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Reference Material

These slides are based on:

▶ The referred papers in the slides

▶ JPA: parts of chapter 9 to 12

▶ DW: parts of chapter 5 to 7
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Protocol APIs

By this we mean, on a high level, a server that:

▶ holds secrets where clients can make queries

▶ holds secrets that clients can interact with

▶ combine inputs to verify batches at once
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Protocol APIs

We will look at examples where a client can:

▶ extract secret signing keys

▶ forge signatures

▶ trick a verifier

Several of which are similar to the weekly problems.

We will also look at some mitigations to these issues.
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Recap: Schnorr Signatures

Let G be a group of prime order p and let g be a generator
for G. Denote by pp the public parameters (G, g, p).

Let H be a cryptographic hash function that outputs
uniformly random elements in Zp.

Let the secret key sk←$ Zp be sampled uniformly at random,
and let the public key be pk = gsk, where pk is made public.
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Recap: Schnorr Signatures

The Schnorr signature of messagem is computed as:

1. Sample random r ←$ Zp and compute R = gr.

2. Compute the output challenge as c = H(pp, pk,m,R).

3. Compute the response z = r − c · sk. Output σ = (c, z).

To verify the signature, compute R′ = gz · pkc and check if
c

?
= H(pp, pk,m,R′). If correct, accept, and otherwise reject.
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Distributed Schnorr Signatures

Assume that two parties P0 and P1 wants to compute a joint
Schnorr signature. Then Pi does the following:

KGen :

▶ Sample random ski ←$ Zp and compute pki = gski .

▶ Send pki to party P1−i. Set pk = pk0 · pk1 = gsk0+sk1 .

This is called an additive secret sharing of the signing key.

10



Distributed Schnorr Signatures

Sign:
▶ Sample random ri ←$ Zp and compute Ri = gri .

▶ Send Ri to party P1−i. Set c = H(pp, pk,m,R0 ·R1).

▶ Send the response zi = ri − c · ski to party P1−i.

The signature σ = (c, z0 + z1) can be verified as usual.

Question: How can a malicious client P0 interacting with
an honest (protocol API) P1 break this signature scheme?
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Potential Attacks

▶ The adversary can control the nonce values

▶ Repeated nonces for differentm’s leak sk1

▶ (The adversary can bias the secret-public keys)

▶ (The adversary can abort to deny signatures)

▶ (All parties need to be online to sign together)
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Mitigations in Practice

▶ Send hashes in an extra round in KGen and Sign

▶ Send hi = H(pki) then pki and h′i = H(Ri) then Ri

▶ (If signatures are deterministic we need other solutions)

▶ Make it a t-out-of-n signature instead of 2-out-of-2
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Figure:
https://www.scs.stanford.edu/~dm/home/papers/nicolosi:
2schnorr.pdf
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Figure: https://eprint.iacr.org/2023/216.pdf

15

https://eprint.iacr.org/2023/216.pdf


Contents

Protocol APIs

Distributed Schnorr Signatures

BLS Multisignatures

Small Subgroup Attack

General Mitigations

16



BLS Signatures

Let G1,G2,GT be groups of prime order p with generators
g1, g2, gT . Let ê : G1 ×G2 → GT be a bilinear paring such that
ê(ga1 , g

b
2) = ga·bT for all a, b ∈ Zp and H be a cryptographic hash

function that outputs uniformly random elements in G2.

Let the secret key sk←$ Zp be sampled uniformly at random,
and let the public key be pk = gsk1 , where pk is made public.

A signature is computed as σ = H(m)sk. The verifier checks
ê(g1, σ) = ê(pk, H(m)). If correct; accept, otherwise reject.
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BLS Multisignatures

We can efficiently verify many signatures at once:

▶ Given many triples (pki,mi, σi), compute: σ = Πiσi

▶ Verify all signatures as: ê(g1, σ) = Πiê(pki, H(mi))

▶ If all messages are identical: ê(g1, σ) = ê(Πipki, H(m))

▶ If the same signers we can aggregate keys: apk = Πipki

Question: Fixm and pk0, how can an adversary forge a
signature for pk0 that verifies in the aggregated setting?
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Potential Attacks

▶ Set pk1 = gα1 · (pk0)−1 and signature σ = H(m)α

▶ Then ê(g1, σ) = ê(gα1 , H(m)) = ê(pk0 · pk1, H(m))
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Mitigations in Practice

▶ Require a proof for secret key knowledge

▶ Only aggregate distinct messages each time

▶ Verify a random linear combination of keys/signatures
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Figure: https://eprint.iacr.org/2018/483.pdf
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DL Parameters

For security of (EC)DH and (EC)DSA, we need to work in
prime order (sub-) groups for the discrete logarithm
problem to be hard. What happens if this is not the case?
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DL Attacks

Recall from earlier that:

▶ Hardness of DL depends on the divisors p of the order

▶ We have generic attacks that runs in √p time

▶ We have sub-exponential attacks for finite field groups
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Faulty parameters

What information might leak if:

▶ The order of the (sub-) group is not prime?

▶ The element is not in the correct (sub-) group?

Use gsk mod p as an example (EC in weekly problems).

Question: How might this happen in practice?
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Mitigations in Practice

Always verify:

▶ given parameters

▶ input elements

▶ output elements
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Figure: https://eprint.iacr.org/2016/995.pdf
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Figure: https://eprint.iacr.org/2018/298.pdf
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The API must always:

▶ verify protocol parameters

▶ verify API inputs

▶ check API outputs

▶ enforce honest interaction

▶ avoid corner case leakage

▶ hinder replay attacks

30



The API must always:

▶ verify protocol parameters

▶ verify API inputs

▶ check API outputs

▶ enforce honest interaction

▶ avoid corner case leakage

▶ hinder replay attacks

30



The API must always:

▶ verify protocol parameters

▶ verify API inputs

▶ check API outputs

▶ enforce honest interaction

▶ avoid corner case leakage

▶ hinder replay attacks

30



The API must always:

▶ verify protocol parameters

▶ verify API inputs

▶ check API outputs

▶ enforce honest interaction

▶ avoid corner case leakage

▶ hinder replay attacks

30



The API must always:

▶ verify protocol parameters

▶ verify API inputs

▶ check API outputs

▶ enforce honest interaction

▶ avoid corner case leakage

▶ hinder replay attacks

30



The API must always:

▶ verify protocol parameters

▶ verify API inputs

▶ check API outputs

▶ enforce honest interaction

▶ avoid corner case leakage

▶ hinder replay attacks

30



The API must always:

▶ verify protocol parameters

▶ verify API inputs

▶ check API outputs

▶ enforce honest interaction

▶ avoid corner case leakage

▶ hinder replay attacks

30



Questions?
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