B NTNU | sencianaechnoiogy

PROTOCOL APIS
TTM4205 - Lecture 11

Tjerand Silde

12.10.2023



Contents

Protocol APIs

Distributed Schnorr Signatures
BLS Multisignatures

Small Subgroup Attack

General Mitigations

@ NTNU | sty



Contents

Protocol APIs

@ NTNU | sty



Reference Material

These slides are based on:

» The referred papers in the slides
> JPA: parts of chapter 9 to 12

» DW: parts of chapter 5to 7

@ NTNU | ccnrecmons



Protocol APIs

By this we mean, on a high level, a server that:

@ NTNU | ety



Protocol APIs

By this we mean, on a high level, a server that:

» holds secrets where clients can make queries

@ NTNU | cacnrecmons



Protocol APIs

By this we mean, on a high level, a server that:

» holds secrets where clients can make queries

> holds secrets that clients can interact with

@ NTNU | cacnrecmons



Protocol APIs

By this we mean, on a high level, a server that:

» holds secrets where clients can make queries

> holds secrets that clients can interact with

@ NTNU | cacnrecmons



Protocol APIs

By this we mean, on a high level, a server that:

» holds secrets where clients can make queries
» holds secrets that clients can interact with

» combine inputs to verify batches at once

@ NTNU | cacnrecmons



Protocol APIs

We will look at examples where a client can:

> extract secret signing keys
» forge signatures

> trick a verifier

Several of which are similar to the weekly problems.

We will also look at some mitigations to these issues.

@ NTNU | ccnrecmons



Contents

Distributed Schnorr Signatures

@ NTNU | sty



Recap: Schnorr Signatures

Let G be a group of prime order p and let g be a generator
for G. Denote by pp the public parameters (G, g, p).

Let H be a cryptographic hash function that outputs
uniformly random elements in Z,,.

Let the secret key sk < Z, be sampled uniformly at random,
and let the public key be pk = ¢°, where pk is made public.

@ NTNU | cacnremons



Recap: Schnorr Signatures

The Schnorr signature of message m is computed as:

1. Sample random r < Z, and compute R = ¢".
2. Compute the output challenge as ¢ = H(pp, pk, m, R).

3. Compute the response z = r — ¢ - sk. Output o = (¢, 2).

To verify the signature, compute R’ = ¢* - pk® and check if
c= H (pp, pk, m, R'). If correct, accept, and otherwise reject.

@ NTNU | cacnremons



Distributed Schnorr Signatures

Assume that two parties Py and P; wants to compute a joint
Schnorr signature. Then P; does the following:

KGen :

» Sample random sk; «$ Z, and compute pk; = g*i.

> Send pk; to party P;_;. Set pk = pk, - pk; = gskotski,

This is called an additive secret sharing of the signing key.

@ NTNU | ccnrecmons



Distributed Schnorr Signatures
Sign:
» Sample random r; < Z, and compute R; = g".
» Send R; to party P,_;. Set ¢ = H(pp, pk,m, Ry - R1).
» Send the response z; = r; — ¢ - sk; to party P;_;.
The signature o = (¢, z9 + 2z1) can be verified as usual.

Question: How can a malicious client P, interacting with
an honest (protocol API) P; break this signature scheme?

@ NTNU | ccnrecmons



Potential Attacks

» The adversary can control the nonce values

» Repeated nonces for different m's leak sk,

» (The adversary can bias the secret-public keys)
» (The adversary can abort to deny signatures)

» (All parties need to be online to sign together)

@ NTNU | ccnrecmons



Mitigations in Practice

» Send hashes in an extra round in KGen and Sign
» Send h; = H(pk;) then pk; and h, = H(R;) then R;
» (If signatures are deterministic we need other solutions)

» Make it a t-out-of-n signature instead of 2-out-of-2

@ NTNU | ccnrecmons



Proactive Two-Party Signatures for User Authentication

Antonio Nicolosi, Maxwell Krohn, Yevgeniy Dodis, and David Maziéres
NYU Department of Computer Science
{nicolosi,max,dodis,dm}@cs.nyu.edu

Figure:
https://www.scs.stanford.edu/ dm/home/papers/nicolosi:
2schnorr.pdf

@ NTNU | ccnrecmons 14


https://www.scs.stanford.edu/~dm/home/papers/nicolosi:2schnorr.pdf
https://www.scs.stanford.edu/~dm/home/papers/nicolosi:2schnorr.pdf

Two-Round Stateless Deterministic
Two-Party Schnorr Signatures
From Pseudorandom Correlation Functions

Yashvanth Kondi, Claudio Orlandi, and Lawrence Roy

Aarhus University, Aarhus, Denmark
ykondi@cs.au.dk, orlandi@cs.au.dk, 1dr709@gmail.com

Figure: https://eprint.iacr.org/2023/216.pdf

@ NTNU | ccnrecmons


https://eprint.iacr.org/2023/216.pdf

Contents

BLS Multisignatures

@ NTNU | sty



BLS Signatures

Let G1, G2, Gy be groups of prime order p with generators
91,92, 97. Let é : G; x Go — G be a bilinear paring such that
é(g¢, g5) = g%° for all a,b € Z, and H be a cryptographic hash
function that outputs uniformly random elements in Go.

Let the secret key sk < Z, be sampled uniformly at random,
and let the public key be pk = gik, where pk is made public.

A signature is computed as o = H(m)%. The verifier checks
é(q1,0) = é(pk, H(m)). If correct; accept, otherwise reject.

@ NTNU | cacnremons



BLS Multisignatures
We can efficiently verify many signatures at once:

» Given many triples (pk;, m;, 0;), compute: o = I;0;
» Verify all signatures as: é(g1,0) = IL;é(pk;, H(m;))
» If all messages are identical: é(g1,0) = é(IL;pk;, H(m))

» If the same signers we can aggregate keys: apk = II;pk;

Question: Fix m and pk,, how can an adversary forge a
signature for pk, that verifies in the aggregated setting?

@ NTNU | ccnrecmons



Potential Attacks

> Set pk; = g% - (pko)~! and signature o = H(m)®

> Then é(g1, o) = é(g¢', H(m)) = é(pk, - pky, H(m))

@ NTNU | sy



Mitigations in Practice

» Require a proof for secret key knowledge
» Only aggregate distinct messages each time

» Verify a random linear combination of keys/signatures

@ NTNU | ccnrecmons 20



Compact Multi-Signatures for Smaller
Blockchains

Dan Boneh!, Manu Drijvers?3, and Gregory Neven?

1 Stanford University
dabo@cs.stanford.edu
2 IBM Research — Zurich
{mdr,nev}@zurich.ibm.com
3 ETH Zurich

Figure: https://eprint.iacr.org/2018/483.pdf

@ NTNU | ccnrecmons

21


https://eprint.iacr.org/2018/483.pdf

Contents

Small Subgroup Attack

@ NTNU | sty

22



DL Parameters

For security of (EC)DH and (EC)DSA, we need to work in
prime order (sub-) groups for the discrete logarithm
problem to be hard. What happens if this is not the case?

@ NTNU | cacnremons

23



DL Attacks

Recall from earlier that:

» Hardness of DL depends on the divisors p of the order
> We have generic attacks that runsin ,/p time

» We have sub-exponential attacks for finite field groups

@ NTNU | ccnrecmons

24



Faulty parameters

What information might leak if:

» The order of the (sub-) group is not prime?

» The element is not in the correct (sub-) group?

Use ¢* mod p as an example (EC in weekly problems).

Question: How might this happen in practice?

@ NTNU | ccnrecmons 25



Mitigations in Practice

Always verify:

> given parameters
> input elements

» output elements

@ NTNU | sy

26



Measuring small subgroup attacks against
Diffie-Hellman

Luke Valenta*, David Adrian®, Antonio Sansof, Shaanan Cohney*,
Joshua Fried*, Marcella Hastings*, J. Alex Halderman', Nadia Heninger*
*University of Pennsylvania
TUniversity of Michigan
Adobe

Figure: https://eprint.iacr.org/2016/995.pdf

@ NTNU | ccnrecmons

27


https://eprint.iacr.org/2016/995.pdf

In search of CurveSwap: Measuring elliptic curve implementations in the wild

Luke Valenta*, Nick Sullivan', Antonio Sanso?, Nadia Heninger*
*University of Pennsylvania, ‘\Cloudﬂare, Inc., *Adobe Systems

Figure: https://eprint.iacr.org/2018/298.pdf

@ NTNU | ccnrecmons 28


https://eprint.iacr.org/2018/298.pdf

Contents

General Mitigations

@ NTNU | sty

29



The API must always:

@ NTNU | ety

30



The API must always:

» verify protocol parameters

@ NTNU | cacnremons

30



The API must always:

» verify protocol parameters

» verify APl inputs

@ NTNU | cacnremons

30



The API must always:

» verify protocol parameters
» verify APl inputs

» check API outputs

@ NTNU | cacnremons

30



The APl must always:
» verify protocol parameters
» verify APl inputs
» check API outputs

» enforce honest interaction

@ NTNU | cacnremons

30



The API must always:

» verify protocol parameters
» verify APl inputs

» check API outputs

» enforce honest interaction

» avoid corner case leakage

@ NTNU | cacnremons

30



The API must always:

» verify protocol parameters
» verify APl inputs

» check API outputs

» enforce honest interaction
» avoid corner case leakage

» hinder replay attacks

@ NTNU | cacnremons

30



@ NTNU | sanctamirecnon

Questions?

ity of
logy

31



	Protocol APIs
	Distributed Schnorr Signatures
	BLS Multisignatures
	Small Subgroup Attack
	General Mitigations

