NTNU | ccnrecmons

2013 IEEE Symposium on Security and Privacy

Lucky Thirteen: Breaking the TLS and DTLS Record Protocols

Nadhem J. AlFardan and Kenneth G. Paterson
Information Security Group,
Royal Holloway, University of London
Egham, Surrey TW20 OEX, UK
Email: {nadhem.alfardan.2009, kenny.paterson} @rhul.ac.uk

Figure: https:
//www.ieee-security.org/TC/SP2013/papers/4977a526.pdf

@ NTNU | caemrenons 20

https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf
https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf

Contents

Length Extension Attacks

@ NTNU | sy

21

Hashing as MAC

Assume that we are in the following setting:

> Let sk be a fixed size secret
» Let m be a known message
> Let H be a the SHA2 hash function

> Let MAC be h = H (sk||m)

Question 1: Do you remember how SHA2 works?

@ NTNU | ccnrecmons

22

Hashing as MAC

Assume that we are in the following setting:

> Let sk be a fixed size secret
» Let m be a known message
> Let H be a the SHA2 hash function

> Let MAC be h = H(sk||m)

Question 2: How can we forge /' = H(sk||m/)?

@ NTNU | ccnrecmons

23

Hashing as MAC

The issue is that SHA2 apply a compression function on
blocks of the message using length padding in the end.

If you know the length of the secret and the message, then

you also know the padding, and you can append a message
at the end to get a valid hash without knowing the secret.

@ NTNU | cacnremons

24

Hashing as MAC

This attack applies to SHA2, but not to SHA3. SHA3 has a
different structure. Does not apply to HMAC using SHA2.

@ NTNU | cacnremons

25

SHA-2 Process Overview

N
| o etatelelo b

(Round 0]

datclobdelhd

L Round 63/79]

AiB'IFC\D“ FYGYHY
++ + + + + +

@ NTNU | sty

Input
Message | =

Buffer #1

Buffer #2

I

Keccak-f

@NTNU |

Norwegian University of
Science and Technology

Output

27

Figure: https:

//deeprnd.medium.com/length-extension-attack-bff5b1ad2£f70

Length extension attack
0 Deep RnD - Follow
4minread - Aug 16,2019
§r Q1 e 0

What is length extension?

When a Merkle-Damgard based hash is misused as a message authentication
code with construction H(secret | message), and message and the length of
secret is known, a length extension attack allows anyone to include extra
information at the end of the message and produce a valid hash without
knowing the secret. Quick sidebar, before you freak out:

Since HMAC does not use this construction, HMAC hashes are not prone

to length extension attacks.

@ NTNU | sy

28

https://deeprnd.medium.com/length-extension-attack-bff5b1ad2f70
https://deeprnd.medium.com/length-extension-attack-bff5b1ad2f70

Contents

Order of Enc and Auth

@ NTNU | sy

29

Order of Enc and Auth

CPA secure symmetric crypto with input message m:

» SSL/TLS: a = Authg, (m),c = Encg_(a,m),send c
> IPSec: ¢ = Encg.(m),a = Authg, (c),send (a, c)

» SSH: ¢ = Encg (M), a = Authg, (m),send (a,c)

@ NTNU | ccnrecmons 30

Order of Enc and Auth

We refer to these methods as:

» SSL/TLS: authenticate-then-encrypt (AtE)
> |PSec: encrypt-then-authenticate (EtA)

» SSH: encrypt-and-authenticate (E&A)

@ NTNU | ccnrecmons

31

Order of Enc and Auth

We refer to these methods as:

» SSL/TLS: authenticate-then-encrypt (AtE) (can be secure)
» |IPSec: encrypt-then-authenticate (EtA) (proven secure)

» SSH: encrypt-and-authenticate (E&A) (shown broken)

Interestingly, AtE is proven secure when using CBC mode.

@ NTNU | ccnrecmons 32

The Order of Encryption and Authentication
for Protecting Communications
(Or: How Secure is SSL?)*

Hugo Krawczyk**

Figure: https://iacr.org/archive/crypto2001/21390309.pdf

@ NTNU | ccnrecmons

33

https://iacr.org/archive/crypto2001/21390309.pdf

@ NTNU | sanctamirecnon

Questions?

ity of
logy

34

	Padding Oracles
	Recall: CBC mode
	More CBC Problems
	Length Extension Attacks
	Order of Enc and Auth

