
TTM4205: Weekly Problems Fall 2023

Tjerand Silde and Jonathan Komada Eriksen

{tjerand.silde, jonathan.k.eriksen}@ntnu.no

Overview

This is the first of two assignments in the course TTM4205 Secure Crypto-
graphic Implementations in the fall semester of 2023. More details about
the course can be found at http://ttm4205.iik.ntnu.no. This assign-
ment has to be solved individually (except side-channel attacks), and the
solutions must be your own. It is, however, allowed to discuss the problems
with other students and ask for hints or pointers from the course staff.

The assignment contains problems related to each of the main topics from
the lectures. Some problems can be solved with pen and paper and/or code,
and other solutions have to be documented in other ways. A selection of
the problems is taken from https://cryptohack.org and ChipWhisperer-
tutorials from https://github.com/newaetech/chipwhisperer-jupyter.

All problems require detailed answers where you describe and document
what you have done to complete the task, e.g., written explanations, calcula-
tions, code, graphs, etc. It is allowed to rely on external resources; however,
these resources must be clearly referred to. Otherwise, it will be considered
cheating; see https://i.ntnu.no/wiki/-/wiki/English/Cheating+on

+exams. You are allowed to use a variety of tools to improve the writing
quality of your solutions, e.g., Grammarly at https://grammarly.com.

All submissions must be written in LATEX, and the source of this document
is available at https://www.overleaf.com/read/gcbmcmffrhyk.

This assignment counts for at most 40 points, and each topic is marked with
how many points it is worth, roughly estimating how much work is expected.
Bonus problems are not expected to be solved but can give 2 additional
points each to make up for missed points elsewhere in the assignment. We
also give full or partial credit if you show that you understand a problem
and made an attempt to solve it even if you are not able to solve it entirely.

Submission deadline: December 10th, by email to tjerand.silde@ntnu.no.

1

mailto:tjerand.silde@ntnu.no,jonathan.k.eriksen@ntnu.no
http://ttm4205.iik.ntnu.no
https://cryptohack.org
https://github.com/newaetech/chipwhisperer-jupyter
https://i.ntnu.no/wiki/-/wiki/English/Cheating+on+exams
https://i.ntnu.no/wiki/-/wiki/English/Cheating+on+exams
https://grammarly.com
https://www.overleaf.com/read/gcbmcmffrhyk
mailto:tjerand.silde@ntnu.no


Contents

1 Randomness (9 points) 4
1.1 “It is truly random, I promise!” . . . . . . . . . . . . . . . . . 4
1.2 The Next of Your Kind . . . . . . . . . . . . . . . . . . . . . 4
1.3 This Destroyes the Schnorr Cryptosystem . . . . . . . . . . . 4
1.4 ElGusto ElGamal . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Ron was Wrong, Whit is Right . . . . . . . . . . . . . . . . . 5
1.6 No Random, No Bias . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Lo-Hi Card Game . . . . . . . . . . . . . . . . . . . . . . . . 6
1.8 Bonus Problems . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.8.1 Trust Games . . . . . . . . . . . . . . . . . . . . . . . 6
1.8.2 Prime and Prejudice . . . . . . . . . . . . . . . . . . . 7
1.8.3 RSA vs. RNG . . . . . . . . . . . . . . . . . . . . . . 7

2 Legacy Crypto (4 points) 7
2.1 Export Grade . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Oh SNAP! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Bonus Problems . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Nothing up my Sleeve . . . . . . . . . . . . . . . . . . 8
2.3.2 MOVing Problems . . . . . . . . . . . . . . . . . . . . 8

3 Side-Channel Attacks (10 points) 9
3.1 Introduction to Power Analysis . . . . . . . . . . . . . . . . . 9
3.2 More Advanced Power Analysis . . . . . . . . . . . . . . . . . 9
3.3 Introduction to Fault Injection . . . . . . . . . . . . . . . . . 9
3.4 More Advanced Fault Injection . . . . . . . . . . . . . . . . . 9
3.5 Bonus Problems . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.5.1 CPA in Practice and Jittery Trigging . . . . . . . . . . 9
3.5.2 AES256 Bootloader Attack and Reverse Engineering . 9
3.5.3 Voltage Glitching . . . . . . . . . . . . . . . . . . . . . 10

4 Protocols APIs (7 points) 10
4.1 Fool Me Once, Fool Me Twice . . . . . . . . . . . . . . . . . . 10
4.2 Faulty RSA Bites the Dust . . . . . . . . . . . . . . . . . . . 10
4.3 Parts of Me, Parts of You . . . . . . . . . . . . . . . . . . . . 11
4.4 Curveball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5 Let’s Decrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.6 Bonus Problems . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.6.1 Implementing sMult attack . . . . . . . . . . . . . . . 12

5 Padding Oracles (4 points) 12
5.1 Endless Emails . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Null or Never . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2



5.3 Bonus Problems . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3.1 Paper Plane . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Commitments and Zero-Knowledge (4 points) 13
6.1 Trapdoor Backdoor . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 How to Steal an Election . . . . . . . . . . . . . . . . . . . . . 13

7 Protocol Composition (2 points) 14
7.1 Megalomaniac 1: . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.2 Bonus Problems . . . . . . . . . . . . . . . . . . . . . . . . . 15

7.2.1 Megalomaniac 2: . . . . . . . . . . . . . . . . . . . . . 15
7.2.2 Megalomaniac 3: . . . . . . . . . . . . . . . . . . . . . 15

3



1 Randomness (9 points)

1.1 “It is truly random, I promise!”

Intel published a cryptography library with the following C++ code snippet:

1 static void rand32u(std::vector<Ipp32u>& addr) {

2 std::random_device dev;

3 std::mt19937 rng(dev());

4 std::uniform_int_distribution<std::mt19937::result_type

↪→ > dist(0, UINT_MAX);

5 for (auto& x : addr) x = (dist(rng) << 16) + dist(rng);

6 }

Question 1: Give a high-level explanation of each line of code.

Question 2: This code was used to generate cryptographic keys, which are
supposed to be of 128 bits entropy. However, there are two catastrophic
failures in this code. What is wrong?

Question 3: Describe (in words and/or pseudocode) how to fix this.

1.2 The Next of Your Kind

Let nextPrime be a function that takes as input an integer x and outputs
the smallest prime p such that p ≥ x. Let the RSA-3072 key generation
procedure be implemented using a secure random generator as follows:

1. Securely sample a 128 bit entropy seed s.

2. Expand s to a random 1536-bit integer x.

3. Compute the first prime p = nextPrime(x).

4. Compute the second prime q = nextPrime(p).

5. Output the RSA-3072 modulus n = p · q.

Question 1: Describe a potential attack against a given RSA-3072 modulus
n computed using this procedure and estimate how likely it will succeed.

Question 2: How can you update the procedure to generate a key securely?

1.3 This Destroyes the Schnorr Cryptosystem

Let G be a group of prime order p and let g be a generator for G. Denote by
pp the public parameters (G, g, p). Let the secret key sk ←$ Zp be sampled
uniformly at random, and let the public key be pk = gsk, where pk is made

4



publicly available. Let H be a cryptographic hash function that outputs
elements in Zp. The Schnorr signature of message m is computed as:

1. Sample random r ←$ Zp and compute commitment R = gr.

2. Compute the output hashed challenge c = H(pp, pk,m,R).

3. Compute the response z = r − c · sk. Output σ = (c, z).

To verify the signature, one computes R′ = gz · pkc and checks if challenge

c
?
= H(pp, pk,m,R′). If correct, one accepts and otherwise rejects.

We consider the scheme to be broken if an adversary is able to extract the
secret key or forge signatures without knowing the secret key.

Question 1: How do you break the Schnorr signature scheme if key sk or
randomness r is sampled using a low-entropy randomness source?

Question 2: How do you break the Schnorr signature scheme if randomness
r is re-used to produce signatures on two different messages m and m′?

Question 3: How can you create a valid Schnorr signature without know-
ing sk if a weak hash function H outputs easily predictable challenges c?

Question 4: What are possible ways to mitigate the above weaknesses?

1.4 ElGusto ElGamal

Let G be a group of prime order p and let g be a generator for G. Let
the secret key sk←$ Zp be sampled uniformly at random and let the public
key pk = gsk, where pk is publicly available. The ElGamal encryption and
decryption of message m ∈ G is computed as:

Enc : Sample a random x←$ Zp and compute X = gx and Y = pkx ·m.

Dec : Decrypt the ciphertext (X,Y ) to get the messages as m = Y ·X−sk.

We consider the scheme to be broken if an adversary is able to extract the
secret key or learn something about the encrypted messages (breaking CPA).

Question 1: How do you break the ElGamal encryption scheme if key sk
or randomness x is sampled using a low-entropy randomness source?

Question 2: What can you learn from two ElGamal ciphertexts if the same
randomness x is used to encrypt two different messages m and m′?

1.5 Ron was Wrong, Whit is Right

In this challenge, you get a bunch of public RSA keys. Can you decrypt any
of the messages?

5



Hint: There is seemingly little wrong with the challenge generation file.
However, a quick Google search might provide useful.

Question: Go to https://cryptohack.org, and find the challenge Ron
was wrong, Whit is right in the RSA category. Solve the challenge and
give the flag. How did you solve the challenge? Provide a short write-up,
including the main mathematical concepts, and some relevant code snippets.

1.6 No Random, No Bias

Try your hands on a famous attack we’ve covered in the lectures! Except,
this time, we’re using deterministic signatures, to be sure there’s no bias in
the randomness. Just don’t use the solution to steal Bitcoins and become a
cyber-criminal... or do, I don’t really care...

Hint (ROT13): Abgvpr gung gur bhgchg fvmr bs FUN-1 vf 160 ovgf. Guhf,
gur fbyhgvba gb guvf punyyratr jnf pbirerq ol Pnebyvar va gur guveq yrpgher.

Question: Go to https://cryptohack.org, and find the challenge No
Random, No Bias in the Elliptic Curve category. Solve the challenge
and give the flag. How did you solve the challenge? Provide a short write-up,
including the main mathematical concepts, and some relevant code snippets.

1.7 Lo-Hi Card Game

A Casino is using a homemade PRNG for shuffling their decks. Can you use
this to pull off a great heist?

Hint: This challenge (and many future challenges) features interaction with
a remote server. If you are using Python to solve this challenge, a good
option for easy socket interaction is using the library pwntools.

Question: Go to https://cryptohack.org, and find the challenge Lo-Hi
Card Game in the Misc category. Solve the challenge and give the flag.
How did you solve the challenge? Provide a short write-up, including the
main mathematical concepts, and some relevant code snippets.

1.8 Bonus Problems

1.8.1 Trust Games

Given that you stole all their money, it would only be fair if you would test
their new PRNG pro bono.

Question: Find the challenge Trust Games in the Misc category. Solve
the challenge and give the flag. How did you solve the challenge? Pro-
vide a short write-up, including the main mathematical concepts, and some
relevant code snippets.

6

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ron+was+wrong+whit+is+right&btnG=
https://cryptohack.org
https://cryptohack.org
https://docs.pwntools.com/en/stable/intro.html#making-connections
https://cryptohack.org


1.8.2 Prime and Prejudice

Can you construct a composite number that the Miller-Rabin test marks as
a prime?

Question: Find the challenge Prime and Prejudice in the Mathemat-
ics category. Solve the challenge and give the flag. How did you solve
the challenge? Provide a short write-up, including the main mathematical
concepts, and some relevant code snippets.

1.8.3 RSA vs. RNG

Try to break this poorly generated RSA key.

Question: Find the challenge RSA vs. RNG in the Misc category.
Solve the challenge and give the flag. How did you solve the challenge?
Provide a short write-up, including the main mathematical concepts, and
some relevant code snippets.

2 Legacy Crypto (4 points)

2.1 Export Grade

Alice and Bob are both supporting lots of parameters for nice, backward
compatibility! You’ve MITM’d their communication. Can you use this to
recover the flag?

Hint 1: We know that the flag was encrypted with the following code:

1 import hashlib, os

2 from Crypto.Cipher import AES

3

4 def encrypt_flag(FLAG, shared_secret: int):

5 # Derive AES key from shared secret

6 sha1 = hashlib.sha1()

7 sha1.update(str(shared_secret).encode(’ascii’))

8 key = sha1.digest()[:16]

9 # Encrypt flag

10 iv = os.urandom(16)

11 cipher = AES.new(key, AES.MODE_CBC, iv)

12 ciphertext = cipher.encrypt(FLAG)

13 # Prepare data to send

14 data = {}

15 data[’iv’] = iv.hex()

16 data[’encrypted_flag’] = ciphertext.hex()

17 return data

7



Hint 2 (ROT13): Fntrzngu pna fbyir qvfpergr ybtf va snveyl ovt svryqf irel
dhvpxyl. Hfr ‘S = TS(c)‘ gb vafgnagvngr n svavgr svryq, gura ‘ybt(S(l),
S(t))‘ gb pbzchgr k fhpu gung tk = l

Question: Go to https://cryptohack.org, and find the challenge Ex-
port Grade in the Diffie-Hellman category. Solve the challenge and give
the flag. How did you solve the challenge? Provide a short write-up, includ-
ing the main mathematical concepts, and some relevant code snippets.

2.2 Oh SNAP!

Can you break a classic cipher used for years, famously breaking one of
Kerckhoffs principles?

Hint (ROT13): Ybbx sbe vzcyrzragngvbaf bs gur “Syhuere, Znagva naq Fun-
zve nggnpx” bayvar.

Question: Go to https://cryptohack.org, and find the challenge Oh
SNAP! in the Symmetric Ciphers category. Solve the challenge and
give the flag. How did you solve the challenge? Provide a short write-up,
including the main mathematical concepts, and some relevant code snippets.

2.3 Bonus Problems

2.3.1 Nothing up my Sleeve

The casino is back yet again. This time using a real-world, provably secure
PRNG! Surely, you can’t swindle them yet again??

Question: Find the challenge Nothing up my Sleeve in the Misc cate-
gory. Solve the challenge and give the flag. How did you solve the challenge?
Provide a short write-up, including the main mathematical concepts, and
some relevant code snippets.

2.3.2 MOVing Problems

The famous MOV-attack prevents the use of supersingular elliptic curves in
discrete-log based systems. Luckily, this curve is ordinary, so there should
be no problems.

Question: Find the challenge MOVing Problems in the Elliptic Curve
category. Solve the challenge and give the flag. How did you solve the chal-
lenge? Provide a short write-up, including the main mathematical concepts,
and some relevant code snippets.

8

https://cryptohack.org
https://cryptohack.org


3 Side-Channel Attacks (10 points)

In this section, you will work through several detailed tutorials for conduct-
ing side-channel attacks (power analysis and fault injection) against modern
schemes like AES and RSA using the ChipWhisperer platform. You will
perform the experiments in pairs, but you must write down your answers
individually. We will provide each pair with a ChipWhisperer Level 1 Kit;
see https://www.newae.com/products/NAE-SCAPACK-L1.

Instructions for ChipWhisperer installation, set up, and use; see https:

//github.com/tjesi/TTM4205/blob/main/CW-Setup.ipynb.

It is not unusual for errors to happen when conducting real-world experi-
ments. For common errors and possible solutions, see https://github.c

om/tjesi/TTM4205/blob/main/CW-Errors.ipynb.

In each of the following tutorials, you should provide a short write-up, e.g.,
including a screenshot and/or a few lines of code and/or a paragraph de-
scribing what you have completed. The tutorials are available at https://
github.com/newaetech/chipwhisperer-jupyter/tree/master/courses.

3.1 Introduction to Power Analysis

Complete the following tutorials in the folder “sca101”: Setup and Lab 2-1
to 4-3 (not Lab 5-1 and Lab 6-4). (You can also use a ChipWhisperer Nano.)

3.2 More Advanced Power Analysis

Complete the following tutorials in the folder “sca201”: Lab 1-1.

3.3 Introduction to Fault Injection

Complete the following tutorials in the folder “fault101”: Lab 1-1 to 1-4.

3.4 More Advanced Fault Injection

Complete the following tutorials in the folder “fault201”: Lab 1-3 and 2-1.

3.5 Bonus Problems

3.5.1 CPA in Practice and Jittery Trigging

Complete the following tutorials in the folder “sca101” Lab 5-1 and 6-4.

3.5.2 AES256 Bootloader Attack and Reverse Engineering

Complete the following tutorials in the folder “sca201” Lab 3-1.

9

https://www.newae.com/products/NAE-SCAPACK-L1
https://github.com/tjesi/TTM4205/blob/main/CW-Setup.ipynb
https://github.com/tjesi/TTM4205/blob/main/CW-Setup.ipynb
https://github.com/tjesi/TTM4205/blob/main/CW-Errors.ipynb
https://github.com/tjesi/TTM4205/blob/main/CW-Errors.ipynb
https://github.com/newaetech/chipwhisperer-jupyter/tree/master/courses
https://github.com/newaetech/chipwhisperer-jupyter/tree/master/courses


3.5.3 Voltage Glitching

Complete the following tutorials in the folder “fault101” Lab 2-1 to 2-3.

4 Protocols APIs (7 points)

4.1 Fool Me Once, Fool Me Twice

Let the Schnorr signature scheme be defined as earlier but with a slight
change: the randomness r is not sampled randomly but deterministically
computed as the hash of the secret key and the message, i.e., r = H(sk,m).

Let Sign be an API where a client inputs an identity id, a message m and
a public key pkid and the server uses the secret key skid corresponding to id
(e.g. stored in a hardware security module) and output a signature σ.

We consider the scheme to be broken if an adversary is able to extract the
secret key or forge signatures without knowing the secret key.

Question 1: How can a malicious client use this API to break the scheme?

Question 2: How can we protect this signing API against such attacks?

4.2 Faulty RSA Bites the Dust

Let (n, e) be a public RSA signature verification key and (n, e′) a public
RSA encryption key for the same user, where n = p · q for secret prime
numbers p, q and corresponding secret signing key d and decryption key d′.

Assume that the signing API Sign is implemented in a faulty way so that
the signing key d leaks to the clients.

Question 1: How can the knowledge of the signing key d be used to decrypt
messages encrypted with the public encryption key (n, e′)?

Let the leakage in Sign be fixed so that d is stored securely. Let µ be a
secure padding function. The RSA signature is often computed using the
Chinese Reminder Theorem in the following way:

1. Compute dp ≡ d mod (p− 1) and dq ≡ d mod (q − 1).

2. Compute a such that a ≡ 1 mod p and a ≡ 0 mod q.

3. Compute b such that b ≡ 0 mod p and b ≡ 1 mod q.

4. Compute σp ≡ µ(m)dp mod p and σq ≡ µ(m)dq mod q.

5. Output the signature σ = a · σp + b · σq mod n.

10



This is a more efficient computation than computing µ(m)d mod n directly
since p and q are much smaller than n and (dp, dq, a, b) can be pre-computed

and stored for later use. We can verify the signature as: µ(m)
?≡ σe mod n.

Question 2: Assume that there is a bug in the implementation so that σp ≡
µ(m)dp mod p but σq ̸≡ µ(m)dq mod q. Show how the faulty signature σ,
where µ(m) ̸≡ σe mod n, can be used to factor n.

Question 3: What are possible ways of avoiding these above RSA issues?

4.3 Parts of Me, Parts of You

Let E : y2 = x3 + a · x+ b be an elliptic curve over a finite field Fp of prime
order p where a, b ∈ Fp and that the elliptic curve group E(Fp) consists of
the point at infinity O and all pairs (x, y) ∈ Fp × Fp that satisfy the curve
equation of E. Denote the number of points in E(Fp) by η and note that η
does not necessarily have to be a prime number.

Give two points P = (x1, y1) and Q = (x2, y2) in E(Fp), then we compute
the sum P +Q in the following way:

1. If P = O, output Q. If Q = O, output P .

2. If x1 = x2 and y2 = −y1, then output O.

3. Otherwise, let x3 = λ2 − x1 − x2 and y3 = −y1 − λ · (x3 − x1), where

λ =

{
3x2

1+a
2y1

if P = Q
y1−y2
x1−x2

otherwise,

and output R = (x3, y3).

The double-and-add (resp. square-and-multiply for multiplicative notation)
algorithm can then be used to efficiently compute the scalar multiplication
Q = s · P for s ∈ Zp and P ∈ E(Fp) in at most 2 log2 η additions. The
discrete logarithm problem says it is hard to find s given P and Q.

Let q is a large prime and η = q · h, then E(Fp) has a subgroup Gq of order
q such that q · P = O if P is in Gq. h is called the co-factor. Note that for
each choice of a, b we get a new elliptic curve of different size ηa,b. Assume
that we have an API called sMult that takes a point P as input and outputs
a point Q = s · P for a fixed and secret value s with 256 bits of entropy.

Question 1: Assume that sMult forget to check if q · P = O, and that h
is a relatively small number or is a product of several small prime numbers.
What kind of information about s can we learn from Q?

Question 2: Assume that sMult forget to check if P in on the curve E.
How can a client adaptively learn something about s in each API query?

11



Question 3: How can we protect sMult from leaking information about s?

4.4 Curveball

Can you prove that you own a public ECDSA key, by giving the correspond-
ing private key? This attack is so stupid, it could not have occurred in the
real world, right? RIGHT??!

Recommended listening while solving: Aretha Franklin - Chain of Fools

Question: Go to https://cryptohack.org, and find the challengeCurve-
ball in the Elliptic Curve category. Solve the challenge and give the flag.
Solve the challenge and give the flag. How did you solve the challenge?
Provide a short write-up, including the main mathematical concepts, and
some relevant code snippets.

4.5 Let’s Decrypt

In this challenge, you should make a given RSA signature verify a different
message. Luckily, the RSA signing operation is a bijection from (Z/nZ)× to
itself, so this should be impossible.

Question: Go to https://cryptohack.org, and find the challenge Let’s
Decrypt in the RSA category. Solve the challenge and give the flag. How
did you solve the challenge? Provide a short write-up, including the main
mathematical concepts, and some relevant code snippets.

4.6 Bonus Problems

4.6.1 Implementing sMult attack

Implement an attack that breaks the sMult API in “Parts of Me, Parts of
You” problem when not checking if the point P is on the curve. Explain
your attack and provide the code.

5 Padding Oracles (4 points)

5.1 Endless Emails

Here is a classic example you might have seen before in earlier courses of
what can go wrong when using RSA without padding.

Question: Go to https://cryptohack.org, and find the challenge End-
less Emails in the RSA category. Solve the challenge and give the flag.
How did you solve the challenge? Provide a short write-up, including the
main mathematical concepts, and some relevant code snippets.

12

https://www.youtube.com/watch?v=o0s5CP2kXsc
https://cryptohack.org
https://cryptohack.org
https://cryptohack.org


5.2 Null or Never

This time, we padded RSA precisely to avoid something similar to the pre-
vious attack. Can you still break it?

Question: Go to https://cryptohack.org, and find the challenge Null
or Never in the RSA category. Solve the challenge and give the flag. How
did you solve the challenge? Provide a short write-up, including the main
mathematical concepts, and some relevant code snippets.

5.3 Bonus Problems

5.3.1 Paper Plane

Can you solve this, using what you have learned?

Question: Go to https://cryptohack.org and find the challenge Pa-
per Plane in the Symmetric Crypto category. Solve the challenge and
give the flag. How did you solve the challenge? Provide a short write-up,
including the main mathematical concepts, and some relevant code snippets.

6 Commitments and Zero-Knowledge (4 points)

6.1 Trapdoor Backdoor

Let G be a group of prime order p and let g and h be independent generators
for G. Let m be a message and w be uniform randomness, both elements in
Zp. A Pedersen commitment is computed as com = gmhw.

A commitment is hiding if it is hard to decide if com is a commitment to
m or if com is sampled uniformly at random from G. A commitment is
binding if it is hard to find to valid openings (m,w) and (m′, w′) such that
com = gmhw = gm

′
hw

′
and m ̸= m′.

Question 1: Provide some simple or high-level arguments to explain why
the Pedersen commitment is both hiding and binding.

Question 2: Let h = gt. Show how the knowledge of t can break binding.

Question 3: How can we ensure that g and h are independently sampled?

6.2 How to Steal an Election

Let the ElGamal encryption scheme be defined as earlier. A prover has
the secret key sk corresponding to the public key pk and wants to prove in
zero-knowledge that the correct decryption of a ciphertext (X,Y ) is m.

This can be used in an electronic voting scheme where we want to prove that
the tally is correct without making the decryption key publicly available.

13

https://cryptohack.org
https://cryptohack.org


The decryption proof is computed as follows, where pp = (G, g, p):

1. Compute T = Xsk and the encrypted message as m = Y · T−1.

2. Sample random r ←$ Zp and compute R = gr and S = Xr.

3. Compute the hashed challenge as c = H(pp, pk, X, Y,R, S, T ).

4. Compute the response z = r − c · sk. Output proof (T, c, z).

To verify the proof one computes R′ = gz · pkc and S′ = Xz · T c and checks
if c = H(pp, pk, X, Y,R, S, T ). If correct, one outputs m = Y · T−1 and
otherwise rejects. The proof is similar to Schnorr signatures, proving that
logg pk = logX T , and then m = Y · T−1 is the encrypted message.

In this problem we assume that the malicious prover knows the secret key
sk, but want to provide a seemingly valid proof that the ElGamal ciphertext
(X,Y ) decrypts to a different message m′ than the real plaintext m.

Question 1: Assume c = H(pp, pk, X, Y,R, S). How can a malicious prover
create an accepting proof where the given ciphertext decrypts to a random
message m′ ̸= m?

Question 2: Assume c = H(pp, X, Y,R, S, T ). How can a malicious prover
change the public key and create an accepting proof that the given ciphertext
decrypts to a chosen message m′ ̸= m with respect to the new public key?

Question 3: Assume c = H(pp, pk, X,R, S, T ). How can a malicious prover
change the ciphertext and create an accepting proof that it decrypts to a
chosen message m′ ̸= m?

Question 4: Assume c = H(pp, pk, Y, R, S, T ). How can a malicious prover
change the ciphertext and create an accepting proof that it decrypts to a
chosen message m′ ̸= m?

7 Protocol Composition (2 points)

7.1 Megalomaniac 1:

The first challenge, introducing a simplified Mega vulnerability.

Question: Go to https://cryptohack.org, and find the challenge Mega-
lomaniac 1 in the Crypto on the web category. Solve the challenge and
give the flag. How did you solve the challenge? Provide a short write-up,
including the main mathematical concepts, and some relevant code snippets.

14

https://cryptohack.org


7.2 Bonus Problems

7.2.1 Megalomaniac 2:

The second challenge is also related to the Mega vulnerability.

Question: Go to https://cryptohack.org and find the challenge Mega-
lomaniac 2 in the Crypto on the web category. Solve the challenge and
give the flag. How did you solve the challenge? Provide a short write-up,
including the main mathematical concepts, and some relevant code snippets.

7.2.2 Megalomaniac 3:

The final challenge, forcing you to limit your number of queries to steal all
the data!

Question: Go to https://cryptohack.org and find the challenge Mega-
lomaniac 3 in the Crypto on the web category. Solve the challenge and
give the flag. How did you solve the challenge? Provide a short write-up,
including the main mathematical concepts, and some relevant code snippets.

15

https://cryptohack.org
https://cryptohack.org

	Randomness (9 points)
	``It is truly random, I promise!''
	The Next of Your Kind
	This Destroyes the Schnorr Cryptosystem
	ElGusto ElGamal
	Ron was Wrong, Whit is Right
	No Random, No Bias
	Lo-Hi Card Game
	Bonus Problems
	Trust Games
	Prime and Prejudice
	RSA vs. RNG


	Legacy Crypto (4 points)
	Export Grade
	Oh SNAP!
	Bonus Problems
	Nothing up my Sleeve
	MOVing Problems


	Side-Channel Attacks (10 points)
	Introduction to Power Analysis
	More Advanced Power Analysis
	Introduction to Fault Injection
	More Advanced Fault Injection
	Bonus Problems
	CPA in Practice and Jittery Trigging
	AES256 Bootloader Attack and Reverse Engineering
	Voltage Glitching


	Protocols APIs (7 points)
	Fool Me Once, Fool Me Twice
	Faulty RSA Bites the Dust
	Parts of Me, Parts of You
	Curveball
	Let's Decrypt
	Bonus Problems
	Implementing sMult attack


	Padding Oracles (4 points)
	Endless Emails
	Null or Never
	Bonus Problems
	Paper Plane


	Commitments and Zero-Knowledge (4 points)
	Trapdoor Backdoor
	How to Steal an Election

	Protocol Composition (2 points)
	Megalomaniac 1:
	Bonus Problems
	Megalomaniac 2:
	Megalomaniac 3:



