
PROTOCOL APIS
TTM4205 – Lecture 11

Tjerand Silde

12.10.2023



Contents

Protocol APIs

Distributed Schnorr Signatures

BLS Multisignatures

Small Subgroup Attack

General Mitigations

2



Contents

Protocol APIs

Distributed Schnorr Signatures

BLS Multisignatures

Small Subgroup Attack

General Mitigations

3



Reference Material

These slides are based on:

▶ The referred papers in the slides

▶ JPA: parts of chapter 9 to 12

▶ DW: parts of chapter 5 to 7

4



Protocol APIs

By this we mean, on a high level, a server that:

▶ holds secrets where clients can make queries

▶ holds secrets that clients can interact with

▶ combine inputs to verify batches at once

5



Protocol APIs

By this we mean, on a high level, a server that:

▶ holds secrets where clients can make queries

▶ holds secrets that clients can interact with

▶ combine inputs to verify batches at once

5



Protocol APIs

By this we mean, on a high level, a server that:

▶ holds secrets where clients can make queries

▶ holds secrets that clients can interact with

▶ combine inputs to verify batches at once

5



Protocol APIs

By this we mean, on a high level, a server that:

▶ holds secrets where clients can make queries

▶ holds secrets that clients can interact with

▶ combine inputs to verify batches at once

5



Protocol APIs

By this we mean, on a high level, a server that:

▶ holds secrets where clients can make queries

▶ holds secrets that clients can interact with

▶ combine inputs to verify batches at once

5



Protocol APIs

We will look at examples where a client can:

▶ extract secret signing keys

▶ forge signatures

▶ trick a verifier

Several of which are similar to the weekly problems.

We will also look at some mitigations to these issues.

6



Contents

Protocol APIs

Distributed Schnorr Signatures

BLS Multisignatures

Small Subgroup Attack

General Mitigations

7



Recap: Schnorr Signatures

Let G be a group of prime order p and let g be a generator
for G. Denote by pp the public parameters (G, g, p).

Let H be a cryptographic hash function that outputs
uniformly random elements in Zp.

Let the secret key sk←$ Zp be sampled uniformly at random,
and let the public key be pk = gsk, where pk is made public.

8



Recap: Schnorr Signatures

The Schnorr signature of messagem is computed as:

1. Sample random r ←$ Zp and compute R = gr.

2. Compute the output challenge as c = H(pp, pk,m,R).

3. Compute the response z = r − c · sk. Output σ = (c, z).

To verify the signature, compute R′ = gz · pkc and check if
c

?
= H(pp, pk,m,R′). If correct, accept, and otherwise reject.

9



Distributed Schnorr Signatures

Assume that two parties P0 and P1 wants to compute a joint
Schnorr signature. Then Pi does the following:

KGen :

▶ Sample random ski ←$ Zp and compute pki = gski .

▶ Send pki to party P1−i. Set pk = pk0 · pk1 = gsk0+sk1 .

This is called an additive secret sharing of the signing key.

10



Distributed Schnorr Signatures

Sign:
▶ Sample random ri ←$ Zp and compute Ri = gri .

▶ Send Ri to party P1−i. Set c = H(pp, pk,m,R0 ·R1).

▶ Send the response zi = ri − c · ski to party P1−i.

The signature σ = (c, z0 + z1) can be verified as usual.

Question: How can a malicious client P0 interacting with
an honest (protocol API) P1 break this signature scheme?

11



Potential Attacks

▶ The adversary can control the nonce values

▶ Repeated nonces for differentm’s leak sk1

▶ (The adversary can bias the secret-public keys)

▶ (The adversary can abort to deny signatures)

▶ (All parties need to be online to sign together)

12



Mitigations in Practice

▶ Send hashes in an extra round in KGen and Sign

▶ Send hi = H(pki) then pki and h′i = H(Ri) then Ri

▶ (If signatures are deterministic we need other solutions)

▶ Make it a t-out-of-n signature instead of 2-out-of-2

13



Figure:
https://www.scs.stanford.edu/~dm/home/papers/nicolosi:
2schnorr.pdf

14

https://www.scs.stanford.edu/~dm/home/papers/nicolosi:2schnorr.pdf
https://www.scs.stanford.edu/~dm/home/papers/nicolosi:2schnorr.pdf


Figure: https://eprint.iacr.org/2023/216.pdf

15

https://eprint.iacr.org/2023/216.pdf


Contents

Protocol APIs

Distributed Schnorr Signatures

BLS Multisignatures

Small Subgroup Attack

General Mitigations

16



BLS Signatures

Let G1,G2,GT be groups of prime order p with generators
g1, g2, gT . Let ê : G1 ×G2 → GT be a bilinear paring such that
ê(ga1 , g

b
2) = ga·bT for all a, b ∈ Zp and H be a cryptographic hash

function that outputs uniformly random elements in G2.

Let the secret key sk←$ Zp be sampled uniformly at random,
and let the public key be pk = gsk1 , where pk is made public.

A signature is computed as σ = H(m)sk. The verifier checks
ê(g1, σ) = ê(pk, H(m)). If correct; accept, otherwise reject.

17



BLS Multisignatures

We can efficiently verify many signatures at once:

▶ Given many triples (pki,mi, σi), compute: σ = Πiσi

▶ Verify all signatures as: ê(g1, σ) = Πiê(pki, H(mi))

▶ If all messages are identical: ê(g1, σ) = ê(Πipki, H(m))

▶ If the same signers we can aggregate keys: apk = Πipki

Question: Fixm and pk0, how can an adversary forge a
signature for pk0 that verifies in the aggregated setting?

18



Potential Attacks

▶ Set pk1 = gα1 · (pk0)−1 and signature σ = H(m)α

▶ Then ê(g1, σ) = ê(gα1 , H(m)) = ê(pk0 · pk1, H(m))

19



Mitigations in Practice

▶ Require a proof for secret key knowledge

▶ Only aggregate distinct messages each time

▶ Verify a random linear combination of keys/signatures

20



Figure: https://eprint.iacr.org/2018/483.pdf

21

https://eprint.iacr.org/2018/483.pdf


Contents

Protocol APIs

Distributed Schnorr Signatures

BLS Multisignatures

Small Subgroup Attack

General Mitigations

22



DL Parameters

For security of (EC)DH and (EC)DSA, we need to work in
prime order (sub-) groups for the discrete logarithm
problem to be hard. What happens if this is not the case?

23



DL Attacks

Recall from earlier that:

▶ Hardness of DL depends on the divisors p of the order

▶ We have generic attacks that runs in √p time

▶ We have sub-exponential attacks for finite field groups

24



Faulty parameters

What information might leak if:

▶ The order of the (sub-) group is not prime?

▶ The element is not in the correct (sub-) group?

Use gsk mod p as an example (EC in weekly problems).

Question: How might this happen in practice?

25



Mitigations in Practice

Always verify:

▶ given parameters

▶ input elements

▶ output elements

26



Figure: https://eprint.iacr.org/2016/995.pdf

27

https://eprint.iacr.org/2016/995.pdf


Figure: https://eprint.iacr.org/2018/298.pdf

28

https://eprint.iacr.org/2018/298.pdf


Contents

Protocol APIs

Distributed Schnorr Signatures

BLS Multisignatures

Small Subgroup Attack

General Mitigations

29



The API must always:

▶ verify protocol parameters

▶ verify API inputs

▶ check API outputs

▶ enforce honest interaction

▶ avoid corner case leakage

▶ hinder replay attacks

30



The API must always:

▶ verify protocol parameters

▶ verify API inputs

▶ check API outputs

▶ enforce honest interaction

▶ avoid corner case leakage

▶ hinder replay attacks

30



The API must always:

▶ verify protocol parameters

▶ verify API inputs

▶ check API outputs

▶ enforce honest interaction

▶ avoid corner case leakage

▶ hinder replay attacks

30



The API must always:

▶ verify protocol parameters

▶ verify API inputs

▶ check API outputs

▶ enforce honest interaction

▶ avoid corner case leakage

▶ hinder replay attacks

30



The API must always:

▶ verify protocol parameters

▶ verify API inputs

▶ check API outputs

▶ enforce honest interaction

▶ avoid corner case leakage

▶ hinder replay attacks

30



The API must always:

▶ verify protocol parameters

▶ verify API inputs

▶ check API outputs

▶ enforce honest interaction

▶ avoid corner case leakage

▶ hinder replay attacks

30



The API must always:

▶ verify protocol parameters

▶ verify API inputs

▶ check API outputs

▶ enforce honest interaction

▶ avoid corner case leakage

▶ hinder replay attacks

30



Questions?

31


	Protocol APIs
	Distributed Schnorr Signatures
	BLS Multisignatures
	Small Subgroup Attack
	General Mitigations

