
© 2023 Thales Norway AS Open

Thalesgroup.com

FPGAs and Cryptography
TTM4205 – 14th November 2023

Håkon Jacobsen

© 2023 Thales Norway AS Open

Thales Group

© 2023 Thales Norway AS Open

200 employees (Oslo & Trondheim)

NOK 700M yearly revenue

High-tech company implementing high

assurance cryptography and

communication solutions

Independent unit within the

Thales Group, subject to the

Norwegian Security Act

Thales Norway AS

© 2023 Thales Norway AS Open

About me

• Cryptographer/developer at Thales Norway
• Supervise cryptography use and implementations in our projects

(and security more broadly)

• Implement both software and hardware (VHDL)
• Mostly cryptography

• Teach TEK4500 – Introduction to Cryptography at UiO
• https://www.uio.no/studier/emner/matnat/its/TEK4500/h23/

https://www.uio.no/studier/emner/matnat/its/TEK4500/h23/

© 2023 Thales Norway AS Open

FPGA – Field Programmable Gate Array

Bitstream

© 2023 Thales Norway AS Open

FPGA – Field Programmable Gate Array

Bitstream

Implementations
• SRAM (volatile, re-programmable)
• Flash (non-volatile, re-programmable)
• Antifuse (non-volatile, one-time programmable)

© 2023 Thales Norway AS Open

FPGA – Field Programmable Gate Array

FPGA applications:
• Aerospace and avionics
• Digital signal processors
• Defense and military
• Medical devices
• General hardware accelerators

(e.g. cryptography)

Bitstream

Implementations
• SRAM (volatile, re-programmable)
• Flash (non-volatile, re-programmable)
• Antifuse (non-volatile, one-time programmable)

© 2023 Thales Norway AS Open

Why FPGAs?

• High performance

• Low latency

• Flexibility

• Precise control over:
• running time

• resource usage

• Regulatory requirements

• ASIC prototyping

© 2023 Thales Norway AS Open

FPGA components

© 2023 Thales Norway AS Open

Modern FPGAs

© 2023 Thales Norway AS Open

© 2023 Thales Norway AS Open

FPGA design flow

HDL coding Synthesis Implementation
Device

programming

100010110111010001110

Place & route

Netlist
VHDL or Verilog Bitstream

Simulation Timing analysis

© 2023 Thales Norway AS Open

Synthesis

VHDL

Netlist

© 2023 Thales Norway AS Open

Technology mapping (synthesis)

LUT0

LUT1

LUT2

FF0

FF1

© 2023 Thales Norway AS Open

Placement (implementation)

LUT0

LUT1

FF0

FF1LUT2

© 2023 Thales Norway AS Open

Routing (implementation)

LUT0

LUT1

FF0

FF1LUT2

© 2023 Thales Norway AS Open

Place & Route

© 2023 Thales Norway AS Open

Thalesgroup.com

Cryptography on FPGAs

© 2023 Thales Norway AS Open

FPGA design flow

HDL coding Synthesis Implementation
Device

programming

100010110111010001110

Place & route

Netlist
VHDL or Verilog Bitstream

ToolsProgrammers

© 2023 Thales Norway AS Open

Timing analysis – critical path vs. clock frequency

Registers

Combinatorial circuit

Registers

Combinatorial circuit

clk

© 2023 Thales Norway AS Open

VHDL

my_circ

x
y

z
v

w

s

s_1

s_2

s_3

library IEEE;
use IEEE.std_logic_1164.all;

entity my_circ is
port (
x : in std_logic;
y : in std_logic;
z : in std_logic;
v : in std_logic;
w : in std_logic;
s : out std_logic

);
end my_circ;

architecture impl of my_circ is

signal s_1 : std_logic;
signal s_2 : std_logic;
signal s_3 : std_logic;

begin
s_1 <= x and y; -- A
s_2 <= z or v; -- B
s_3 <= v and (not w); -- C + D
s <= s_1 or s_2 or s_3; -- E

end impl;

© 2023 Thales Norway AS Open

VHDL

x
y

z
v

w

s

s_1

s_2

s_3

my_circ

library IEEE;
use IEEE.std_logic_1164.all;

entity my_circ is
port (
x : in std_logic;
y : in std_logic;
z : in std_logic;
v : in std_logic;
w : in std_logic;
s : out std_logic

);
end my_circ;

architecture impl of my_circ is

signal s_1 : std_logic;
signal s_2 : std_logic;
signal s_3 : std_logic;

begin
s_1 <= x and y; -- A
s_2 <= z or v; -- B
s_3 <= v and (not w); -- C + D
s <= s_1 or s_2 or s_3; -- E

end impl;

© 2023 Thales Norway AS Open

VHDL
entity my_larger_circ is
port (
x_1,x_2,x_3,x_4,x_5 : in std_logic;
y_1,y_2 : in std_logic;
z : out std_logic

);
end my_larger_circ;

architecture impl of my_larger_circ is
signal s_1, s_2 : std_logic;

begin

i_my_circ_1 : my_circ port map (
x => x_1,
y => x_2,
z => x_3,
w => x_4,
v => x_5,
s => s_1);

i_my_circ_2 : my_circ port map (
x => x_3,
y => x_4,
z => x_5,
w => y_1,
v => y_2,
s => s_2);

z <= s_1 and s_2;

end impl;

x_1

my_circ

my_circ

my_larger_circ

x_2
x_3
x_4
x_5

y_1
y_2

z

s_1

s_2

x
y
z
v
w

s

© 2023 Thales Norway AS Open

VHDL
entity my_larger_circ is
port (
x_1,x_2,x_3,x_4,x_5 : in std_logic;
y_1,y_2 : in std_logic;
z : out std_logic

);
end my_larger_circ;

architecture impl of my_larger_circ is
signal s_1, s_2 : std_logic;

begin

i_my_circ_1 : my_circ port map (
x => x_1,
y => x_2,
z => x_3,
w => x_4,
v => x_5,
s => s_1);

i_my_circ_2 : my_circ port map (
x => x_3,
y => x_4,
z => x_5,
w => y_1,
v => y_2,
s => s_2);

z <= s_1 and s_2;

end impl;

x_1

my_circ

my_circ

my_larger_circ

x_2
x_3
x_4
x_5

y_1
y_2

z

© 2023 Thales Norway AS Open

VHDL

entity my_program is
port (
clk : in std_logic;
x_1,x_2,x_3,x_4,x_5 : in std_logic;
y_1,y_2 : in std_logic;
s : out std_logic

);
end my_program;

architecture rtl of my_program is
signal z : std_logic;

begin

i_combinatorial : my_larger_circ
port map (x_1, x_2, x_3, x_4, x_5, y_1, y_2, z);

p_store_output : process(clk)
begin
if rising_edge(clk) then
s <= z;

end if;
end process;

end rtl;

x_1

my_larger_circ

x_2
x_3
x_4
x_5

y_1
y_2

z

clk

my_program

s

© 2023 Thales Norway AS Open

AES in FPGA

AES

© 2023 Thales Norway AS Open

Timing analysis – critical path vs. clock frequency

Registers

Combinatorial circuit

logic propagation delay
Registers

Combinatorial circuit
Timing violation!

clk

© 2023 Thales Norway AS Open

Compact design

Full Key
Expansion

key

clk

ptx
Sub

Bytes
Shift
Row

Mix
Colum

Add
Rnd Key

Round function

ctx
Add

Rnd Key

AES

© 2023 Thales Norway AS Open

Round
function

Pipelined design

Full Key
Expansion

key

clk

ptx
Round

function

Add
Rnd Key

Round
function

…

AES

ctx

© 2023 Thales Norway AS Open

Round
function

Fully pipelined design

key

clk

ptx
Round

function

Add
Rnd Key

Round
function

…

AES

ctx

Iterative Key
Expansion

Iterative Key
Expansion

Iterative Key
Expansion

Iterative Key
Expansion

…

© 2023 Thales Norway AS Open

High throughput implementations

Karim Shahbazi & Seok-Bum Ko. High throughput and area-efficient FPGA implementation of AES for high-traffic applications.
https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-cdt.2019.0179

© 2023 Thales Norway AS Open

Low area implementations

Saar Drimer, Tim Guneysü, and Christof Paar. DSPs, BRAMs and a Pinch of Logic: New Recipes for AES on FPGAs.
https://saardrimer.com/sd410/papers/aes_dsp.pdf

© 2023 Thales Norway AS Open

FGPA security

© 2023 Thales Norway AS Open

Hardware isolation

© 2023 Thales Norway AS Open

Single Event Upsets (SEU)

© 2023 Thales Norway AS Open

SEU mitigation

© 2023 Thales Norway AS Open

Protecting FPGA bitstreams

Bitstream

© 2023 Thales Norway AS Open

Protecting FPGA bitstreams

Bitstream design a business secret
(or even a national/military secret)

Bitstream

SRAM based FPGAs

K

Stored in non-volatile
memory outside FPGA

© 2023 Thales Norway AS Open

Protecting FPGA bitstreams

Authenticate bitstream with vk
Decrypt bitstream with K

K

Bitstream

Digital signature
vk

Stored in fuses

Stored in battery-backed RAM (BBRAM)

© 2023 Thales Norway AS Open

Protecting FPGA bitstreams

K

Bitstream

© 2023 Thales Norway AS Open

Anti-tamper

Firmware encryption key

Conductive mesh envelope

Tamper detection circuit
• Alarm
• Zeroization (erase key + configured design)

© 2023 Thales Norway AS Open

Xilinx FPGA – Starbleed attack

© 2023 Thales Norway AS Open

Xilinx Starbleed attack

WBSTAR: 0x000000

Decrypt bitstream with K
⋯ ⋯ ⋯

KMAC ⋯ ⋯

⋯ WRITE WBSTAR 0x00000000

MAC TAG

Header

AES-CBC
encrypted

WBSTAR = Warm-Boot Start-address

Bitstream

K

© 2023 Thales Norway AS Open

Xilinx Starbleed attack

⋯ ⋯ ⋯

KMAC ⋯ ⋯

⋯ WRITE WBSTAR

BAD TAG

WBSTAR: 0x23d001

Configure

Decrypted

K

Bitstream

Decrypt bitstream with K

Reboot

© 2023 Thales Norway AS Open

⋯ ⋯ ⋯

KMAC ⋯ ⋯

⋯ WRITE WBSTAR

BAD TAG

Xilinx Starbleed attack

“Read out
WBSTAR”

WBSTAR: 0x23d001

K

0x23d001

Bitstream

Decrypt bitstream with K

© 2023 Thales Norway AS Open

Xilinx Starbleed attack

⋯ ⋯ ⋯

KMAC ⋯ ⋯

⋯ WRITE WBSTAR

BAD TAG

WBSTAR: 0xff0015

K
Configure

0xff0015

Bitstream

Decrypt bitstream with K

“Read out
WBSTAR”

Reboot

© 2023 Thales Norway AS Open

Xilinx Starbleed attack

⋯ ⋯ ⋯

KMAC ⋯ ⋯

⋯ WRITE WBSTAR

BAD TAG

WBSTAR: 0x6391dd

Decrypt bitstream with K

K

0x6391dd

Configure

Bitstream

“Read out
WBSTAR”

Reboot

© 2023 Thales Norway AS Open

Bitstream

Xilinx Starbleed attack

⋯ ⋯ ⋯

KMAC ⋯ ⋯

⋯ WRITE WBSTAR

BAD TAG

WBSTAR: 0xba11c0

K

0xba11c0

Configure

Decrypt bitstream with K

“Read out
WBSTAR”

Reboot

© 2023 Thales Norway AS Open

Xilinx Starbleed attack

⋯ ⋯ ⋯

KMAC ⋯ ⋯

⋯ WRITE WBSTAR

BAD TAG

WBSTAR: 0x833ad7

K

0x833ad7

Configure

Bitstream

Decrypt bitstream with K

Reboot

“Read out
WBSTAR”

© 2023 Thales Norway AS Open

Xilinx Starbleed attack

⋯ ⋯ ⋯

KMAC ⋯ ⋯

⋯ WRITE WBSTAR

BAD TAG

WBSTAR: 0xfe4115

Time to fully decrypt bitstream: 26 hours

K

0xfe4115

Configure

Bitstream

Decrypt bitstream with K

“Read out
WBSTAR”

Reboot

© 2023 Thales Norway AS Open

Summary

• FPGAs are powerful and flexible

• Well suited for implementing cryptography

• Comes with unique possibilities and challenges

